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The rapid global evolution of influenza virus begins with mutations that arise de
novo in individual infections, but little is known about how evolution occurs
within hosts. We review recent progress in understanding how and why influ-
enza viruses evolve within human hosts. Advances in deep sequencing make it
possible to measure within-host genetic diversity in both acute and chronic
influenza infections. Factors like antigenic selection, antiviral treatment, tissue
specificity, spatial structure, and multiplicity of infection may affect how influ-
enza viruses evolve within human hosts. Studies of within-host evolution can
contribute to our understanding of the evolutionary and epidemiological factors
that shape influenza virus’s global evolution.

Why Study How Influenza Viruses Evolve within Human Hosts?
Influenza viruses evolve rapidly on a global scale [1–4], and this evolution begins with mutations
that arise de novo within infected hosts (Figure 1). As influenza viruses replicate during an
infection, they quickly mutate [5–9] to form genetically diverse populations [10–13]. A small
proportion of within-host variants transmit and found a new infection [14–16], and of those, a
small number of variants may eventually fix in the global population of influenza viruses.
Influenza virus’s evolution at the within-host scale is important because it provides the substrate
for global evolution.

How do influenza viruses evolve within human hosts, and how does this within-host genetic
variation give rise to influenza virus’s rapid global evolution? Within hosts, influenza viruses
infect heterogeneous cell populations that are arranged in complex spatial structures [17,18].
Viruses encounter innate immune defenses, such as mucus barriers and interferon responses
[19], as well as adaptive immune responses, such as antibodies that accumulate over the
lifetime of the host [20,21]. In some cases, influenza viruses also encounter antiviral drugs such
as adamantanes and oseltamivir [22–24]. These factors can shape how influenza viruses evolve
within humans as well as what viral variants arise and eventually transmit from one individual to
another [25].

In this review, we summarize recent progress in understanding how and why influenza viruses
evolve during the course of an infection, and how evolution within human hosts relates to the
virus’s global evolution. High-throughput sequencing now makes it possible to “deep
sequence” the viral population within a host to measure genetic diversity, so we begin by
surveying current deep-sequencingmethods and their limitations. We then present studies that
use deep sequencing to assess viral genetic variation during acute human influenza A infections
as well as during chronic influenza infections in immunocompromised human hosts. We
consider how factors such as antigenic selection, antiviral treatment, tissue specificity, spatial
structure, and multiplicity of infection may shape how influenza viruses evolve within hosts.
Finally, we discuss how this within-host diversity might relate to global evolution.
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Figure 1. Within- and Between-Host Evolutionary Scales. The rapid global evolution of influenza virus begins with
de novo mutations that arise within individual infected hosts.
How Is Deep Sequencing Used to Measure Within-Host Viral Diversity?
Traditionally, the viral population within an influenza infection is summarized as a single
consensus sequence, representing the most frequent nucleotide at each genome position.
For instance, public databases contain tens of thousands of influenza virus sequences, nearly
all of which are consensus sequences [26–28]. But in reality, each influenza infection generates
a genetically diverse cloud of viral variants that are formed through de novo mutation, and
variants can also be transmitted from host to host [10–13,29]. Most mutations in a viral
population are expected to reach very low frequencies (Box 1), and very few of these viral
variants ever reach majority status in an infection. But the genetic diversity within an infection
can reveal important evolutionary dynamics — and provides the material on which Darwinian
selection can act.

Recent advances in high-throughput sequencing have made it possible to assess mutation
frequencies and measure within-host genetic diversity (Figure 2A) [30,31]. Common deep-
sequencing approaches can detect viral mutations above frequencies of approximately 1% in
the total within-host viral population [32,33], though it remains difficult to determine linkage
among these mutations [30,31]. But, despite its power, deep sequencing is subject to
important technical limitations that are essential to consider when designing experiments
and analyzing data [31–33].

Experimental Design
A fundamental challenge of viral deep sequencing is the fact that, in clinical samples, viral
genetic material is often dwarfed by that of the host and co-occurring microbes. To compen-
sate, most studies rely on PCR amplification to enrich for viral genetic material [32,34–36]. This
amplification is relatively straightforward for the influenza-virus genome, which contains con-
served regions at the ends of each gene segment [37]. Following reverse transcription, the
entire genome can be amplified using a single set of PCR primers complementary to these
conserved regions [38–40] or a primer cocktail that is complementary to the conserved regions
along with noncoding sequence specific to each gene [35,37].

Various aspects of the sample and its preparation affect how accurately deepsequencing
measures the actual viral variant frequencies within an infected individual [31–33,41,42]. Of
these factors, the most important by far is viral load (Figure 2B) [32,43]. During whole-genome
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Box 1. Within-Host Diversity of Influenza Viruses under Neutral Evolution

How much genetic diversity is expected to arise as influenza viruses replicate within human hosts? In evolutionary
biology, it can be useful to estimate what variation would be observed if all mutations were purely neutral. Simple
frameworks that model neutral evolution can establish basic expectations, even though purifying and positive selection
clearly affect the mutation frequencies observed in real infections.

In human hosts, influenza virus populations expand exponentially at the beginning of an acute infection. Viral titers peak
2–4 days after the infection’s start, and afterwards, titers decline for 3 or 4 days until the virus reaches undetectable
levels [57,108]. Mutations that arise early in the exponential expansion can reach high frequencies through Luria-
Delbruck dynamics [109].

To estimate how many mutations are expected to reach detectable frequencies under neutral evolution, we use the
stochastic birth-death model proposed by Bozic et al. to describe how neutral mutations accumulate as cells expand
clonally during cancer evolution [110]. In this model, a viral population begins with a single starting genotype, although
natural human infections begin with anywhere from one to several hundred initial genotypes [62,61]. Viruses reproduce
at rate b and leave the population at rate d. Neutral mutations occur at a rate of umutations per genome per replication
cycle, and all sites are completely linked. Bozic et al. demonstrate that the expected number of mutations m above
frequency a is:

m ¼ u 1� að Þ
1� d

b

� �
a

[I]

We estimate b and d using Beauchemin’s and Handel’s models of influenza-virus kinetics within human hosts [108]. If
influenza viruses expand exponentially with rate b-d for the first phase of the infection and then decline exponentially with
rate d after viral titers peak, then we estimate b � 5.7/day and d � 3.2/day. Most studies in cell culture estimate
mutation rates ranging from 10�6 to 10�5/site/generation depending on the type of mutation and exact method of
estimation [5–8], although one recent study estimates a higher rate of 10�4/site/generation [9]. These per-site mutation
rates correspond to u � 0.013 to u � 1.3 across the 13 kb viral genome. Since the number of expected mutations is
directly proportional to the viral mutation rate, this variation has a large effect on estimates of genetic diversity (Figure I).

Future work that refines estimates of mutation rate would help to establish more confident expectations about within-
host viral diversity. It will also be important to develop models with more realistic assumptions about initial within-host
genetic diversity, as well as how purifying and positive selection would affect this variation. By comparing these models
with empirical observations, we can improve our understanding of how influenza viruses evolve within human hosts.
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Figure I. Expected Number of Within-Host Variantsm above a Given Variant Frequency a under Neutral
Evolution. Expectations are displayed for different values of the per-site, per-generation mutation rate m, which is
multiplied by the number of base pairs in the genome of influenza virus to obtain the per-genome mutation rate u.
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Figure 2. Deep-Sequencing Approaches to Measuring Within-Host Genetic Diversity. (A) Common deep-sequencing workflows can identify variants that
make up approximately 1% of the within-host population. (B) Most studies amplify viral geneticmaterial prior to deep sequencing. Low template diversity, typically due to
low viral load, can distort the variant frequenciesmeasured by deep sequencing. Replicate libraries are important for identifying and excluding sampleswith low viral load
that should be excluded from downstream analyses.
amplification, anywhere from 20 to 35 cycles of PCR may be required to produce sufficient
material for sequencing. When the number of starting viral template molecules is low, below
about 1000 copies per ml total RNA [32], this amplification can significantly distort variant
frequencies [32,43,44]. By comparison, errors that accumulate during reverse transcription,
PCR, and Illumina sequencing have smaller effects for samples with typical low viral loads
[32,43].
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It is therefore essential to maximize the amount of viral genetic material used in each RNA
extraction, reverse-transcription, and PCR reaction to ensure that deep sequencing accurately
measures variant frequencies in the viral population. It is also important to prepare and
sequence replicate libraries [41], preferably beginning from independent reverse-transcription
reactions [32]. Replicate libraries make it possible to identify samples with low viral load [32,35]
or effective sequencing depth [41] that should be excluded from downstream analyses
(Figure 2B). They also make it possible to empirically set variant-calling thresholds and exclude
specific low-confidence viral variants whose frequencies vary extensively between replicates in
an otherwise high-quality sample [32].

Limitations
Deep sequencing can identify rare mutations in a viral population, but it has limited power to
determine patterns of linkage between mutations, which can reveal patterns of epistasis [45]
and clonal competition [35]. Short reads can sometimes reveal linkage between closely spaced
mutations [35,46–48], but the reads produced by Illumina sequencing are unable to span even
the smallest influenza-virus genes. Several groups have successfully assembled viral haplo-
types and assessed their frequencies by combining low-coverage PacBio sequencing, which
produces long reads, with high-coverage Illumina sequencing [36]. But even these methods
cannot directly determine linkage between mutations on different gene segments, even though
intergenic epistasis [49–52] and gene reassortment [53] both affect influenza-virus evolution. In
the absence of sequencing data that directly observe patterns of linkage between mutations,
computational methods can sometimes infer longer haplotypes by assembling multiple short-
read haplotypes [30,31,45,48] and tracking concordant changes in allele frequencies between
mutations located on different genes [45,48]. Even with current technical limitations, deep-
sequencing approaches to measure viral variation can still shed light on important within-host
evolutionary dynamics.

How Do Influenza Viruses Evolve within Human Hosts?
Several recent studies have used deep sequencing to characterize the spectrum of genetic
diversity within natural human influenza A infections, and we summarize their findings here.
Most studies focus on typical acute infections in immunocompetent hosts, but some studies
also examine viral evolution during the lengthy infections experienced by immunocompromised
patients.

Acute Infections
Viruses such as HIV and hepatitis C virus establish long-term infections and evolve over years or
decades to avoid the immune system and develop antiviral resistance [54–56]. In contrast,
influenza infections typically last 5–7 days, and viral shedding peaks 2–4 days after infections
begin [57,58]. These short infections provide little time for de novo mutations to arise, for
selection to act on these mutations, and for selected mutations to reach frequencies at which
they are detectable by deep sequencing (Box 1).

Most studies of natural, acute influenza infections analyze one or two nasal swab or nasal wash
samples from each patient by deep sequencing the hemagglutinin gene [59,60] or the entire
viral genome [34,61,62]. The exact number of viral variants identified is highly dependent on
sample quality and sequencing methodology. But several studies have observed relatively
limited genetic diversity within acute human influenza infections [34,60,62], identifying fewer
than ten variants per infection across the influenza-virus genome at a limit of detection of
approximately 1–2% [34,62]. Most of these mutations are rare, present in less than 10% of the
viruses within a host [34,60,62], and the number and frequency of within-host viral variants
Trends in Microbiology, September 2018, Vol. 26, No. 9 785



does not seem to correlate with how many days postinfection the samples were collected [34].
However, some acute infections harbor high genetic diversity due to apparent coinfection by
multiple, related viral strains [61,62]. One study has found evidence of mixed infections in
approximately half of the patients sequenced [61], and the contribution of coinfection to within-
host genetic diversity requires further careful study. Overall, the limited genetic diversity found in
many acute human influenza infections agrees with prior studies, in dogs and horses, that
sequenced viral clones to measure within-host viral variation [63–66].

It remains unclear what influences the patterns of observed variation, although we discuss
potential biological factors below. Generally, within-host variants tend to be dispersed across
the viral genome [34,62], though one study observed some low-frequency variation in putative
antigenic sites [60]. Another study estimated that the ratio of nonsynonymous to synonymous
within-host variants is about 0.64 and suggested that purifying selection removes some
deleterious variants in human infections [62]. Even if most acute human infections do not
contain high-frequency mutations, the sheer number of influenza infections every year may
allow the rapid global evolution of influenza virus to arise from limited within-host genetic
diversity.

Chronic Infections
The vast majority of influenza infections are acute, but immunocompromised patients can
experience severe infections lasting multiple weeks or months [67–69]. These chronic infec-
tions differ from acute infections in that host immune responses may be weakened or absent,
infections are commonly treated with long courses of antiviral drugs, and influenza virus
commonly co-occurs with other respiratory pathogens [67–69].

Nevertheless, chronic infections provide unusual opportunities to observe how influenza
viruses evolve within humans over longer spans of time, when selection has more opportunities
to shape viral variation. Immunocompromised patients often receive close clinical monitoring,
and several studies have tracked within-host evolution longitudinally by deep sequencing
clinical samples taken from different time points in an infection [35,36,70]. In these chronic
infections, influenza viruses can display extensive evolution. Putative antigenic variants can
arise and reach high within-host frequencies [35,71–73]. Multiple drug-resistant variants can
also arise during these lengthy infections [35,36,70,73]. It is common for multiple beneficial
mutations to compete with one another within a patient [35,36], displaying clonal interference
dynamics commonly observed in experimental evolution [74–76].

The relatively weak immune responses mounted by immunocompromised hosts can have
important evolutionary consequences, regardless of the exact underlying medical conditions.
Small viral populations can survive and replicate in the presence of weak selection, making it
easier for multiple adaptive mutations to emerge simultaneously [77]. In chronic influenza
infections, relatively weaker immune responses can lead to much longer viral infections,
enabling putative antigenic variants to arise in ways that sometimes parallel global evolutionary
trends [35]. Overall, though, it remains unclear howmuch the evolutionary forces that act within
chronic infections resemble selective pressures within more common, acute infections.

What Affects How Influenza Viruses Evolve within Humans?
Here, we consider evidence for how antigenic selection, antiviral treatment, tissue specificity,
spatial structure, and multiplicity of infection may shape how influenza viruses evolve within
humans (Figure 3).
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Figure 3. Factors Affecting the Evolution of Influenza Virus within Human Hosts. Antigenic selection, antiviral
drugs, tissue structure, and multiplicity of infection can affect how influenza viruses evolve within hosts.
Antigenic Selection
Human influenza viruses undergo constant antigenic drift and occasional antigenic shift on a
global evolutionary scale [20,78,79], but it is unclear how much immune selection takes place
within a typical human infection. Recent deep-sequencing studies have identified few antigenic
variants within acute infections [34,60,62], though it remains unclear whether antigenic variants
are enriched or depleted relative to the frequency of within-host variants as a whole. In
immunocompromised patients, putative antigenic variants can arise, display complex clonal
dynamics, and even fix during an infection [35,71–73]. Some of the putative antigenic variants
that arise in immunocompromised patients also reach a high frequency in the global population
of influenza viruses [35].

Another source of antigenic selection might be vaccination, which boosts immune responses
against influenza viruses. Two recent studies deep sequenced viral populations from vaccine
recipients and control groups [34,60]. They found that vaccination status did not seem to affect
consensus viral sequences, suggesting that infections in vaccinated individuals are not caused
by specific resistant viral strains [34,60]. Moreover, they found that vaccination had no
detectable effect on the number or population frequency of within-host variants [34,60].
One interpretation is that antigenic selection does not act detectably in most infections. An
alternative explanation is that many unvaccinated individuals may already have strong immunity
from natural infections, and vaccination may not alter immunity enough to exert additional
antigenic selection.

Antiviral Resistance
Antiviral agents are used to treat only a minority of acute influenza infections, but they can still
exert important influences on viral evolution [22–24]. For instance, many influenza A strains are
resistant to adamantanes [24,80], and resistance to oseltamivir swept to fixation in seasonal
Trends in Microbiology, September 2018, Vol. 26, No. 9 787



H1N1 influenza viruses before they were replaced by pandemic H1N1 [24,81,82]. For antivirals
such as oseltamivir, where drug resistance is not yet widespread in current strains, influenza
viruses can gain resistance within individual infections by acquiring one or more de novo
mutations [24]. As with antigenic selection, it is unclear how frequently drug resistance arises
within typical, acute infections. In one case report, resistance arose even when oseltamivir was
used for prophylaxis [83], but deep sequencing of viral populations from 13 individuals in a
human challenge study detected no drug-resistant variants following early or standard oselta-
mivir treatment [48]. There is ample evidence, however, that resistance can arise rapidly during
longer infections [35,36,67–69,73,84,85]. In some cases, multiple drug-resistant variants may
even compete within a single patient [35,36]. Since the mutations and molecular mechanisms
underlying antiviral resistance are well established, antiviral resistance can serve as a useful
comparison for studying how other selective pressures may act within hosts.

Tissue Specificity and Spatial Structure
Influenza viruses infect heterogeneous, spatially structured populations of cells in the human
airways. Differences between tissues, along with neutral processes of migration and genetic
drift, may have important effects on viral evolution. Onemajor difference between the upper and
lower human airways is their distribution of sialic acid receptors, which influenza viruses use to
enter host cells. Most human influenza infections primarily take place in the upper human
respiratory tract, which contains a higher proportion of a2,6-linked sialic acids than the lower
airways, which contain a higher proportion of a2,3-linked sialic acids [17,18]. These histological
differences may affect which viruses are transmitted. In ferrets, for example, viruses tend to
transmit from the upper respiratory tract [15], and viral variants that preferentially bind to a2,6-
linked receptors transmit more frequently than variants that bind a2,3-linked receptors [86].
This combination of spatial structure and tissue specificity provides one possible explanation for
why avian-derived viruses, which tend to be adapted to the a2,3-linked sialic acid receptors in
avian airways, can cause severe, lower lung infections in humans but rarely transmit from one
human host to another [17,18,87]. Within these two broad linkage categories, sialic acid chains
also vary extensively in length and chemical linkages and are distributed differently in the
airways of avian and mammalian host species, potentially affecting influenza virus binding [88–
90].

Even in the absence of tissue-specific selection, spatial structure can also limit genetic
exchange between different parts of the human airways. For instance, one case report of a
human infection documented the presence of distinct viral populations in the right and left lungs
[91]. More generally, though, no deep sequencing studies have systematically compared viral
populations sampled from different parts of the human airways, and the extent of tissue-
specific selection remains an important open question.

Multiplicity of Infection
Spatial structure affects how densely viruses populate different parts of the human airways, and
in turn, this within-host multiplicity of infection (MOI) determines how often two or more viruses
coinfect the same host cell. When multiple viruses coinfect the same cell, viral gene segments
have an opportunity to reassort, and they do so readily in cell culture and animal models
[53,92,93]. New combinations of gene segments are important for purging deleterious muta-
tions in an otherwise clonal population and for forming new, potentially advantageous combi-
nations between mutations [53]. It is usually difficult to estimate rates of within-host
reassortment because current deep sequencing techniques are unable to establish linkage
across multiple gene segments. But one group has developed a population-genetics frame-
work to infer recombination from longitudinal, short-read sequencing data and estimated that
788 Trends in Microbiology, September 2018, Vol. 26, No. 9



the rate of effective within-host reassortment is low in human infections [48]. Rates of effective
reassortment may be low even when viral load is high because spatial structure limits viral
exchange so that most coinfection and reassortment occurs between genetically similar
viruses.

Viral coinfection also provides opportunities for genetic complementation, which can decrease
the efficacy of selection. If a wild-type virus and a virus carrying a deleterious mutation coinfect
the same cell, the progeny virions can package both viral genomes, allowing the deleterious
mutation to persist. The effects of complementation are especially clear in cell culture, where
most influenza viruses are grown to a highMOI: defective viruses that carry large gene deletions
quickly arise and spread through the population [94,95]. Large internal deletions have been
documented in human influenza infections [96,97], and studies of influenza outbreaks in pigs
and horses have documented the transmission of nonsense variants as well [66,98]. However,
the overall prevalence of defective viral particles and their association with infection length and
severity remain poorly understood.

Altogether, studies in cell culture and animal models suggest various biochemical and mor-
phological factors that may affect how influenza viruses evolve within human hosts, but few
deep-sequencing studies so far have had the power to detect their effects. Additional
sequencing of viral populations collected from different human hosts and tissues will improve
our understanding of how influenza viruses evolve within a complex host environment.

How Does Influenza Virus’s Diversity within Hosts Relate to Its Global
Evolution?
The within-host evolution of influenza virus ultimately provides the substrate for the virus’s rapid
global evolution, but the forces that transform within-host genetic diversity into global variation
are largely unknown. Selection and drift can operate within hosts, but they also shape viral
variation at transmission and at the host-population level.

Transmission
Only a small fraction of the influenza viruses within an infected individual go on to initiate
subsequent infections (Figure 4). Transmission bottlenecks can limit the genetic diversity
passed from one host to another and introduce stochasticity in variant frequencies along a
transmission chain [29,62,61]. Transmission bottleneck sizes also affect how often genetically
distinct strains of influenza virus infect the same individual [66,93], and looser bottlenecks
increase the chance for beneficial reassortment [53,93].

Deep sequencing of contact and recipient viral populations can help estimate transmission
bottleneck sizes in natural infections. Narrower transmission bottlenecks increase the variance
with which viral variants are transmitted [99]. Animal studies suggest that vaccination status [64]
and route of transmission [15,16] can affect transmission bottleneck size, which appears to be
looser for direct contact than for aerosol transmission [15,16]. Studies of influenza outbreaks in
pigs and horses have suggested that transmission bottlenecks can be loose, with frequent
mixed infections [65,66,98].

In human influenza infections, few studies have had the power to estimate transmission
bottleneck sizes, and the two recent studies to do so have disagreed considerably in their
results. Poon et al. estimate a relatively loose bottleneck size of approximately 200 distinct
genomes for both H3N2 and pandemic H1N1 influenza virus based on a household cohort
study performed during the first wave of the 2009 H1N1 pandemic [61], and a recent reanalysis
Trends in Microbiology, September 2018, Vol. 26, No. 9 789
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Figure 4. Transmission Bottlenecks Shape Viral Evolution. The size (A) and randomness (B) of transmission bottlenecks affect how much of the viral genetic
diversity generated within one host survives to initiate another infection.
of the same data supports these estimates [99]. More recently, McCrone et al. used similar
analytical methods to infer a very narrow transmission bottleneck of one or two distinct
genomes in a household cohort study that primarily sampled seasonal H3N2 influenza viruses
from 2010 to 2015 [62].

It is unclear what accounts for the differences between these two estimates, although differ-
ences in study populations may contribute. For instance, influenza virus transmission depends
on temperature and humidity [100]. The Poon et al. cohort was recruited in subtropical Hong
Kong, while the McCrone et al. cohort was recruited in temperate Michigan, in the northern
USA. Moreover, the Poon et al. study recruited index patients with acute respiratory illnesses
and then prospectively followed their family members, whereas the McCrone et al. study
prospectively enrolled households and queried participants weekly about symptoms of illness.
Furthermore, estimates of transmission bottleneck size may also be highly sensitive to sample
quality, library preparation and sequencing methods, and variant-calling thresholds.
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Outstanding Questions
What experimental designs and ana-
lytical approaches best identify rare
viral variants in clinical samples?

How much does host immunity shape
within-host viral genetic diversity?

How do viral populations evolve in dif-
ferent parts of the human airways?

What is the effective multiplicity of
infection within human hosts?

How often do related viral strains coin-
fect the same host?

How do transmission bottlenecks
shape the genetic diversity of founding
viral populations?

How does host population immunity
help transform within-host viral diver-
sity into global genetic variation?
Most studies assume that transmission bottlenecks act neutrally, but certain influenza-virus
variants may be more likely than others to transmit and found new infections. For instance, one
ferret study found that transmitted viruses tended to preferentially bind a2,6-linked sialic acid
receptors and most closely resembled viral populations in the soft palate [86]. Selection can
also affect maladapted strains of human influenza virus. In one recent human challenge study,
volunteers were inoculated with viral stocks that had acquired passage-adaptation mutations
during growth in eggs and cell culture. Many of these passage-adaptation mutations in the viral
inoculum were purged from the viral population during or shortly after inoculation [101].
Selection may also act at transmission to promote global antigenic evolution if novel antigenic
variants transmit and found new infections more frequently when host populations are mostly
resistant to circulating strains. The strength and evolutionary effects of transmission bottle-
necks remain important areas of study for understanding how the genetic diversity of influenza
virus within hosts relates to its global genetic variation.

Comparing Evolutionary Scales
Newmutationsmust arise and fix in individual hosts before they can spread through a large host
population, linking within-host evolutionary dynamics to global evolution [102]. How do drift,
positive selection, and purifying selection act within and between hosts? Studies of Ebola virus
[103], Lassa virus [104], and dengue virus [105] have compared the proportions of non-
synonymous to synonymous within- and between-host variants to argue that purifying selec-
tion acts at within- and between-host scales to eliminate deleterious variants. However, the dN/
dS ratio was originally developed to compare fixed variation between distantly diverged
lineages, and within-host population dynamics can complicate its interpretation [106,107].
In cases where longitudinal deep-sequencing data are available, standard population-genetics
models can be used to infer the influence of selection upon particular variants based on the
changes in their allele frequencies over time [45,46,48]. But for most studies of within-host
evolution, which lack longitudinal data, it remains a major challenge to develop appropriate
methods that make use of deep-sequencing data to distinguish what evolutionary forces act on
viral populations within hosts.

Concluding Remarks
By studying how influenza viruses evolve within humans, we can observe what biological
factors affect the virus within its natural host environment (see Outstanding Questions). We can
also determine what evolutionary and epidemiological forces transform within-host genetic
diversity into global viral variation. As deep sequencing makes it easier to survey genetic
diversity within hosts, it will be important to develop methodologies to systematically analyze
within-host evolutionary dynamics and their relationship to global evolution.
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