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The duration of infection is fundamental to the epidemiological behaviour of

any infectious disease, but remains one of the most poorly understood aspects

of malaria. In endemic areas, the malaria parasite Plasmodium falciparum can

cause both acute, severe infections and asymptomatic, chronic infections

through its interaction with the host immune system. Frequent superinfection

and massive parasite genetic diversity make it extremely difficult to accurately

measure the distribution of infection lengths, complicating the estimation of

basic epidemiological parameters and the prediction of the impact of interven-

tions. Mathematical models have qualitatively reproduced parasite dynamics

early during infection, but reproducing long-lived chronic infections remains

much more challenging. Here, we construct a model of infection dynamics to

examine the consequences of common biological assumptions for the gener-

ation of chronicity and the impact of co-infection. We find that although a

combination of host and parasite heterogeneities are capable of generat-

ing chronic infections, they do so only under restricted parameter choices.

Furthermore, under biologically plausible assumptions, co-infection of para-

site genotypes can alter the course of infection of both the resident and

co-infecting strain in complex non-intuitive ways. We outline the most impor-

tant puzzles for within-host models of malaria arising from our analysis, and

their implications for malaria epidemiology and control.
1. Introduction
Each year, nearly 200 million people are infected with the malaria parasite,

Plasmodium falciparum, although only a fraction of infections result in clinical

symptoms such as fever or severe anaemia [1]. One of the most notable features

of malaria is the variable course and duration of blood-stage infection experi-

enced by different individuals, ranging from high parasite density episodes

causing severe disease to persistent, chronic infections that are often undetect-

able by the standard method of microscopy [1–3]. In areas where malaria is

endemic, older children and adults rarely exhibit severe symptoms, suffering

only mild or asymptomatic infections. It is thought that this naturally acquired

immunity against clinical disease is generated following repeated exposure

to genetically diverse parasites. However, high parasite population diversity,

as well as the lack of sensitive genetic markers characterizing different geno-

types, makes it difficult to distinguish between co-infection, recrudescence or

re-infection of an individual [4–6]. As a result, the measured duration of an

individual infection with P. falciparum in similar settings is highly variable,

and the impact of immunity and co-infection on infection length is essentially

unknown. Because asymptomatic infections, which are often long-lasting, are

critical to the transmission potential of malaria [7–9], and infection length is

a key epidemiological parameter in mathematical models predicting the

impact of control programmes, this knowledge gap represents a significant

hurdle for the design of control and elimination strategies.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2014.1379&domain=pdf&date_stamp=2015-02-11
mailto:cbuckee@hsph.harvard.edu
http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141379

2

 on July 23, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
Some of the best data on the dynamics of human malaria

infections come from experimental infections in neurosyphilis

patients undergoing ‘malaria therapy’ in the first half of the

twentieth century. Although these patients—malaria-naive

and suffering from tertiary syphilis—are not representative of

endemic populations, the detailed records provide important

insights into the dynamics of parasite density and the remark-

able range of infection lengths in untreated infections, from 8 to

417 days. These data form the basis of assumptions such as

average duration of infection in many models of malaria trans-

mission [10–18] including those used to inform control. Field

studies examining survival times of parasites in the blood

have produced widely varying estimates of infection length

using a variety of different genetic and statistical methods

[19,20]; however, one recent estimate suggests that very short

infections—on the order of days rather than weeks—may be

more common than previously thought [21]. Monitoring the

duration of low-density chronic infections in vivo remains chal-

lenging, whereas the lack of sensitive genetic markers makes it

difficult to measure the dynamics of individual parasite geno-

types in the host, all complicating estimates of infection length

in endemic settings.

Co-infection with multiple genotypes, which is common in

high endemicity settings, represents an additional challenge to

understanding chronicity and the impact of heterogeneous

infection lengths on transmission [19]. Little evidence exists

as to whether co-infection in the human host increases or

decreases infection length or infectivity to the mosquito

vector, and many transmission models simply assume either

that genotypes circulate completely independently or that

one strain succeeds and is the sole contributor to onward trans-

mission [22–27]. In others, co-infection is omitted altogether

[28,29]. Because there is ample evidence that in areas of high

endemicity the majority of infections contain multiple clones

[19], and that the frequency of mixed infections changes in

different transmission settings, these assumptions are likely

to significantly alter model results at the population level.

In the absence of data on the dynamics of individual

infections in an endemic setting, which is extremely difficult

to measure directly, mathematical models provide important

tools to predict the in vivo consequences of molecular and

immunological mechanisms elucidated from field and

in vitro studies. Several mathematical frameworks have been

developed to quantify parasite dynamics within the blood

stage of P. falciparum [12,13,30–40], often focusing on infec-

tions in naive patients prior to the development of adaptive

immune responses [31,34]. All current models suffer from

increased complexity caused by the juxtaposition of the

discrete parasite life cycle with egress every 48 h, and the

more continuously varying immune cell population

[12,13,30,32–35,37,40]. As a result, all models require an

extensive number of parameters, few of which can be

measured directly from experimental data, and despite

highly complex model structures, not only are the dynamics

of individual malaria therapy patients hard to reproduce,

but also chronicity per se is difficult to achieve.

Here, we use a mathematical model to test whether

reasonable and frequently made biological assumptions

about mechanisms of immunity against P. falciparum reliably

produce the basic features of infection dynamics observed in

untreated patients. Most models are not specifically designed

to understand the distribution of infection lengths, and there-

fore do not examine the consequences of their assumptions
beyond the scope of their particular question. We find that

dramatic changes in the outcome of infection occur with simi-

lar combinations of parameters, even in our deterministic

framework. We show that this rugged landscape of model

outcomes with similar parameters means that chronicity is

not a consistent outcome in the presence of natural variation

in hosts and parasites. Thus, for this complex system, the

standard sensitivity analyses reported by most within-host

modelling studies are insufficient. Furthermore, when

chronic infections are likely, we examine the impact of co-

infection on infection length, and show that the presence of

multiple genotypes may significantly alter the persistence of

parasites in the human host in unpredictable ways, favouring

either the resident or the co-infecting strain, and occasionally

both. Our results suggest that commonly employed represen-

tations of the within-host processes underlying malaria

transmission greatly impact the reliability of models designed

to aid control and elimination strategies.
2. Results and discussion
2.1. Key characteristics of chronic malaria infections
Generally, malaria within-host models are formulated to

examine the mechanisms that can reproduce one or a few

characteristics of malaria therapy infection data [30,34,35,37]

illustrated in figure 1, including (i) the remarkably consistent

height of the initial peak in parasitaemia around 105 parasites

per microlitre (figure 1a); (ii) following this initial peak, the

almost complete disappearance of parasites from nearly

60% of patients, sometimes for more than 20 days, and sub-

sequent recrudescence (figure 1b,d); (iii) the slow log-linear

decay in peak densities (figure 1c) [41] and (iv) long-scale

oscillations in parasitaemia occurring subsequently, obscured

by daily fluctuations resulting from the 48 h life cycle of the

parasite (figure 1e).

In the absence of constraints, the relatively unconstrained

exponential parasite growth in the blood, observed during

early infection, is associated with the intracellular develop-

ment of a single parasite into 16–30 progeny over the

course of a single replication cycle lasting 48 h [42]. In

order to reproduce the complex dynamics observed through-

out the entirety of an infection within a mathematical model,

however, this intrinsic capacity for rapid growth must be con-

trolled by a combination of resource limitation, via the

availability of susceptible red blood cells, and various mech-

anisms of immunity that either prevent invasion or clear the

parasite [10,30,43].

2.2. Biological assumptions of a within-host discrete
model of blood-stage parasitaemia

We develop a discrete, deterministic within-host mathematical

model with parameters chosen stochastically to examine the

conditions under which commonly assumed interactions

between the host immune response and the parasite actually

lead to the infection dynamics described in figure 1. We

choose assumptions based on their biological plausibility

and widespread use in the modelling literature, and incorpor-

ate co-infection to examine the validity of assumptions of

many transmission models of malaria. Methods are given in

the Detailed Methods section, but in brief, we can separate

the assumptions into parasite and host components.

http://rsif.royalsocietypublishing.org/
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Figure 1. Characteristics of P. falciparum dynamics in malaria therapy patients. (a) Histogram of the height of the initial peak in parasitaemia of malaria therapy
patients. Many patients exhibit initial peak parasitaemia near 105 parasites per microlitre. (b) Histogram of the length of subpatent parasitaemia following the first
peak in parasitaemia. More than 60% of untreated malaria therapy patients experience subpatent parasitaemia shortly following the initial parasitaemia peak, but
the length of time subpatent ranges widely. (c) Histogram of the slope from the height of the initial peak in parasitaemia to the final patent parasitaemia on a log
scale. Most patients show a similar logged slope that decays slowly. (d ) Histogram of the day patients are first subpatent (blue) and the day they are last patent
(red). Most patients have parasitaemia that drops below detectability long before the infection disappears. (e) Individual patient parasitaemia (representative patient
shown by the blue line) exhibit short-time oscillations every 48 h and long-time ones on the order of weeks. The red line represents smoothed data with a moving
average of 5 days. Data courtesy of Dr Collins and Dr Jeffrey.
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To portray diversity of parasites, we model antigenic vari-

ation within the host. As in previous models [12,30,32,33,37,40],

we assume that during a single infection, P. falciparum parasites

systematically alter the proteins they present on the surface of

infected red blood cells in a process mediated by var genes,

which produce the P. falciparum erythrocyte membrane protein 1

(PfEMP1) [44–49]. Parasites are assumed to have 60 possible var
genes, although recent evidence suggests that this may be an

underestimate as the number of var genes may increase during

asexual replication owing to mitotic recombination [50]. While

the number of var genes for a genotype is fixed, each parasite

expresses a single PfEMP1 type on an infected red blood cell at
any time [46,51–54], and they switch the gene they are expressing

at a variable rate [55,56]. We examine variation in the variant

switching network, number of initial variants expressed, and

the distribution of variants between cross-reactive (CR) groups.

We do not explicitly model other parasite antigens but consider

the effect of cumulative exposure to these antigens throughout

the infection.

We include four types of immune responses—innate,

variant-specific (VS) adaptive, CR adaptive and general

adaptive—that respond to various populations of infected

red blood cells. Both the innate and general adaptive

responses act equivalently upon the entire parasite

http://rsif.royalsocietypublishing.org/
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Figure 2. Schematic of the four types of immunity in the model. (a) An infected red blood cell is shown schematically with illustrative surface antigens. Black bars
are antigens that do not vary. Coloured circles and triangles are antigenically varying antigens. (b) Innate immunity reacts equivalently to all parasite-infected red
blood cells. (c) Variant-specific adaptive immunity reacts to particular subpopulations of parasite-infected red blood cells, which display identical antigens (blue
circles). (d) Cross-reactive adaptive immunity reacts to particular subpopulations of parasite-infected red blood cells, i.e. those that display similar antigens in
CR groups (triangles of various colours). Both the VS response and the CR response grow as the ratio of antigen to antigen-specific cells increases including
an initial delay for production of specific immune cells. (e) General adaptive immunity builds slowly through the course of infection as the number of exposures
to high parasitaemia (.107 parasites) accumulates.
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population, with the innate response responding directly to

the total level of parasitaemia while the general adaptive

builds with the cumulative burden of antigen experienced

throughout the infection. VS responses counter parasites

that display identical variant antigens while CR responses

act against populations with similar but not necessarily

identical variant antigens. We assume that host immune

responses generally follow a decelerating growth curve or

type II functional response with respect to the amount of anti-

gen available, and incorporate a time-lag for activation in

adaptive responses (figure 2). As the antigen levels shift

exponentially with the growing parasite population, these

immune responses appear sigmoidal with a steep switch,

from minimal to high response, with small changes in the

parasite population, which we will refer to as a threshold.

We consider the threshold, and level of activation and

decay of immune responses to be inherent characteristics of
a host but vary these among individuals, representing hetero-

geneity of host immune responses. We conduct extensive

sensitivity analyses of all parameters (table 1) simultaneously

through a Latin hypercube sampling scheme [62].
2.3. Length of modelled malaria infection varies
considerably, even among similar parasites in
identical hosts

Our model produces infections that vary enormously in

length, from 20 to over 500 days under reasonable biological

assumptions for parameters (figures 3 and 4a), and the simu-

lated infection lengths often show a bimodal distribution

(figure 3). Here, infections are either short owing to host

death or clearance following a single large peak in parasitae-

mia, or persist with a rebound following the initial drop in

http://rsif.royalsocietypublishing.org/


Table 1. Parameters ranges of discrete within-host mathematical model.

symbol description value range

gi intrinsic growth rate of variant i 16 [0,32] [57]

vi percentage switching to a new variant from variant i 2 [0,20] [58]

bji switching probability from variant j to variant i 1/60 [0,1] [59]

— number of starting variants 5 [1,60] [60]

— number of cross-reactive groups 5 [1,2,5,10,20]

EI maximum efficacy of innate immunity 0.95 [0.7,1]

CI half-maximal activation of innate immunity 109.5 [107,1011]a

EVS maximum efficacy of variant-specific immunity 0.8 [0.5,1]

cVS half-maximal activation of variant-specific immunity 106 [105,1010]a

ECR maximum efficacy of cross-reactive immunity 0.8 [0.5,1]

cCR half-maximal activation of cross-reactive immunity 109 [105,1010]a

EM maximum efficacy of general adaptive immunity 0.95 [0.5,1]

CM half-maximal activation of general adaptive immunity 20 [10,100]

K(0) restriction of total number of red blood cells 1013 —

KImm restriction of total number of immune cells 1014 —

mVS maximum decay rate of variant-specific immune cells 0 [0,1]

mCR maximum decay rate of cross-reactive immune cells 0 [0,1]

pVS maximum growth rate of variant-specific immune cells 8 [61] —

pCR maximum growth rate of cross-reactive immune cells 8 [61] —

t delay of adaptive immune response activation (days) 10 [61] —
aIndicates the interval was sampled uniformly on a logarithmic scale.
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line). The simulated data exhibits three peaks: the first from acute infection,
peaking near 20 days; the second from cleared chronic infections, peaking
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near 20 days, primarily of individuals whose parasitaemia spiked and required
treatment. Another peak occurs near 100 days, with many chronic infections
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have the early peak and instead peaks near 100 days with a wide range of
infection lengths.
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parasitaemia. Among this second group of infections, a

further distinction can be made between simulated infections

that display decaying peaks over long timescales that are

eventually cleared by the adaptive immune response, and

some lasting much longer (the maximum simulated time)

owing to the control and persistence of parasites at low den-

sity by the combination of adaptive immune responses. Over

a wide range of parameters approximately 30% of simu-

lations last longer than 50 days with little variation in the

fraction of simulations producing such chronic infections

when each parameter is considered separately (figure 5a),

with the exception of the efficacy of the innate immune

response, which favours chronicity at larger values.

Interestingly, we observe large heterogeneity in length of

infection even among similar parameter sets (figure 5b). Para-

sites with nearly identical characteristics—the same number

of CR groups, switching rates and connections drawn from

an identical distribution, and the same number of starting

variants—can produce very different infection lengths in

identical hosts. For example in figure 5b, simulations where

parasites start with five variants present and have their var-

iants split into five equally sized CR groups but differ only

in their variant switching network (blue line) lead to infec-

tions from 20 to nearly 100 days (figure 5b). This results

from a complicated interplay between the adaptive immune

response and proliferating parasite variant populations.

Models incorporating these aspects of infection usually exam-

ine only a small range of these parameters, which leads to

http://rsif.royalsocietypublishing.org/
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the incorrect assumption that chronicity is a robust outcome

of infection [32,37].
2.4. Disappearance of parasitaemia early in a chronic
infection cannot be explained by immune
responses

A consistent feature of the malaria therapy data is a plummet

in parasitaemia following the initial peak (figure 1b,d), fre-

quently falling to levels below microscopic detection for

several days to several weeks before re-emergence [41].

Although many models are able to reproduce a drop in para-

sitaemia, which is often caused by a strong antigen-specific

adaptive immune response, parasites either are cleared from

circulation or remain above microscopically detectable levels
prior to re-emerging. Historically, observational studies of

malaria therapy data ascribed the resurgence of parasitaemia

to antigenic variation [35,63]. Models have been able to repro-

duce recurrent peaks of parasitaemia via host immunity and

resource restriction of viable red blood cells, but not with a

drop of parasitaemia below microscopic detectability as seen

in the malaria therapy data [10,11,43,64]. Our model also

struggles to reproduce submicroscopic parasitaemia prior to

re-emergence, indicating the incomplete understanding of

the basic mechanisms of immunity underlying this dynamic.

2.5. Antigenic variation is not a robust driver of
chronicity

It has often been assumed that the long duration of infec-

tions observed in the malaria therapy data are mediated

http://rsif.royalsocietypublishing.org/
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by antigenic variation of the approximately 60 PfEMP1

surface antigens encoded by the var gene family. Various

studies have evaluated aspects of antigenic variation includ-

ing switch rate, switching order and clearance rates [46,51,

54,58,60,65–68], but modelled antigenic variation also

depends on the number of variants expressed at the outset

of the infection, with chronicity being promoted by fewer

starting variants [32]. Recent data from in vitro experiments

suggest that nearly all variants may be expressed at the

outset of an infection [69–71], presenting a significant chal-

lenge to our conceptual understanding of the orchestration

of antigenic variation [60]. Choosing parameters based

on experimental evidence pointing to switching rates

between 0.5% and 20% [58] and a highly connected switching

pattern with variants able to switch to almost all variants

[59], all variants appear within the first 10 generations of a

modelled infection. Even with conservative choices for par-

ameters associated with antigenic variation—switch rates

where less than 2% of parasites switch per replication cycle,

switching networks constrained such that variants are able

to switch to no more than two variant types, and less than

five starting variants—we find that new variants appear

rapidly such that all 60 PfEMP1 variants are expressed

before the end of the infection. However, it may take signifi-

cantly longer for variants to elicit immune responses. Our

model therefore implies that even with the most conservative

switching estimates, parasite-driven mechanisms of antigenic

variation alone are not sufficient to robustly produce the

long-lived chronic infections as observed in the malaria

therapy data.
2.6. Theoretical models of cross-reactive immune
responses with decay lead to chronic but
unrealistic infection dynamics

Recker et al. [39] demonstrated that CR immune responses

are capable of lengthening an infection without any anti-

genic changes by the parasite, by limiting parasite variants

expressing CR proteins. However, a key assumption of

this model was the rapid decay of CR responses relative

to VS response. Johnson et al. [33] also recovered chronicity

in the presence of CR immune responses but without decay

of these responses when immune cells become less effective

as the infection proceeds, owing to saturated killing or

immune exhaustion. Whenever CR responses are present,

it is possible that some variants are suppressed and do

not elicit a strong enough VS immune response for clear-

ance. As cross immunity wanes, whether owing to decay

[37,39] or exhaustion [33], previously suppressed variants

arise and proliferate in the population. Because these

models are designed to examine only the mechanism of

chronicity, they fail to reproduce realistic infection dynamics

with later peaks routinely reaching the same height as the

initial peak, a phenomenon not observed in natural infec-

tions. When lacking a general adaptive immune response

in our model, similar to the assumptions in these models

[33,39], we find that peak height does not decay over time

(figure 4b). The theoretical description of standard innate

and adaptive immune responses is therefore lacking a key

component that can result in the characteristic decay of

parasite density at peaks found in natural infections (1).
2.7. Characteristic decay of parasite density is difficult
to describe theoretically

The failure to produce the nearly log-linear decay of peak den-

sity from an initial peak (figure 1c), which is one of the

hallmarks of malaria infections [41], represents a significant

challenge to modellers. In the absence of drugs, this decay is

consistent across patients until late in an infection when para-

site counts become unreliable owing to stochastic fluctuation

around the limit of detection. In our model, we can achieve

this gradual decay in parasitaemia, similar to previous

models, by applying an adaptive immune response that is

cross-reactive among all variants and slowly grows over the

course of infection [13,30] (figure 2e). We do not assume any

decay in this response, and it grows whenever there is parasite

density above a defined threshold. Although recent exper-

imental evidence has identified cross-reactive antibodies,

there is no evidence they lack the ability to decay or that

they increase only when parasitaemia is above a threshold

[72–74]. Although we, like others, can achieve a qualitatively

similar decay in parasitaemia using this function [12,13,30],

we propose that this widely used immune function lacks

robust biological evidence, and represents a major challenge

in our understanding of malaria infection dynamics.
2.8. Co-infection alters infection length
Dynamics of parasite populations in individual hosts result in

very heterogeneous lengths of infection, which will signifi-

cantly impact the length of time individuals are infectious to

the mosquito vector. Particularly, in the areas of high endemi-

city, the length of infection will be further confounded by the

presence of multiple infections in a single host. Few trans-

mission models include co-infection and those that do make

implicit assumptions about the impact of co-infection on infec-

tion length and competition and, furthermore, rarely include

heterogeneity in these effects. Here, we use our model frame-

work to explore the implications of our assumptions about

immunity and antigenic variation for co-infecting genotypes

in a setting where chronicity is common, occurring 80% of

the time, when only a single genotype is present.

We find that infections comprising more than one strain,

even if entering the host at similar times, often lead to enhanced

infection length (figure 6). In general, this occurs because of

the increased variability in antigens presented to the immune

system, which requires more absolute immune pressure for

clearance. Parasite genotypes that co-infect during periods

of the infection where non-specific immune responses are

high—typically early or late in an infection—are at a significant

disadvantage (figure 6). Early co-infection accelerates activation

of the innate immune response, limiting the total parasitaemia

of both genotypes at an earlier time point but at a similar

peak parasitaemia level. Late in an infection when there exists

a multitude of adaptive immune responses to conserved

parasite proteins, the co-infecting parasite is unable to grow

appreciably and has a short infection even if the antigenically

varying proteins it expresses are distinct.

Interestingly, we find that parasites co-infecting after the

initial innate immune response has waned but before the general

adaptive response dominates have an advantage over the resi-

dent parasite, lengthening the overall infection (figure 6). This

implies that there may be an optimal window for co-infection

that will determine the outcome of competitive interactions
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between genotypes. Co-infecting parasites expressing similar

antigens to the resident strain are subject to shared adaptive

immune responses, and are often suppressed as a result, whereas

antigenically distinct co-infecting parasites grow rapidly and

either overtake the resident population or cause a strong

immune response, altering the length of infection for both para-

sites (figure 6). The interplay between the growth of the parasite

genotypes and the impact of the host immune responses is often

subtle and results in both longer and shorter infections, and

therefore, simple assumptions about the impact of co-infection

on infection length are not supported theoretically.
3. Conclusion
Chronic infections are often very difficult to generate robustly

in mathematical models under biological conditions and

assuming variation in host and parasite traits. Our results

demonstrate a curious lack of stability of the infection

length to small perturbations of parameter values. Further,

co-infection of competing genotypes can profoundly impact

the length of infection and transmission potential of both

genotypes in a non-intuitive manner, given standard

assumptions. Our study therefore suggests that either (i)

current models capture the basic mechanisms driving host–

parasite interactions and occasional, stochastic chronicity is

the norm for malaria infections, or (ii) we are currently miss-

ing an important mechanism that reliably generates chronic

infections. We propose that the latter is more likely; in par-

ticular, we highlight the incomplete understanding of the

interactions between the host immune response and the para-

site. This distinction is important, because without an

accurate understanding of the interplay between the host

immune response and the parasite, we will not be able to

reliably predict outcomes of intervention strategies.
4. Detailed methods
We developed a discrete-time deterministic model of the

blood-stage parasite dynamics of malaria infections with sto-

chastically varying parameters. The model is motivated by

previous work by Recker et al. [37]. Equations and parameters

are described in detail below with values for all parameters
found in table 1. Parameters are fixed at the beginning of a

simulation and remain constant throughout, but are sampled

from within the ranges indicated in table 1. Sampling of par-

ameters was done stochastically using a Latin hypercube

sampling [62] with the intervals listed in table 1 split into 10

uniform subintervals. The subdivision used a linear scale

except for the half-maximal activation of immune responses

which was done on a log scale, indicated with a superscript

a in table 1. Results presented here vary all or some of the par-

ameters listed, as indicated in the figure legends, and include a

minimum of 100 000 replicates. Simulations were completed in

Matlab 2013a. Code is available from the authors on request.

Parasites are grouped by their specific antigenic variant, of

which each genotype harbours 60 unique antigenic variants.

The overall number of parasites of the ith antigenic variant is

pi(tþ 1) ¼ gi(tþ 1)I(tþ 1)GVSi (tþ 1)GCRi (tþ 1)M(tþ 1),

where gi is the generational growth of variant i, I is the effective-

ness of the innate immune response, GVS is the effectiveness of

the VS adaptive immune response, GCR is the effectiveness of

the CR adaptive immune response, and M is the effectiveness

of the general adaptive immune response. Each component of

this equation is described in detail below. The time step is

48 h, equivalent to one asexual parasite generation in the

blood stage. Each simulation begins with 40 000 parasites,

equally comprised of the predetermined number of starting var-

iants, which are chosen randomly from the 60 variant types.

When more than one parasite genotype is present, each geno-

type begins with 40 000 parasites. The 60 variants of each

genotype may or may not be the same. For any identical variants

between genotypes, the adaptive immune response against

those variants acts equivalently towards both genotypes.

In the absence of an immune response, the growth of a

parasite variant depends on the intrinsic growth rate of the

variant and the inherent switching between variants. The

generational growth of the ith variant, gi, is determined by

gi(tþ 1) ¼ 1� e

�K(t)P
j pj(t)

0
BB@

1
CCA

� gi pi(t)(1� vi)þ vi

X
j=i

gjb ji pj(t)

2
4

3
5,
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where the first term on the right-hand side restricts the

growth of parasites when red blood cells are limited, and

the second term determines the switching and growth of

parasite variants. When the number of available red blood

cells, K(t), falls below one-third of the original value, the

host is categorized as dead. During each time step, K(t) is

reduced by the number of newly infected red blood cells

and grows by KImm/120. The growth rate, gi, of each variant

is chosen from a normal distribution with mean 16 and

variance 8. If the growth rate falls below 1, it is set to 1,

and if it is above 32, it is set to 32. The rate of variant switch-

ing, vi, is chosen uniformly on the interval zero to two. The

probability of switching from variant j to variant i, bji,

allows all variants to switch to all other variants, such that

each entry is positive except along the diagonal. Each row

of b gives the probabilities of switching from variant j to

any other variant and thus sums to one. The same does not

hold for the columns as the values of bji are biased to

favour some variants with higher probability as described

by Nobel et al. [59]. The results do not require a switching

structure such that all variants can switch to all other var-

iants. In fact, the results are robust to the structure bji,

except when the switching behaviour is strictly ordered

such that each variant only switches to a single other variant,

which implies the matrix b is sparse. The values for vi and bji

are varied for each simulation unless otherwise noted.

Variants in each parasite are placed in CR groups mimicking

the overlapping immunity experienced by similar antigens.

The variants are placed into the predetermined number of

CR groups randomly.

The immune response to parasites is multi-faceted,

beginning immediately with an innate response that acts

equally upon all variants. The effectiveness of the innate

immune response, I, is dependent on the total parasite

population
I(tþ 1) ¼ min EI,
1þ

P
i pi(t)

1þ
P

i pi(t)þ CI

� �
EI

� �
,

where EI is the maximal efficacy of the innate response and CI

is the level at which the innate immune response is half-

maximal. Unlike the innate immune response, which occurs

immediately, the VS and CR components of the immune

response require a delay of t days for immune cells to be cre-

ated. The VS immune response acts uniquely upon each

parasite variant, similar to the individual immune responses

to each of the various PfEMP1 surface proteins [48]. The CR

immune response acts similarly towards groups of variants

rather than single variants but is generally less effective at

killing parasites compared to the VS response. The dynamics

of the VS and CR adaptive immune cells are governed by
VSi(tþ 1) ¼ VSi(t) 1þ pVS
e

�cVS

pi(t� t)þ 1

0
B@

1
CA

� 1� mVS 1� e

�cVS

pi(t)þ 1

2
64

3
75

0
B@

1
CA 1� e

�KImmP
j VSj(t)

0
BB@

1
CCA
and

CRi(tþ 1) ¼ CRi(t) 1þ pCRe

�cCR

1þ
P

j�i pi(t� t)

0
BB@

1
CCA

� 1� mCR 1� e

�cCR

1þ
P

j�i pj(t)

2
664

3
775

0
BB@

1
CCA

� 1� e

�KImmP
j CRj(t)

0
BB@

1
CCA,

where the first term is the pre-existing cells of the response,

the second term is the expansion of the immune cell popu-

lation when antigen is present in large quantities, the third

term is the decay of the immune cells when antigen is only

present in small quantities or not at all, and the final term

limits the total number of immune cells. For CR responses,

j � i refers to all variants that are from the same CR group.

There is a minimum of 100 immune cells responsive towards

each variant present at every time point even prior to t ¼ t.

The growth (pVS, pCR) and decay (mVS, mCR) rates of

immune cells determine the immune cell population and is

mediated by the level when the response is half-maximally

activated (cVS, cCR).

The effectiveness of the variant-specific (GVS) and cross-

reactive (GCR) immune responses depends upon the relative

amount of parasite variants and specific immune cells

GVSi (tþ 1) ¼ EVS 1� e

�(1þ gi(t))
VSi(t)

2
64

3
75

and

GCR1
(tþ 1) ¼ ECR 1� e

�(1þ
P

j�i gi(t))

CRi (t)

2
664

3
775,

and are capped by the maximum efficacy (EVS, ECR) of each

response.

The final component of the immune response is the

general adaptive immune response, which acts identically

upon all variants but builds slowly over the course of

the immune response through the repeated exposure to

antigens. The effectiveness of the general adaptive

immune response, M, depends on the cumulative numbers

of days during the infection when the parasite population

is above 107

M(tþ 1) ¼ min EM,
1þ

P
t xt

1þ CM þ
P

t xt
EM

� �

and

xt ¼
1, if

P
i pi(t) . 107

0, otherwise

�

where xt is an indicator function, EM is the maximum effective-

ness of the general adaptive response, and CM determines the

time at which the response is half-maximal.
Acknowledgements. We thank M. Recker, S. Gupta, D. Larremore and
R. Noble for helpful conversations.

http://rsif.royalsocietypublishing.org/


rsif

10

 on July 23, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
Funding statement. The project was supported by award number
U54GM088558 from the National Institute of General Medical
Sciences. The content is solely the responsibility of the authors and
does not necessarily represent the official views of the National
Institute of General Medical Sciences or the National Institutes
of Health.
.royalsocietyp
References
ublishing.org
J.R.Soc.Interface

12:20141379
1. WHO Malaria Report. 2012.
2. Bottius E, Guanzirolli A, Trape JF, Rogier C, Konate L,

Druilhe P. 1996 Malaria: even more chronic in
nature than previously thought; evidence for
subpatent parasitaemia detectable by the
polymerase chain reaction. Trans. R. Soc. Trop. Med.
Hyg. 90, 15 – 19. (doi:10.1016/S0035-9203(96)
90463-0)

3. Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti
RC, Carlton JM, Joshi H. 2012 The complexities of
malaria disease manifestations with a focus on
asymptomatic malaria. Malar. J. 11, 29. (doi:10.
1186/1475-2875-11-29)

4. Bowman NM et al. 2013 Comparative population
structure of Plasmodium falciparum
circumsporozoite protein NANP repeat lengths in
Lilongwe, Malawi. Sci. Rep. 3, 1990. (doi:10.1038/
srep01990)

5. Ross A, Koepfli C, Li X, Schoepflin S, Siba P, Mueller
I, Felger I, Smith T. 2012 Estimating the numbers of
malaria infections in blood samples using high-
resolution genotyping data. PLoS ONE 7, e42496.
(doi:10.1371/journal.pone.0042496)

6. Nkhoma SC, Nair S, Cheeseman IH, Rohr-Allegrini C,
Singlam S, Nosten F, Anderson TJ. 2012 Close
kinship within multiple-genotype malaria parasite
infections. Proc. R. Soc. B 279, 2589 – 2598. (doi:10.
1098/rspb.2012.0113)

7. Bousema T, Okell L, Felger I, Drakeley C. 2014
Asymptomatic malaria infections: detectability,
transmissibility and public health relevance. Nat. Rev.
Microbiol. 12, 833 – 840. (doi:10.1038/nrmicro3364)

8. Lin JT, Saunders DL, Meshnick SR. 2014 The role of
submicroscopic parasitemia in malaria transmission:
what is the evidence? Trends Parasitol. 30,
183 – 190. (doi:10.1016/j.pt.2014.02.004)

9. Lindblade KA, Steinhardt L, Samuels A, Kachur SP,
Slutsker L. 2013 The silent threat: asymptomatic
parasitemia and malaria transmission. Expert Rev. Anti-
Infect. Ther. 11, 623 – 639. (doi:10.1586/eri.13.45)

10. McQueen PG, McKenzie FE. 2004 Age-structured red
blood cell susceptibility and the dynamics of
malaria infections. Proc. Natl Acad. Sci. USA 101,
9161 – 9166. (doi:10.1073/pnas.0308256101)

11. McQueen PG, McKenzie FE. 2008 Host control of
malaria infections: constraints on immune and
erythropoeitic response kinetics. PLoS Comput. Biol.
4, e1000149. (doi:10.1371/journal.pcbi.1000149)

12. McQueen PG, Williamson KC, McKenzie FE. 2013
Host immune constraints on malaria transmission:
insights from population biology of within-host
parasites. Malar. J. 12, 206. (doi:10.1186/1475-
2875-12-206)

13. Johnston GL, Smith DL, Fidock DA. 2013 Malaria’s
missing number: calculating the human component
of R0 by a within-host mechanistic model of
Plasmodium falciparum infection and transmission.
PLoS Comput. Biol. 9, e1003025. (doi:10.1371/
journal.pcbi.1003025)

14. Killeen GF, Ross A, Smith T. 2006 Infectiousness of
malaria-endemic human populations to vectors.
Am. J. Trop. Med. Hyg. 75(2 Suppl.), 38 – 45.

15. Maire N, Smith T, Ross A, Owusu-Agyei S, Dietz K,
Molineaux L. 2006 A model for natural immunity to
asexual blood stages of Plasmodium falciparum
malaria in endemic areas. Am. J. Trop. Med. Hyg.
75(2 Suppl.), 19 – 31.

16. Smith T et al. 2006 Mathematical modeling of the
impact of malaria vaccines on the clinical
epidemiology and natural history of Plasmodium
falciparum malaria: overview. Am. J. Trop. Med. Hyg.
75(2 Suppl.), 1 – 10.

17. Smith T, Maire N, Dietz K, Killeen GF, Vounatsou P,
Molineaux L, Tanner M. 2006 Relationship between
the entomologic inoculation rate and the force of
infection for Plasmodium falciparum malaria.
Am. J. Trop. Med. Hyg. 75(2 Suppl.), 11 – 18.

18. Smith T, Ross A, Maire N, Rogier C, Trape JF, Molineaux L.
2006 An epidemiologic model of the incidence of acute
illness in Plasmodium falciparum malaria. Am. J. Trop.
Med. Hyg. 75(2 Suppl.), 56 – 62.

19. Felger I, Maire M, Bretscher MT, Falk N, Tiaden A,
Sama W, Beck HP, Owusu-Agyei S, Smith TA. 2012
The dynamics of natural Plasmodium falciparum
infections. PLoS ONE 7, e45542. (doi:10.1371/
journal.pone.0045542)

20. Molineaux L, Gramiccia G. 1980 The Garki project.
Geneva, The switzerland: World Health
Organization.

21. Bretscher MT, Maire N, Chitnis N, Felger I, Owusu-
Agyei S, Smith T. 2011 The distribution of
Plasmodium falciparum infection durations.
Epidemics 3, 109 – 118. (doi:10.1016/j.epidem.2011.
03.002)

22. Ferguson N, Anderson R, Gupta S. 1999 The effect
of antibody-dependent enhancement on the
transmission dynamics and persistence of multiple-
strain pathogens. Proc. Natl Acad. Sci. USA 96,
790 – 794. (doi:10.1073/pnas.96.2.790)

23. Gupta S, Ferguson N, Anderson R. 1998 Chaos,
persistence, and evolution of strain structure in
antigenically diverse infectious agents. Science 280,
912 – 915. (doi:10.1126/science.280.5365.912)

24. Gupta S, Maiden MC, Feavers IM, Nee S, May RM,
Anderson RM. 1996 The maintenance of strain
structure in populations of recombining infectious
agents. Nat. Med. 2, 437 – 442. (doi:10.1038/
nm0496-437)

25. Buckee C, Danon L, Gupta S. 2007 Host community
structure and the maintenance of pathogen
diversity. Proc. R. Soc. B 274, 1715 – 1721. (doi:10.
1098/rspb.2007.0415)

26. Buckee CO, Koelle K, Mustard MJ, Gupta S. 2004 The
effects of host contact network structure on
pathogen diversity and strain structure. Proc. Natl
Acad. Sci. USA 101, 10 839 – 10 844. (doi:10.1073/
pnas.0402000101)

27. Buckee CO, Recker M, Watkins ER, Gupta S. 2011
Role of stochastic processes in maintaining discrete
strain structure in antigenically diverse pathogen
populations. Proc. Natl Acad. Sci. USA 108, 15 504 –
15 509. (doi:10.1073/pnas.1102445108)

28. Koella JC. 1991 On the use of mathematical models
of malaria transmission. Acta Trop. 49, 1 – 25.
(doi:10.1016/0001-706X(91)90026-G)

29. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW,
McKenzie FE. 2012 Ross, Macdonald, and a theory
for the dynamics and control of mosquito-
transmitted pathogens. PloS Pathog. 8, e1002588.
(doi:10.1371/journal.ppat.1002588)

30. Eckhoff P. 2012 P. falciparum infection durations
and infectiousness are shaped by antigenic variation
and innate and adaptive host immunity in a
mathematical model. PloS ONE 7, e44950. (doi:10.
1371/journal.pone.0044950)

31. Hoshen MB, Heinrich R, Stein WD, Ginsburg H.
2000 Mathematical modelling of the within-
host dynamics of Plasmodium falciparum.
Parasitology 121, 227 – 235. (doi:10.1017/S00311
82099006368)

32. Klein EY, Graham AL, Llinas M, Levin S. 2014 Cross-
reactive immune responses as primary drivers of
malaria chronicity. Infect. Immun. 82, 140 – 151.
(doi:10.1128/IAI.00958-13)

33. Johnson PL, Kochin BF, Ahmed R, Antia R. 2012
How do antigenically varying pathogens avoid
cross-reactive responses to invariant antigens?
Proc. R. Soc. B 279, 2777 – 2785. (doi:10.1098/rspb.
2012.0005)

34. Eichner M, Diebner HH, Molineaux L, Collins WE,
Jeffery GM, Dietz K. 2001 Genesis, sequestration and
survival of Plasmodium falciparum gametocytes:
parameter estimates from fitting a model to
malariatherapy data. Trans. R. Soc Trop. Med. Hyg. 95,
497 – 501. (doi:10.1016/S0035-9203(01) 90016-1)

35. Molineaux L, Diebner HH, Eichner M, Collins WE,
Jeffery GM, Dietz K. 2001 Plasmodium falciparum
parasitaemia described by a new mathematical
model. Parasitology 122, 379 – 391.

36. Recker M, Al-Bader R, Gupta S. 2005
A mathematical model for a new mechanism of
phenotypic variation in malaria. Parasitology 131,
151 – 159. (doi:10.1017/S0031182005007481)

37. Recker M, Buckee CO, Serazin A, Kyes S, Pinches R,
Christodoulou Z, Springer AL, Gupta S, Newbold CI.

http://dx.doi.org/10.1016/S0035-9203(96)90463-0
http://dx.doi.org/10.1016/S0035-9203(96)90463-0
http://dx.doi.org/10.1186/1475-2875-11-29
http://dx.doi.org/10.1186/1475-2875-11-29
http://dx.doi.org/10.1038/srep01990
http://dx.doi.org/10.1038/srep01990
http://dx.doi.org/10.1371/journal.pone.0042496
http://dx.doi.org/10.1098/rspb.2012.0113
http://dx.doi.org/10.1098/rspb.2012.0113
http://dx.doi.org/10.1038/nrmicro3364
http://dx.doi.org/10.1016/j.pt.2014.02.004
http://dx.doi.org/10.1586/eri.13.45
http://dx.doi.org/10.1073/pnas.0308256101
http://dx.doi.org/10.1371/journal.pcbi.1000149
http://dx.doi.org/10.1186/1475-2875-12-206
http://dx.doi.org/10.1186/1475-2875-12-206
http://dx.doi.org/10.1371/journal.pcbi.1003025
http://dx.doi.org/10.1371/journal.pcbi.1003025
http://dx.doi.org/10.1371/journal.pone.0045542
http://dx.doi.org/10.1371/journal.pone.0045542
http://dx.doi.org/10.1016/j.epidem.2011.03.002
http://dx.doi.org/10.1016/j.epidem.2011.03.002
http://dx.doi.org/10.1073/pnas.96.2.790
http://dx.doi.org/10.1126/science.280.5365.912
http://dx.doi.org/10.1038/nm0496-437
http://dx.doi.org/10.1038/nm0496-437
http://dx.doi.org/10.1098/rspb.2007.0415
http://dx.doi.org/10.1098/rspb.2007.0415
http://dx.doi.org/10.1073/pnas.0402000101
http://dx.doi.org/10.1073/pnas.0402000101
http://dx.doi.org/10.1073/pnas.1102445108
http://dx.doi.org/10.1016/0001-706X(91)90026-G
http://dx.doi.org/10.1371/journal.ppat.1002588
http://dx.doi.org/10.1371/journal.pone.0044950
http://dx.doi.org/10.1371/journal.pone.0044950
http://dx.doi.org/10.1017/S0031182099006368
http://dx.doi.org/10.1017/S0031182099006368
http://dx.doi.org/10.1128/IAI.00958-13
http://dx.doi.org/10.1098/rspb.2012.0005
http://dx.doi.org/10.1098/rspb.2012.0005
http://dx.doi.org/10.1016/S0035-9203(01)90016-1
http://dx.doi.org/10.1017/S0031182005007481
http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141379

11

 on July 23, 2016http://rsif.royalsocietypublishing.org/Downloaded from 
2011 Antigenic variation in Plasmodium falciparum
malaria involves a highly structured switching
pattern. PloS Pathog. 7, e1001306. (doi:10.1371/
journal.ppat.1001306)

38. Recker M, Gupta S. 2006 Conflicting immune
responses can prolong the length of infection in
Plasmodium falciparum malaria. Bull. Math. Biol.
68, 821 – 835. (doi:10.1007/s11538-005-9041-0)

39. Recker M, Nee S, Bull PC, Kinyanjui S, Marsh K,
Newbold C, Gupta S. 2004 Transient cross-reactive
immune responses can orchestrate antigenic
variation in malaria. Nature 429, 555 – 558. (doi:10.
1038/nature02486)

40. McKenzie FE, Bossert WH. 2005 An integrated
model of Plasmodium falciparum dynamics.
J. Theor. Biol. 232, 411 – 426. (doi:10.1016/j.jtbi.
2004.08.021)

41. Collins WE, Jeffery GM. 1999 A retrospective
examination of the patterns of recrudescence in
patients infected with Plasmodium falciparum.
Am. J. Trop. Med. Hyg. 61(1 Suppl.), 44 – 48.
(doi:10.4269/tropmed.1999.61-044)

42. Simpson JA, Aarons L, Collins WE, Jeffery GM, White
NJ. 2002 Population dynamics of untreated
Plasmodium falciparum malaria within the adult
human host during the expansion phase of the
infection. Parasitology 124, 247 – 263.

43. Antia R, Yates A, de Roode JC. 2008 The dynamics
of acute malaria infections. I. Effect of the parasite’s
red blood cell preference. Proc. R. Soc. B 275,
1449 – 1458. (doi:10.1098/rspb.2008.0198)

44. Newbold CI, Craig AG, Kyes S, Berendt AR, Snow
RW, Peshu N, Marsh K. 1997 PfEMP1, polymorphism
and pathogenesis. Ann. Trop. Med. Parasitol. 91,
551 – 557. (doi:10.1080/00034989760923)

45. Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-
Taylor DE, Peterson DS, Pinches R, Newbold CI,
Miller LH. 1995 Switches in expression of
Plasmodium falciparum var genes correlate with
changes in antigenic and cytoadherent phenotypes
of infected erythrocytes. Cell 82, 101 – 110. (doi:10.
1016/0092-8674(95)90056-X)

46. Dzikowski R, Templeton TJ, Deitsch K. 2006 Variant
antigen gene expression in malaria. Cell. Microbiol.
8, 1371 – 1381. (doi:10.1111/j.1462-5822.2006.
00760.x)

47. Bull PC, Lowe BS, Kortok M, Marsh K. 1999 Antibody
recognition of Plasmodium falciparum erythrocyte
surface antigens in Kenya: evidence for rare and
prevalent variants. Infect. Immun. 67, 733– 739.

48. Bull PC, Lowe BS, Kortok M, Molyneux CS, Newbold
CI, Marsh K. 1998 Parasite antigens on the infected
red cell surface are targets for naturally acquired
immunity to malaria. Nat. Med. 4, 358 – 360.
(doi:10.1038/nm0398-358)

49. Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC,
Feldman M, Taraschi TF, Howard RJ. 1995 Cloning
the P. falciparum gene encoding PfEMP1, a malarial
variant antigen and adherence receptor on the
surface of parasitized human erythrocytes. Cell 82,
77 – 87. (doi:10.1016/0092-8674(95)90054-3)

50. Claessens A, Hamilton WL, Kekre M, Otto TD,
Faizullabhoy A, Rayner JC, Kwiatkowski D. 2014
Generation of antigenic diversity in Plasmodium
falciparum by structured rearrangement of var
genes during mitosis. PLoS Genet. 10, e1004812.
(doi:10.1371/journal.pgen.1004812).

51. Dzikowski R, Frank M, Deitsch K. 2006 Mutually
exclusive expression of virulence genes by malaria
parasites is regulated independently of antigen
production. PLoS Pathog. 2, e22. (doi:10.1371/
journal.ppat.0020022)

52. Scherf A, Hernandez-Rivas R, Buffet P, Bottius E,
Benatar C, Pouvelle B, Gysin J, Lanzer M. 1998
Antigenic variation in malaria: in situ switching,
relaxed and mutually exclusive transcription of var
genes during intra-erythrocytic development in
Plasmodium falciparum. EMBO J. 17, 5418 – 5426.
(doi:10.1093/emboj/17.18.5418)

53. Dzikowski R, Li F, Amulic B, Eisberg A, Frank M,
Patel S, Wellems TE, Deitsch KW. 2007 Mechanisms
underlying mutually exclusive expression of
virulence genes by malaria parasites. EMBO Rep. 8,
959 – 965. (doi:10.1038/sj.embor.7401063)

54. Enderes C, Kombila D, Dal-Bianco M, Dzikowski R,
Kremsner P, Frank M. 2011 Var gene promoter
activation in clonal Plasmodium falciparum isolates
follows a hierarchy and suggests a conserved
switching program that is independent of genetic
background. J. Infect. Dis. 204, 1620 – 1631. (doi:10.
1093/infdis/jir594)

55. Bachmann A, Predehl S, May J, Harder S, Burchard GD,
Gilberger TW, Tannich E, Bruchhaus I. 2011 Highly co-
ordinated var gene expression and switching in clinical
Plasmodium falciparum isolates from non-immune
malaria patients. Cell. Microbiol. 13, 1397 – 1409.
(doi:10.1111/j.1462-5822.2011.01629.x)

56. Horrocks P, Pinches R, Christodoulou Z, Kyes SA,
Newbold CI. 2004 Variable var transition rates
underlie antigenic variation in malaria. Proc. Natl
Acad. Sci. USA 101, 11 129 – 11 134. (doi:10.1073/
pnas.0402347101)

57. White NJ. 2014 Malaria: a molecular marker of
artemisinin resistance. Lancet 383, 1439 – 1440.
(doi:10.1016/S0140-6736(14)60656-5)

58. Roberts DJ, Craig AG, Berendt AR, Pinches R, Nash
G, Marsh K, Newbold CI. 1992 Rapid switching to
multiple antigenic and adhesive phenotypes in
malaria. Nature 357, 689 – 692. (doi:10.1038/
357689a0)

59. Noble R, Christodoulou Z, Kyes S, Pinches R,
Newbold CI, Recker M. 2013 The antigenic
switching network of Plasmodium falciparum
and its implications for the immuno-epidemiology
of malaria. eLife 2, e01074. (doi:10.7554/
eLife.01074)

60. Fastman Y, Noble R, Recker M, Dzikowski R. 2012
Erasing the epigenetic memory and beginning to
switch: the onset of antigenic switching of var
genes in Plasmodium falciparum. PLoS ONE 7,
e34168. (doi:10.1371/journal.pone.0034168)

61. Murphy K, Travers P, Walport M, Janeway C. 2012
Janeway‘s immunobiology, 8th edn, p. 868.
New York: Garland Science.

62. Stein M. 1987 Large sample properties of
simulations using latin hypercube sampling.
Technometrics 29, 143 – 151. (doi:10.1080/
00401706.1987.10488205)

63. Miller LH, Good MF, Milon G. 1994 Malaria
pathogenesis. Science 264, 1878 – 1883. (doi:10.
1126/science.8009217)

64. Jakeman GN, Saul A, Hogarth WL, Collins WE. 1999
Anaemia of acute malaria infections in non-immune
patients primarily results from destruction of
uninfected erythrocytes. Parasitology 119,
127 – 133. (doi:10.1017/S0031182099004564)

65. Scherf A, Lopez-Rubio JJ, Riviere L. 2008 Antigenic
variation in Plasmodium falciparum. Annu. Rev.
Microbiol. 62, 445 – 470. (doi:10.1146/annurev.
micro.61.080706.093134)

66. Wunderlich G, Alves FP, Golnitz U, Tada MS,
Camargo EF, Pereira-da-Silva LH. 2005 Rapid
turnover of Plasmodium falciparum var gene
transcripts and genotypes during natural non-
symptomatic infections. Revista do Instituto de
Medicina Tropical de Sao Paulo 47, 195 – 201.
(doi:10.1590/S0036-46652005000400004)

67. Blomqvist K et al. 2010 var gene transcription
dynamics in Plasmodium falciparum patient isolates.
Mol. Biochem. Parasitol. 170, 74 – 83. (doi:10.1016/
j.molbiopara.2009.12.002)

68. Severins M, Klinkenberg D, Heesterbeek H. 2012
How selection forces dictate the variant surface
antigens used by malaria parasites. J. R. Soc.
Interface 9, 246 – 260. (doi:10.1098/rsif.2011.0239)

69. Lavstsen T, Magistrado P, Hermsen CC, Salanti A,
Jensen AT, Sauerwein R, Hviid L, Theander TG,
Staalsoe T. 2005 Expression of Plasmodium
falciparum erythrocyte membrane protein 1 in
experimentally infected humans. Malar. J. 4, 21.
(doi:10.1186/1475-2875-4-21)

70. Wang CW, Hermsen CC, Sauerwein RW, Arnot DE,
Theander TG, Lavstsen T. 2009 The Plasmodium
falciparum var gene transcription strategy at the
onset of blood stage infection in a human
volunteer. Parasitol. Int. 58, 478 – 480. (doi:10.
1016/j.parint.2009.07.004)

71. Warimwe GM, Recker M, Kiragu EW, Buckee CO,
Wambua J, Musyoki JN, Marsh K, Bull PC. 2013
Plasmodium falciparum var gene expression
homogeneity as a marker of the host – parasite
relationship under different levels of naturally
acquired immunity to malaria. PLoS ONE 8, e70467.
(doi:10.1371/journal.pone.0070467)

72. Lau CK et al. 2014 Structural conservation despite
huge sequence diversity allows EPCR binding by the
PfEMP1 family implicated in severe childhood malaria.
Cell Host Microb. (doi:10.1016/j.chom.2014.11.007)

73. Gitau EN et al. 2014 CD4þ T cell responses to the
Plasmodium falciparum erythrocyte membrane
protein 1 in children with mild malaria.
J. Immunol. 192, 1753 – 1761. (doi:10.4049/
jimmunol.1200547)

74. Albrecht L, Angeletti D, Moll K, Blomqvist K,
Valentini D, D’Alexandri FL, Maurer M, Wahlgren M.
2014 B-cell epitopes in NTS-DBL1alpha of PfEMP1
recognized by human antibodies in rosetting
Plasmodium falciparum. PLoS ONE 9, e113248.
(doi:10.1371/journal.pone.0113248)

http://dx.doi.org/10.1371/journal.ppat.1001306
http://dx.doi.org/10.1371/journal.ppat.1001306
http://dx.doi.org/10.1007/s11538-005-9041-0
http://dx.doi.org/10.1038/nature02486
http://dx.doi.org/10.1038/nature02486
http://dx.doi.org/10.1016/j.jtbi.2004.08.021
http://dx.doi.org/10.1016/j.jtbi.2004.08.021
http://dx.doi.org/10.4269/tropmed.1999.61-044
http://dx.doi.org/10.1098/rspb.2008.0198
http://dx.doi.org/10.1080/00034989760923
http://dx.doi.org/10.1016/0092-8674(95)90056-X
http://dx.doi.org/10.1016/0092-8674(95)90056-X
http://dx.doi.org/10.1111/j.1462-5822.2006.00760.x
http://dx.doi.org/10.1111/j.1462-5822.2006.00760.x
http://dx.doi.org/10.1038/nm0398-358
http://dx.doi.org/10.1016/0092-8674(95)90054-3
http://dx.doi.org/10.1371/journal.pgen.1004812
http://dx.doi.org/10.1371/journal.ppat.0020022
http://dx.doi.org/10.1371/journal.ppat.0020022
http://dx.doi.org/10.1093/emboj/17.18.5418
http://dx.doi.org/10.1038/sj.embor.7401063
http://dx.doi.org/10.1093/infdis/jir594
http://dx.doi.org/10.1093/infdis/jir594
http://dx.doi.org/10.1111/j.1462-5822.2011.01629.x
http://dx.doi.org/10.1073/pnas.0402347101
http://dx.doi.org/10.1073/pnas.0402347101
http://dx.doi.org/10.1016/S0140-6736(14)60656-5
http://dx.doi.org/10.1038/357689a0
http://dx.doi.org/10.1038/357689a0
http://dx.doi.org/10.7554/eLife.01074
http://dx.doi.org/10.7554/eLife.01074
http://dx.doi.org/10.1371/journal.pone.0034168
http://dx.doi.org/10.1080/00401706.1987.10488205
http://dx.doi.org/10.1080/00401706.1987.10488205
http://dx.doi.org/10.1126/science.8009217
http://dx.doi.org/10.1126/science.8009217
http://dx.doi.org/10.1017/S0031182099004564
http://dx.doi.org/10.1146/annurev.micro.61.080706.093134
http://dx.doi.org/10.1146/annurev.micro.61.080706.093134
http://dx.doi.org/10.1590/S0036-46652005000400004
http://dx.doi.org/10.1016/j.molbiopara.2009.12.002
http://dx.doi.org/10.1016/j.molbiopara.2009.12.002
http://dx.doi.org/10.1098/rsif.2011.0239
http://dx.doi.org/10.1186/1475-2875-4-21
http://dx.doi.org/10.1016/j.parint.2009.07.004
http://dx.doi.org/10.1016/j.parint.2009.07.004
http://dx.doi.org/10.1371/journal.pone.0070467
http://dx.doi.org/10.1016/j.chom.2014.11.007
http://dx.doi.org/10.4049/jimmunol.1200547
http://dx.doi.org/10.4049/jimmunol.1200547
http://dx.doi.org/10.1371/journal.pone.0113248
http://rsif.royalsocietypublishing.org/

	Dissecting the determinants of malaria chronicity: why within-host models struggle to reproduce infection dynamics
	Introduction
	Results and discussion
	Key characteristics of chronic malaria infections
	Biological assumptions of a within-host discrete model of blood-stage parasitaemia
	Length of modelled malaria infection varies considerably, even among similar parasites in identical hosts
	Disappearance of parasitaemia early in a chronic infection cannot be explained by immune responses
	Antigenic variation is not a robust driver of chronicity
	Theoretical models of cross-reactive immune responses with decay lead to chronic but unrealistic infection dynamics
	Characteristic decay of parasite density is difficult to describe theoretically
	Co-infection alters infection length

	Conclusion
	Detailed methods
	Acknowledgements
	Funding statement
	References


