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Positive selection underlies repeated
knockout of ORF8 in SARS-CoV-2 evolution

Cassia Wagner 1,2 , Kathryn E. Kistler 2,3, Garrett A. Perchetti 4,
Noah Baker 4, Lauren A. Frisbie 5, Laura Marcela Torres 5, Frank Aragona5,
Cory Yun5, Marlin Figgins 2,6, Alexander L. Greninger 2,4, Alex Cox5,
Hanna N. Oltean5, Pavitra Roychoudhury 2,4 & Trevor Bedford2,3

Knockout of the ORF8 protein has repeatedly spread through the global viral
population during SARS-CoV-2 evolution. Here we use both regional and glo-
bal pathogen sequencing to explore the selectionpressures underlying its loss.
In Washington State, we identified transmission clusters with ORF8 knockout
throughout SARS-CoV-2 evolution, not just on novel, high fitness viral back-
bones. Indeed, ORF8 is truncatedmore frequently and knockouts circulate for
longer than for any other gene. Using a global phylogeny, we find evidence of
positive selection to explain this phenomenon: nonsense mutations resulting
in shortened protein products occur more frequently and are associated with
faster clade growth rates than synonymousmutations inORF8. Loss of ORF8 is
also associated with reduced clinical severity, highlighting the diverse clinical
impacts of SARS-CoV-2 evolution.

Selection pressure on SARS-CoV-2 has shaped the population of cir-
culating virus since its emergence in humans. The virus has undergone
repeated selective sweeps of variant of concern viruses, such as Delta
and Omicron, and more recently by lineages within-Omicron, includ-
ing BA.2 and XBB, in which increased fitness derives from mutations
contributing to both intrinsic transmissibility and immune escape1–11.
Adaptive mutations are overrepresented in spike, the viral entry pro-
tein and primary target of protective adaptive immunity, and muta-
tions here alter tropism, improve transmission, and evade host
immunity12–17. The number of mutations in S1, the spike subunit con-
taining the receptor binding domain, correlate with viral growth rate18.

Adaptive evolution has not been limited to spike, however. Spe-
cific missense mutations in open reading frames (ORFs) for non-
structural (ORF1a and ORF1b), other structural (nucleocapsid, N) and
accessory (ORF3a) proteins are also associated with increased viral
fitness19,20. ORF8 has repeatedly been knocked out during SARS-CoV-2
evolution, though the evolutionary pressures acting on loss of ORF8
are not known. Multiple large deletions of ORF8 and occasionally
neighboring ORF7a andORF7b have been identified around the world,

including in Singapore in 2020, where it was associated with reduced
clinical severity21–25. Additionally, premature stops in ORF8 causing
early truncation of the 121-amino acid protein have been reported,
including in mink and pangolin animal species, the Alpha variant of
concern (Q27*) and lineage XBB.1 descendants (G8*)3,11,26–28. As of
September 2023, the vast majority (~90%) of currently circulating
SARS-CoV-2 has ORF8 knocked out29. This patternmirrors SARS-CoV’s
loss of ORF8 after introduction into humans30.

ORF8 is a viral accessory protein that aids in immune evasion31.
As a secreted protein, it drives an early antibody response32,33,
potentially acting as a decoy for protective adaptive immunity. Many
functions have been attributed to ORF8, including downregulating
major histocompatibility complex class I (MHC I)33–35, decreasing
antibody dependent cellular cytotoxicity activity36, inhibiting Type I
IFN production37–40, suppressing IFN-γ induced antiviral gene
expression41, and disrupting host epigenetic regulation by acting as
histone H3 mimic42. In its unconventional, unglycosylated state,
ORF8 may contribute to cytokine storms by activating the IL-17
pathway43–45.
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Given these varied potential functions of ORF8, its repeated
knockout is perplexing. One hypothesis is that ORF8 knockout is
deleterious to SARS-CoV-2 fitness but rose to fixation frequency by
hitchhiking along with fitness enhancingmutations in Alpha and again
in XBB.1 descendants. Another hypothesis is that ORF8 knockout has
no impact on viral fitness, and the gene is undergoing neutral evolu-
tion. Here, again, fixation could be explained by hitchhiking. A final
hypothesis is that ORF8 knockout improves viral fitness, and positive
selection for knockout has contributed to its global spread.

To explore these hypotheses, we use SARS-CoV-2 sequences from
Washington State (WA) from February 2020-March 2023 to determine
prevalence of ORF8 knockout across time, contrasting this with the
knockout of other SARS-CoV-2 genes. Here, we can observe knockouts
occurring on a variety of fitness backgrounds, not just the fit viral
backbones which swept globally. Next, we use a large, global phylo-
geny of SARS-CoV-2 to compare expected counts and clade growth
rates of nonsense mutations, which truncate the ORF8 protein, to
synonymous mutations in ORF8. Finally, we assess linked hospitaliza-
tion anddeathdata todetermine the clinical impactofORF8 knockout.

Results
Prevalence of ORF8 knockout in WA State
We quantified how often ORF8 was knocked out during SARS-CoV-2
evolution in WA from the beginning of the COVID-19 pandemic
through March 2023. Our dataset included knockouts under a wide
potential array of selection pressures, including knockouts which pri-
marily spread locally andknockouts in theAlpha andXBB.1 descendant

viruses which spread globally. As the first U.S. state to detect com-
munity transmission of SARS-CoV-2, WA has robustly sequenced
COVID-19 cases throughout the pandemic aided by a sentinel surveil-
lance sequencing system for geographic coverage46–48. FromApril 2021
through March 2023, 17.25% of all COVID-19 infections in WA were
sequenced, with the lowest sequencing coverage in December 2021
(3% of cases) and the highest in February 2022 (28%of cases). This high
sequencing coverage makes WA an ideal location to understand pre-
valence of ORF8 knockout across time49.

We considered samples to contain a potential knockout inORF8 if
they contained a large deletion (>30 bp) or a premature stop codon
resulting in at least a 10 codon shorter protein coding sequence. This
cutoff, though arbitrary, prevents mislabelling common, short dele-
tions as knockouts while avoiding preferentially maximizing or mini-
mizing knockouts in any one gene (Supplementary Fig. S1). Samples
with a mutation known to cause amplicon dropout in ORF8 were
excluded from potential knockouts (see methods). We identified
14,929 samples with a potential knockout of ORF8, representing 11.7%
of high coverage (≥95%) SARS-CoV-2 sequences collected in WA
throughMarch 2023 (Fig. 1A). For ORF8, the number of knockouts was
robust to cutoff length: with a cutoff of 95 codons missing, 9.9% of
sequences would still have an ORF8 knockout (Supplementary Fig. S1).

While the majority of ORF8 knockouts were found in variants
descending from clade 20I (Alpha), clade 22F (lineage XBB), clade 23A
(lineage XBB.1.5), and clade 23B (lineage XBB.1.16), ORF8 knockout
also occurred in an average of 3% of all other clades (Fig. 1B). Most
knockouts were due to premature stop codons, either from nonsense

Fig. 1 | ORF8 is repeatedly knocked out during SARS-CoV-2 evolution in
Washington State. A Distribution of the number of SARS-CoV-2 sequences col-
lected inWA by collection date. Histogram is colored by the type of potential ORF8
knockout (none = gray, premature stop = blue, large deletion = green).
B Proportion of sequences with a potential ORF8 knockout by Nextstrain Clade.
C Time-resolved phylogenetic tree of 16,268 SARS-CoV-2 sequences enriched for

sequences in WA (9,854) evenly sampled across time through March 2023. Tips
with a potential ORF8 knockout are shown as circles colored by a unique cluster.
There are 355 unique clusters, so colors are reused, but adjacent tips of the same
color belong to the same cluster. All other tips are plotted as gray lines. D Violin
plots of cluster size for ORF8 knockouts due to large deletions (green) or pre-
mature stops (blue). Source data are provided as a Source Data file.
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or frameshift mutations, with only 10.2% of knockouts being large
deletions. This suggests that most knockouts are real and not artifac-
tual errors in sequencing as point mutations and small gaps can be
confidently inferred with short read sequencing and reference-based
genome assembly.

We constructed a phylogenetic tree enriched for sequences
sampled in WA spread evenly across time to determine if potential
knockouts clustered together phylogenetically. We identified parsi-
mony clusters of ORF8 knockouts across the tree using unidirectional
clustering for large deletions and bidirectional clustering for pre-
mature stops (see methods) (Fig. 1C). We identified 355 unique clus-
ters: 250 large deletion clusters and 105 premature stop clusters. Most
clusters were singletons, with only 53 clusters containing at least two
samples. Premature stop clusters were larger with a mean cluster size
of 17.2 compared to 1.2 for large deletions (p = 2.3e−04,WilcoxonRank
Sum test, two-sided) (Fig. 1D). This difference in cluster size could
reflect different fitnesses associated with different types of gene
knockout. For example, 7 out of 27 non-singleton, large deletion
clusters resulted in knockout of ORF8 and early truncation of ORF7b,
which could result in altered fitness compared to ORF8 knockout
alone. However we did not observe a difference in size between dele-
tion clusters only knocking out ORF8 and deletion clusters also
affectingORF7b (p = 0.14,WilcoxonRank Sum test, two-sided). Among
non-singleton clusters, deletion size was positively correlated with
cluster size (Pearson’s r = 0.47, p =0.012), and this effect was robust to
excluding deletions that also truncated ORF7b (Pearson’s r =0.48,
p =0.028) (Supplementary Fig. S2A). Rather than resulting from a
difference in fitness, it is more likely the difference in cluster size by
knockout type occurs because many potential large deletions

represent a sequencing error, rather than a large deletion, and fail to
cluster with other potential large deletions.

To determine whether potential large deletions were true dele-
tions versus amplicon dropouts or sequencing errors, we screened a
subset using PCR and Sanger sequencing. Of 9998 University of
Washington samples available at the timeof screening, 120were found
to have sequences with contiguous strings of N’s (>266 bp) from
ORF7a through ORF8. Of these, 89 samples had sufficient volume and
quality for PCR and Sanger sequencing, and 23/89 (25.8%) were con-
firmed to have large deletions (≥344 bp) (Supplementary Table S1).

For knockouts with premature stop codons, we did not find a
correlation between truncated protein length and cluster size (Pear-
son’s r = –0.14, p =0.49) (Supplementary Fig. S2B). However, 77% of
non-singleton knockout clusters due to an early stop mutation were
predicted to have a truncated protein of 26 codons or smaller (Sup-
plementary Fig. S2D). This skewed distribution suggests that most
premature stops are causing gene knockouts rather than leaving the
majority of the protein intact.

Next, we compared the number of potential ORF8 knockouts to
potential knockout of other genes in SARS-CoV-2 in our WA dataset.
With 13,410 premature stop codons, ORF8 had 14x more stop codons
than any other gene (Fig. 2A). The largest genes, ORF1a, ORF1b, and
Spike, contained the most large deletions, with >24,000 in each
compared to 1517 large deletions in ORF8 (Supplementary Fig. S3A).
When normalized by gene length, ORF1a, ORF1b, and spike had a large
deletion rate in the rangeofORF8 (0.012, 0.023, 0.046 vs. 0.044per kb
per sample respectively) (Supplementary Fig. S3B). Given the necessity
of these genes to viral replication, this finding suggests that many
potential large deletions could represent missing bases due to poor
sequence coverage or amplicon dropout, rather than true deletions.
Analyzing the constituent proteins of theORF1a&ORF1b genes didnot
show any evidence of a deletion hotspot relative to other SARS-CoV-2
proteins (Supplementary Fig. S3C). When normalized by gene length,
ORF7b, M and ORF7a had the highest rate of large deletions (Supple-
mentary Fig. S3B). However, we observe that non-singleton knockout
clusters in ORF8 (mean 34.3) are larger on average than non-singleton
knockout clusters for all other genes (mean 3.1) (p = 1.4e−05,Wilcoxon
Rank Sum test, one-sided) (Fig. 2B). This result is driven by premature
stop clusters (Supplementary Fig. S3C), as we detect no significant
difference in large deletion cluster size among genes with the largest
deletion cluster sizes: spike (mean 3.3), ORF8 (mean 3.4) and M (mean
4.1) (ANOVA, p =0.09) (Supplementary Fig. S3D). These results are
consistent with ORF8 being knocked out more frequently than any
other gene in SARS-CoV-2, and the difficulty of identifying large dele-
tions from assembled sequences.

Deleteriousmutations areoften under purifying selectionwithin a
host. If the high rate of ORF8 knockout observed in consensus
sequences extended to within-host frequencies, this result would
additionally argue against deleterious fitness associated with ORF8
knockout. Therefore, we examined the rate of nonsense mutations in
intra-host variants in a subset of 1015 SARS-CoV-2 samples that did not
have a consensus-level stop codon, which were sequenced from
August-September 2022 inWA (Fig. 3). We defined nonsense intrahost
variants as single nucleotide polymorphisms creating a premature
stop codon that were present in 1–50% of reads covering that site.
Intrahost nonsense variants had to be further supported by at least 10
reads, with a total read of coverage of at least 100 for the site. ORF7b
had the highest per codon rate of intrahost nonsense mutations
(8.9 × 10−4) followed by ORF8 (2.4 × 10−4). Both genes had elevated
intrahost frequencies of nonsensemutations relative to all other genes
(ORF7b median =0.036, ORF8 median=0.032, other genes median =
0.015) (Fig. 3A). Differences in allele frequency between nonsense
mutations inORF7b/ORF8andother geneswere statistically significant
(ORF7b: p = 5.3 × 10−11, ORF8: p = 4.1 × 10−8, Wilcoxon Rank Sum Test)
(Fig. 3B). These results are consistent with increased population-level

Fig. 2 | ORF8 hasmore premature stops and larger knockout clusters than any
other gene. A Number of premature stops by gene in WA SARS-CoV-2 sequences
through March 2023. B Size of parsimony clusters with a gene knockout due to
large deletion or premature stop for all SARS-CoV-2 genes. Clusters were recon-
structed from the maximum likelihood phylogenetic tree enriched for WA
sequences with even temporal sampling. Source data are provided as a Source
Data file.
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ORF8 knockout and suggest alteredwithin-host selection pressures on
both ORF8 and ORF7b.

Selection pressure acting on ORF8 knockout in a global context
In WA, we observed that ORF8 is truncated more commonly than any
other gene, and clusters containing an ORF8 knockout are larger than
clusters with a knockout in any other gene. This result suggests either
weakened selection pressure onmaintaining ORF8 function relative to
other genes or positive selection for ORF8 knockout. The elevated rate
and frequency of intrahost nonsense mutations in ORF8 further sug-
gest that either phenomenon extends to within-host evolution. To
differentiate between these hypotheses, we applied one of the most
widely used measures of selection pressure, dN/dS, which compares
the ratio of mutation divergence over expectation for both non-
synonymous, or protein modifying, mutations and synonymous
mutations, which do not alter the protein’s amino acid sequence.
Classically, dN/dS > 1 is consistent with positive selection as non-
synonymous mutations occur more frequently than synonymous
mutations,dN/dS < 1 is consistentwith negative selection, anddN/dS ~ 1
is consistent with neutral evolution. Here, we modified the classic
calculation of dN/dS to separately estimate values for missense muta-
tions, which change the amino acid sequence, and nonsense muta-
tions, which introduce a stop codon and result in early truncation of
the protein. To mitigate geographic bias, we estimated dN/dS values
for each SARS-CoV-2 gene using the publicly available UShER phylo-
geny, which contains ~7 million SARS-CoV-2 sequences sampled from
around the globe (Fig. 4A, Supplementary Fig. S4)50,51.

In the structural (S, E, M, N) and replicase (ORF1a, ORF1b) genes,
we identify strong selection against nonsense mutations, with dN/dS
values < 0.01. This result is consistentwith thesegenes beingnecessary
for viral replication. The relative missense estimates for these genes
are also largely consistent with expectation. For example, in spike,
which has undergone substantial adaptive evolution14,18, we observe
relaxed selection against missense mutation compared to replicase
genes ORF1a and ORF1b (with dN/dS values of 0.52, 0.38, and 0.32
respectively). In the accessory genes, which by definition are not
necessary for viral replication, dN/dS values for both nonsense and
missense mutations are elevated. ORF7a, ORF7b, and ORF8 all have
especially high dN/dS values, withmissense estimates >1 and nonsense
estimates >4.8× that of other genes. Uniquely, ORF8 has values > 1 for
both missense and nonsense mutations (1.09 and 1.11 respectively).
Classically, dN/dS values of thismagnitude are consistent with positive
selection; however, caution is warranted when interpreting within-

population dN/dS in terms of selective coefficients52,53. Additionally,
absolute dN/dS values are sensitive to the substitution matrix used
while relative relationships of estimates between genes remain similar
regardless of substitution matrix (Supplementary Fig. S5). Comparing
across genes, we can conclude that negative selection onmutations in
ORF8, ORF7a, and ORF7b are strongly weakened relative to other
genes. Our results further suggest positive selection for ORF8 knock-
out: even with an alternative substitution matrix, dN/dS estimates for
ORF8 remained >1 (Supplementary Fig. S5).

To more clearly test for positive selection, we compared success
of ORF8 clades with a nonsense mutation to clades with either a
synonymous or missense mutation in ORF8 (Supplementary Fig. S6).
We found that clades with a nonsense mutation in ORF8 are larger
(mean= 77.6, std = 6024.2) and circulate for longer (mean= 11.5 days,
std = 35.8) than clades with a synonymous mutation in ORF8 (mean
size = 7.0, std = 423.8, mean days = 9.5, std = 28.9). Clades with a mis-
sense mutation in ORF8 are also larger on average (mean= 18.5, std =
2482.0) and circulate for longer (mean = 10.3, std = 32.1). For com-
parison, nonsensemutations in ORF1a and spike aremuch smaller and
circulate for far shorter periods than clades with synonymous
mutations.

To statistically quantify these observed differences, we modeled
the rate of cluster growth by mutation type as a negative binomial
regression of the number of descendants after the mutation was first
observed, with an offset for time since observation (Fig. 4B). We found
that clusters with nonsense mutations in ORF8 grow 6.3x (95% CI:
5.97–6.52) faster than clusters with synonymous mutations in ORF8.
While this approach does not attempt to disentangle the effects of
other fitness-impacting mutations which occur downstream of a non-
sense mutation, the synonymous cluster growth rate provides a null
expectation for comparison. Assuming an absence of epistatic inter-
actions betweenORF8 nonsensemutation and other fitness enhancing
mutations in SARS-CoV-2, this result suggests that the observed ORF8
knockouts boost viral fitness. This effect is robust to excluding non-
sensemutations found in Alpha and XBB descendants, which occurred
on highly fit backbones: nonsense mutations still grew 2.5× (95% CI:
2.30–2.76) faster than clusters with synonymous mutations (Supple-
mentary Table S2). Missense mutations in ORF8 grew 1.8× faster (95%
CI: 1.77–1.96) than clusters with synonymous mutations in ORF8. This
relative fitness benefit could result from either (1) missense mutations
disrupting ORF8 function like nonsense mutations, or (2) missense
mutations improving fitness by enhancing some aspect of ORF8
function.

Fig. 3 | Intra-host nonsensemutations inORF7b andORF8occur athigher rates
per codon and at higher allele frequencies compared to other genes.We tested
the intra-host variants of 1015, high-coverage SARS-CoV-2 samples sequenced in
Washington State fromAugust to September 2022, which did not have a consensus
level premature stop codon for nonsense mutations. A shows the per codon, per

sample rate of intra-host nonsense mutations in each gene. The frequencies of
nonsense mutations observed in intra-host variants are shown in B for each gene.
Black lines indicate the median frequency. Source data are provided as a Source
Data file.
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For all other genes, clusters with nonsense mutations grew at a
reduced rate (0.07× on average) relative to clusters with synonymous
mutations. These differences were not statistically significant, likely
due to the very few number of nonsense mutation clusters observed
in most genes resulting in wide CIs (Fig. 4B). For example, in spike
and ORF1a, 0.035% and 0.017% of mutations were nonsense respec-
tively. Comparing cluster growth rates assumes mutations occurring
and being sampled, so rates will be less sensitive for detecting clus-
ters with mutations under strong negative selection. For ORF7a and
ORF7b, which had elevated counts of nonsense mutations, the
absence of a difference in cluster growth rate between nonsense and
synonymous mutations could be consistent with neutral evolution in
these genes.

The difference in growth ratewith a nonsensemutation inORF8 is
similar to that of increase in growth rate for a missense mutation in
spike: 5.5× (95%CI: 3.57–8.38). Sincemanymissensemutations in spike
are associated with fitness gains, this finding also suggests positive
selection for ORF8 knockout. We did not observe a significant differ-
ence in growth rate for missense mutations in ORF1a (0.88, 95% CI:
0.607–1.29). However, if mutations are split out into mutations with
positive fitness previously inferred by a hierarchical logistic regression
model19 versus other missense mutations, clusters with fitness-
associated missense mutations grew 4.3× faster (95% CI: 2.08–10.11)
than synonymous mutation clades while cluster with other missense
mutations grew 0.43× slower (95% CI: 0.29–0.64×) relative to synon-
ymous (Supplementary Fig. S7). This is consistent with predominantly
negative selection on ORF1a, but occasional mutations under positive
selection. We observed a similar split of cluster growth rates for ORF8
and spike when classifying mutations by type and previously inferred
positive fitness. These results suggest that our cluster growth analysis
is in agreement with previous work (Supplementary Fig. S7)19.

To further test if increased fitness for ORF8 knockout was driven
by specific clades, we estimated ORF8 dN/dS rates split out by each
Nextstrain clade, for each clade larger than 500 clusters (Supple-
mentary Fig. S8A). Most clades hadwide confidence intervals, with dN/
dS rates for nonsensemutations indistinguishable from 1 for 17 clades.
An additional eight clades – 19A, 20A, 20B, Alpha, Gamma, 21C, 21F,
and 21H – had rates significantly greater than 1. Only four clades – 21K,
20G, 22D, 20F – had rates significantly less than one, which suggests
that mutations are well-tolerated across the entire tree. A one-sided
Wilcoxon Signed Rank test comparing if per-clade point estimates for
dN were larger than dS was significant for missense mutations but not
nonsense mutations (p =0.0057 & p =0.24 respectively).

Due to themassive differences (over 1000×) in the ratio of largest
nonsynonymous cluster over largest synonymous cluster associated
with highdispersionof cluster size and the relatively fewmutations per
clade,wewere not able to reliably estimate growth rate advantages per
clade. Instead, we compared the ratio of the geometric mean of non-
synonymous cluster size and geometric mean of synonymous cluster
size for each clade (Supplementary Fig. S8B). Since each clade covers a
smaller time window than the entire tree, the size bias from different
cluster start times is minimized. Confidence intervals generated by
bootstrapping across clusters were wide, suggesting we had limited
power to determine if nonsynonymous clusters were larger than
synonymous clusters. In 21J, 20A, Alpha, and 22C nonsense clusters
were significantly larger on average than synonymous clusters; how-
ever, no clades had nonsense clusters significantly smaller on average
than synonymous clusters. A one-sided Wilcoxon Signed Rank test
comparing if per-clade point estimates for nonsynonymous cluster
growth ratios were larger than synonymous cluster growth ratios was
not significant for either missense mutations or nonsense mutations
(p = 0.88 & p =0.39 respectively).

Fig. 4 | Nonsensemutations in ORF8 result in faster clade growth rates and are
more frequently observed than synonymousmutations.From theglobal, UShER
SARS-CoV-2 phylogeny containing 3,422,473 nodes, we estimated (A) dN/dS values
(shown as bars) and (B) the fold change in mutation cluster growth rate relative to
synonymous (shown as points) for missense (teal) and nonsense (red) mutations

for each gene. Error bars show 95% confidence intervals for each calculation. For
dN/dS, confidence intervals were calculated by 10,000 bootstrap iterations across
all nodes in the tree. E did not have enough nonsense mutations to calculate a
cluster growth rate. Source data are provided as a Source Data file.
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Combining both dN/dS estimates and cluster size ratios for each
clade, we see that 6 clades are differentiated fromother clades by their
elevated measures for nonsense mutations in both metrics, even if
they failed to achieve significance levels (Supplementary Fig. S8C).
These clades span a variety of time windows, which suggests that a
time-correlated trend, such as development of high-levels of popula-
tion immunity, does not drive the increased counts and success of
ORF8 knockouts. In contrast, we identify only three clades with
reduced dN/dS rates and smaller cluster sizes for nonsense mutations
on average. Overall, these results suggest that the transmission
advantage of ORF8 knockout may vary somewhat across clades, but
Alpha and XBB alone are not the only clades with increased growth
advantages.

Clinical impact of ORF8 knockout
Previous analysis found a large deletion that knocked out ORF8 and
truncated ORF7b to be associated with reduced clinical severity22.
Here, we extend this analysis to the clinical impact of any ORF8
knockout, due to large deletion or premature stop codon, by linking
SARS-CoV-2 sequences with clinical outcomes recorded in the
Washington Disease Reporting System. Given the reduced clinical
severity and loss of vaccine efficacy associated with Omicron variants,
we restricted our analysis to pre-Omicron lineages. Supplementary
Table S3 outlines the general characteristics of our study population
stratified by infectionswith andwithout anORF8 knockout.While 8.3%
(n = 1906/22,928) of individuals infected by SARS-CoV-2 with intact
ORF8 were hospitalized, only 6.7% (n = 383/5746) of individuals
infected by virus with ORF8 knocked out were hospitalized
(p = 3.1 × 10−5, Fisher’s exact test) (Fig. 5A). Similarly, 1.8% (n = 910/
49,912) of individuals infected by virus with intact ORF8 died due to
SARS-CoV-2 compared to 1.3% (n = 129/10,089) of individuals infected
by virus with an ORF8 knockout (p = 8.2 × 10−5, Fisher’s exact test)
(Fig. 5A). However, ORF8 knockouts have not been distributed evenly
across time inWashington State (Fig. 1A), and clinical severity of SARS-
CoV-2 has varied temporally with changing age circulation patterns,
the rollout of vaccines, accumulation of natural immunity in the
population, medications, and viral evolution.

In a general linear model adjusting for week of collection, variant
of concern, vaccination status, sex at birth, and age group, we found a
0.82 (95% CI: 0.68–0.98) odds ratio of hospitalization in infections
containing an ORF8 knockout compared to infections without the
knockout (Fig. 5B). The odds of death when infected by virus with an
ORF8 knockout was also reduced (Odds ratio: 0.73, 95%CI: 0.55–0.97).

In both regressions, vaccination was associated with reduced clinical
severity whilemale sex and increase in age groupwere associatedwith
worse clinical outcomes. When compared to other SARS-CoV-2 linea-
ges, variants of concern–Alpha,Gamma,Delta, orBeta lineages –were
independently associated with increased odds of hospitalization but
not with odds of death. While the effect sizes estimated are barely
significant, power analysis identifies only 22% power to identify a sig-
nificant effect for hospitalization and 75% power to find an effect
for death.

Given the difficulty of accurately calling large deletions in ORF8,
we tested the robustness of our effects by the size of cluster required
todefine a knockout. To calculate cluster size, webuilt three additional
maximum likelihood phylogenies enriched for ORF8 knockouts in WA
one for Delta, one for Alpha, and one for other non-Omicron lineages.
These breakdowns were chosen such that all ORF8 knockouts
sequenced in WA could be placed in an appropriate phylogenetic
context of at least 75% background sequences. We then reconstructed
parsimony clusters for ORF8 knockout (see above and Methods). We
found that both effect size for ORF8 knockout and model Akaike
information criterion (AIC) minimally changed with various cluster
sizes required to define a knockout (Supplementary Fig. S9). This
demonstrates that the clinical effect is robust to inaccurate identifi-
cation of ORF8 knockout due to large deletion.

Discussion
The SARS-CoV-2 pandemic has been characterized by a high rate of
evolution as fitness enhancing mutations, primarily in spike, have
repeatedly swept globally. Here, we explored the selection pressures
underlying a surprising and repeated sweeping mutation pattern:
ORF8 knockout.

ExaminingORF8 knockout across time in aWashington State, we
found that while knockout spread widely in Alpha and XBB.1 des-
cendant lineages, it also occurred at a low frequency on many other
viral backbones due to both large deletions and premature stop
codons (Fig. 1). This finding is consistent with other reports of large
deletions encompassing ORF8 circulating in other parts of the
globe21,23–27. While knockout is observed in other genes inWashington
State54, we find that ORF8 has more premature stops than any other
gene; knockout clusters with ORF8 grow larger than knockout clus-
ters for any other gene, and the rate and frequency of intra-host
nonsense mutations in ORF8 are elevated (Figs. 2 and 3). At a global
level, we estimate a higher than expected number of nonsense and
missense mutations in ORF8 (Fig. 4). Nonsense mutations in
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Fig. 5 | ORF8knockout is associatedwith reduced clinical severity of COVID-19.
A Proportion of individuals with severe COVID-19 outcomes stratified by virus
infection with and without ORF8 knockout. P-values for ɑ =0.05 from a two-sided,
Fisher’s exact test are shown. B Odds ratios from a generalized linear model of
clinical outcomes for variants of concern (Alpha, Beta, Gamma or Delta), vaccina-
tion status, assigned male sex at birth, ORF8 knockout, and increasing age. Points

show the estimated odds ratio, and error bars show 95% confidence intervals.
Severe COVID-19 outcomes are hospitalization (light blue) and death (dark blue).
Analysis was limited to pre-Omicron lineages due to reduced clinical severity and
loss of vaccine efficacy associated with Omicron variants (hospitalization regres-
sion: n = 25,531, death regression: n = 49,468). Source data are provided as a Source
Data file.
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ORF8 show the highest nonsynonymous over synonymous diver-
gence for any gene in SARS-CoV-2.

Together these results recommend rejecting our first hypothesis:
that ORF8 knockout is deleterious to SARS-CoV-2 fitness and fixation
was driven by hitchhiking on the back of other fitness enhancing
mutations. The dN/dS = 1.1 estimates suggest that ORF8 knockout is
due to positive selection, though estimates in a single evolving
population should be interpreted with caution52,53. We next modeled
the rate of mutation cluster growth rates and found that clusters with
nonsense mutations grow roughly 6x faster than synonymous muta-
tions in ORF8. Excluding stop mutation clusters present in XBB and
Alpha, we still find that nonsense mutations in ORF8 grow 2.5× faster
than synonymous. These values are comparable to the improvement in
cluster growth rates by missensemutations in spike over synonymous
and further suggest that ORF8 knockout boosts viral fitness.

This conclusion is broadly consistent with other estimates of the
fitness effects of SARS-CoV-2 mutations. In an updated run of the fit-
nessmodel presented inObermeyer et al., numerous stopmutations in
ORF8 are estimated to boost fitness19. Bloom and Neher only find
evidence of relaxed purifying selectiononORF8 andother SARS-CoV-2
accessory proteins. However, the difference between their fitness
effects and our dN/dS estimates for ORF8 are consistent with the lim-
ited correlation between fitness effects and dN/dS estimates they
observed. As count-based methods, both approaches are under-
powered to identify positive selection since they only explore how
often mutation occurs, not how large clades get once mutation
occurs20. We also found evidence of relaxed purifying selection in
SARS-CoV-2 accessory proteins as we estimated high nonsense and
missense dN/dS values for ORF7a and ORF7b, in addition to ORF8
(Fig. 4). However, unlike ORF8, we did not find evidence for a growth
rate advantage for ORF7a or ORF7b knockouts (Fig. 4). This clarifies
previous reports of ORF7a and ORF7b deletions21,24,25,54, and our
observation that ORF8 knockout clusters grew larger than for any
gene. It also suggests thatORF7a andORF7b could be deleted in future
SARS-CoV-2 evolution. However, ORF8 may be deleted more quickly,
due to the fitness benefit associated with ORF8 knockout.

Consistentwith previous analysis22, we found evidenceof reduced
clinical severity with ORF8 knockout (Fig. 5). This observation might
help explain why Alpha had reduced clinical severity compared to the
Beta, Gamma, and Delta variants of concern47. It also highlights the
importance of studying the clinical impact of SARS-CoV-2 evolution;
genetic changes in the virus can have different effects on clinical
severity.

Our results imply that SARS-CoV-2 genomic surveillance should
include detection of ORF8 knockout going forward. Currently, much
of circulating SARS-CoV-2 has ORF8 knocked out; however, when
ORF8 knockout arises on a viral backbones with intact ORF8 expres-
sion this suggests a transmission advantage. Conversely, rescue of
ORF8 protein expression could increase the clinical severity of COVID-
19 infections, though the effect may be small. Knockout due to point
mutation or frameshifts can be readily detected from assembled viral
genomes. To detect large deletions, assembled genomes can be
screened for long stretches of N’s, which will result in numerous false
positives, or raw reads and sequence alignment maps can be screened
for ORF8 deletions earlier in genome assembly pipelines.

A dispensable ORF8 and increased viral replication speed due to a
shortened genome cannot explain positive fitness effects associated
with premature stop codons. Host restriction factors, which have well
established impacts on the evolution of other viruses could play a
role55. The only other coronavirus with an ORF8, SARS-CoV, also had
ORF8 knocked out, suggesting a repeated evolutionary pattern30.
Alternatively, recent work by Kim et al identifies an intriguing biolo-
gical mechanism underlying positive selection for ORF8 knockout and
the timeline for knockout to sweep56. Their study finds that ORF8
covalently interacts with spike at the endoplasmic reticulum, reducing

onward transport of spike to the cellmembrane and incorporation into
virus particles. Presence of ORF8 is associated with less spike in
pseudovirions. Less spike in virions and on the cell surface might
improve viral fitness within the individual by providing another
mechanism for SARS-CoV-2 to avoid the host immune response.
However, when ORF8 is knocked out, more spike in virions might
improve viral fitness at a transmission level by making it easier to
establish infection.Whileweobserved an elevatedwithin-host rate and
frequency of ORF8 nonsense mutations, our sequenced samples were
likely from acute infections where the relative effect of immune
pressure may matter less than in chronic infections which are a
hypothesized source of variants of concern.

Given themagnitude of the transmission advantage estimated for
ORF8 knockout, it is puzzling thatORF8 knockouts have notbeenfixed
and have only spread globally in Alpha and XBB subclades. While we
identified some heterogeneity across clades in ORF8 dN/dS rates and
nonsense-synonymous cluster size ratio, increased mutation counts
and growth advantage were not limited to Alpha and XBB. Thus,
although viral backbone could modulate fitness effects to some
degree, it does not explain the few occurrences of ORF8 knockout
reaching appreciable global frequencies. ORF8 knockout may be a
classic example of clonal interference, especially considering the low
probability of introducing a gene knockout and the high fitness boosts
of mutations in other parts of the genome. For example, just as it
appeared that ORF8 knockout from XBB descendants might globally
fix, BA.2.86 viruses outcompeted XBB, dropping ORF8 knockout
frequencies57. The tug of war that Kim et al propose between within-
host fitness and between-host fitness could also contribute to the lack
of ORF8 knockout fixation. ORF8 nonsensemutations are absent from
chronic infection-associated mutations58. Within chronic infections,
intact ORF8 could provide a necessary edge to evade the host immune
system. The hypothesized disproportionate contribution of chronic
infections to global SARS-CoV-2 evolution could prevent ORF8
knockout fixation59–63.

Methods
Calling gene knockouts
On April 24, 2023, we downloaded all 149,547 SARS-CoV-2 sequences
from GISAID collected in WA through March 31, 202364. Sequences
were called as having a potential knockout in a gene if either 30 con-
secutive nucleotide bases in the coding sequence for that gene were
gap characters or N’s, or if the predicted protein coding sequence was
more than 10 codons shorter than the reference protein, due to a
premature stop codon from a nonsense or frameshift mutation. With
short-read sequencing and reference-based genome assembly as are
commonly used in SARS-CoV-2 sequencing pipelines65, large deletions
will show up as long stretches of N’s; however, long stretches of N’s
could also represent poor sequence quality or amplicon dropout. To
limit bias frompoor sequencingquality, samples had tohave a genome
coverage of at least 95%, or nomore than 1495missing bases. In ORF8,
we excluded calling large deletions between bp 27809-27854 in sam-
ples with a C27807T mutation as this mutation was associated with
amplicon dropout in the ARTIC v4 sequencing primers66. We con-
sidered alternative cutoff lengths for knockouts, balancing between
wrongly calling short, likely functional deletions as gene knockouts
and preferentiallymaximizing orminimizing the number of knockouts
in any one gene (Supplementary Fig. S1).

Sanger sequencing & PCR validation of large deletions
Sequencing of remnant clinical specimens at UW Virology Lab was
approved by the University of Washington Institutional Review Board
with a waiver of informed consent (protocol STUDY00000408). We
performed screening by PCR and Sanger sequencing on a subset of
samples to determine whether long strings of ambiguous bases (Ns) in
ORF7 and ORF8 were the result of deletions rather than amplicon
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dropout. All 9998 samples sequenced by the University ofWashington
as of May 2021 were screened, and 120 were found to have sequences
with contiguous strings of Ns (>266 bp) fromORF7a throughORF8. Of
these 120, 89 were determined to have sufficient volume and sample
quality for PCR and Sanger Sequencing. Total nucleic acid extraction
was done on the MagNA Pure 96 instrument (Roche) with 200 µL
sample input and 50 µL elution volume. Amplification was performed
with SuperScript-III One-Step RT-PCR kit (Invitrogen, Waltham, MA,
USA) and primers designed flanking the deletion region, beginning in
ORF7a (forward: GGCACTGATAACACTCGCTAC) through the begin-
ning of the N-gene (reverse: GAGGGTCCACCAAACGTAATG). Ther-
mocycling conditionswere as follows: 55 °C for 30min, 94 °C for 2min,
and35 cycles of 94 °C for 30 s, 58 °C for 30 s, and68 °C for 1min. Afinal
extension step was included at 72 °C for 5min. Reactions were cleaned
with SPRI Ampure beads (Beckman Coulter, Brea, CA, USA) at a 0:0.65
volumetric ratio and eluted to 40 µL. Flash gel electrophoresis (Lonza,
Basel, Switzerland) was performed to confirm successful PCR and for
preliminary deletion calling. Samples were diluted and sent for Sanger
sequencing on ABI’s Prism 3730xl DNA analyzer (Genewiz, Seattle,WA,
USA) with the designed primers. Consensus sequences were aligned
against NC_045512.2 to confirm the presence of the deletions.

Phylogenetic reconstructions
To determine if potential gene knockouts might be part of the same
transmission cluster, we built a maximum likelihood phylogeny of
SARS-CoV-2 enriched for WA sequences. We used the Nextstrain
pipeline67 to align sequences to Wuhan-Hu-1/2019 (genbank accession
MN908947.3) using nextalign68, to reconstruct a maximum-likelihood
phylogeny using IQ-TREE69, to estimate molecular clock branch
lengths using TreeTime70, and to infer nucleotide and amino acid
substitutions across the phylogeny. For IQ-TREE, we specified a GTR
substitution model, 10 initial parsimony trees, and four unsuccessful
iterations to stop; for TreeTime, we used a substitution rate of 0.008
with a standard deviation of 0.004. The input to the pipeline was a
focal ~10,000 sequences collected in WA and an additional ~10,000
contextual sequences, 5000 sequences from the rest of the United
States and 5000 sequences from other countries. For each geographic
region, all sequences were sampled evenly across time from the
beginning of the SARS-CoV-2 pandemic through March 2023. WA
sequences were downloaded from GISAID (described above), and
contextual SARS-CoV-2 sequences sampled elsewhere in the United
States and around the globe prior toMarch 21, 2023 were downloaded
from GISAID on July 27, 2023. We used the default settings for the
Nextstrain SARS-CoV-2 pipeline (https://github.com/nextstrain/ncov/
tree/master) to filter this dataset, except we increased genome cov-
erage ≥95% to minimize large deletions that represent poor sequence
coverage. The pipeline additionally excludes samples with incomplete
dates, samples with >20 deviation from the molecular clock rate,
samples with >5 private reversions, and samples with more than 6
private mutations in a 100-nucleotide window. The final phylogeny
contained 16,268 sequences. This phylogeny is available to view at:
https://nextstrain.org/groups/blab/ncov-orf8ko/WA/20k.

Also using the Nextstrain pipeline, we built three additional
clade-specific phylogenies enriched for sequences with potential
large deletions in ORF8 sampled in WA. We built one for Alpha, one
for Delta, and one with all other, pre-Omicron SARS-CoV-2 lineages.
These numbers were chosen such that every sequence collected in
WA with a potential knockout of ORF8 was contained in a phylogeny.
The input to the pipeline was all potential ORF8 KO’s in that SARS-
CoV-2 clade, nomore than 5000 sequences. For context, we included
5000 additional WA sequences without ORF8 KO’s, 5000 sequences
from the rest of the United States, and 5000 sequences from around
the globe. Contextual samples were evenly temporally sampled from
each geographic region. The pipeline filtered samples as above, and
the final trees respectively included 18,350, 14,908, 12,050 sequences.

These phylogenies are available to view at: https://nextstrain.org/
groups/blab/ncov-orf8ko/WA/Alpha, https://nextstrain.org/groups/
blab/ncov-orf8ko/WA/Delta, and https://nextstrain.org/groups/blab/
ncov-orf8ko/WA/other.

Knockout clustering
Knockout clusters were called using clustering methods appropriate
for each knockout type. Large deleted segments canonly be recovered
via recombination, and for the purpose of this analysis we considered
this an unlikely event. Therefore, clusters of large deletions were
reconstructed using theCamin-Sokal parsimony algorithm71, which is a
unidirectional parsimony clustering algorithm. We considered
sequences to be part of the same deletion cluster if all their common
ancestor nodes and all descendant nodes shared a deleted region of at
least 30 nucleotides. Premature stop codons introduced by nonsense
or frameshift mutations can be removed by back mutation. Thus,
knockout clusters due to premature stops were called using the Fitch
parsimony algorithm, which allows for back mutation65,72. Samples
were considered as part of the same knockout cluster if all their
common ancestor nodes contained the same premature stop codon.

Intrahost analysis
We examined the rate and frequency of nonsense mutations in intra-
host singlenucleotide variants in 1300SARS-CoV-2 samples sequenced
by the University of Washington from August to September 2022 as
part of a genomic surveillance program. Sequencing of remnant clin-
ical specimens at UW Virology Lab was approved by the University of
Washington Institutional Review Board with a waiver of informed
consent (protocol STUDY00000408). Nasopharyngeal, nasal, or oro-
pharyngeal swabs with PCR cycle threshold <31 were randomly selec-
ted and sequenced as described previously73. Briefly, after RNA
extraction, library preparation was performed using the Illumina
COVIDseq protocol with ARTIC v4.1 primers (Integrated DNA Tech-
nologies). Prepared libraries were pooled and sequenced on an Illu-
minaNovaseq6000 instrument using a 2 × 150 read format targeting at
least 1 million reads per sample. Genome assembly was performed
using a custom pipeline (https://github.com/greninger-lab/covid_
swift_pipeline) which performs trimming to remove adapters and
low quality regions, primer clipping, variant calling, and consensus
genome generation. We excluded 55 samples due to inadequate cov-
erage (>10% N’s or <7419 reads, which was two standard deviations
under the mean coverage) or poor amplification (>25% of reads trim-
med). We excluded an additional 230 samples with a consensus-level
premature stop in any gene to avoid biasing rates of intrahost non-
sense mutations. In the remaining 1015 samples, we required all
intrahost nonsense variants to have ≥1% frequency with a variant
coverage of 10× and a total position coverage of 100×.

Calculating dN/dS
For selection analyses, to mitigate geographic bias, we downloaded
the publicly available, mutation-annotated, SARS-CoV-2 UShER tree50,51

on May 1, 2023 from: http://hgdownload.soe.ucsc.edu/goldenPath/
wuhCor1/UShER_SARS-CoV-2/2023/05/01/. For our analyses, we trim-
med this tree to remove sequenceswithout associated collection dates
using matUtils 0.6.2 (https://usher-wiki.readthedocs.io/en/latest/
matUtils.html#).

We calculated the expected number of synonymous, missense,
and nonsense sites for each gene by multiplying each base in the
coding sequence by the substitution rates for that base previously
inferred for SARS-CoV-2. We then summed together expected muta-
tions by mutation type for each gene. We considered two sources for
inferred substitution rates: (1) substitution rates calculated from the
4-fold degenerate sites within SARS-CoV-2 using the global UShER
phylogeny20, and (2) a maximum likelihood substitution matrix infer-
red early in the pandemic from 36 SARS-CoV-2 genomes74. In the main
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text, we present results from the first source (Fig. 3A), but include
results for all genes for both substitution matrices in the Supplement
(Supplementary Fig. S4).

We calculated the observed number of synonymous, missense
and nonsense mutations in the UShER phylogeny by classifying the
reconstructed mutations at each node by their gene and mutation
type. We generated the divergence for each mutation type for each
gene by dividing the number of observed mutations by the expected
number of sites. For missense and nonsense mutations, dN/dS were
calculated by dividing the divergence for those respective mutation
types by the synonymous divergence. While the signal strength
observedwith anUShER tree as opposed to a smaller global phylogeny
is weakened since the number of segregating polymorphisms in the
population is greatly increased52, our analysis focused on comparing
the relative differences in dN/dS by mutation type across genes rather
than the absolute magnitude of dN/dS values.

Identifying mutation clusters
To compare cluster size and circulation time by mutation type for
SARS-CoV-2 genes, we classified point mutations on each node in the
SARS-CoV-2 UShER tree as synonymous,missense, or nonsense. Nodes
containing multiple mutations in the same gene were excluded from
the analysis. Cluster size represented the total number of tips des-
cended from that node and days of circulationwas calculated from the
latest to the earliest date at which a descendant tip was sampled. By
this definition, clusters may contain nested clusters with mutations in
that gene that could contribute to their success. However, we chose
this definition as using non-nested clusters with a singlemutation type
per gene truncates signals of positive selection because cluster size is
maxed out as a function of the molecular clock rate and length of
the gene.

Modeling mutation cluster growth rate
Using negative binomial regression, we can model number of addi-
tional descendants, given we observed a mutation as:

cluster size∼NegBinomðμmutationtype,θÞ ð1Þ

Where μmutation type is the expected number of descendants of a given
mutation and θ is the over-dispersion relative to Poisson distribution.
Since each cluster can grow for a different period of time, we can
model number of additional descendants per unit time since the
mutation was first observed by:

log
μmutationtypejmutation

time sincemutation

� �
= β0

0 +β
0
1 ×mutation type ð2Þ

logðμmutationtypejmutationÞ=β0
0 + β

0
1 ×mutation type

+ logðtime sincemutÞ
ð3Þ

The estimated parameters β0
1 then correspond to the log fold

increase in the cluster size growth rate for a given mutation.
Likelihood ratio test for negative binomial regression compared

to Poisson regression indicated that the negative binomial model was
more likely due to overdispersion of cluster growth rate (p =0). The
negative binomial model was fit in R using the MASS package (https://
cran.r-project.org/web/packages/MASS/index.html), and the Poisson
model was fit in R using the GLM package (https://cran.r-project.org/
web/packages/glm2/glm2.pdf), specifying family = Poisson. We fit
negative binomial models separately for each gene with mutation
types split out by synonymous, missense, and nonsense. For spike,
ORF1a, and ORF8, we fit additional models with mutations split out by
type andfitness advantage previously inferredby a hierarchical logistic
regression model19.

Clade-level analysis
We labeled nodes in the UShER phylogeny with Nextstrain clades by
passing clade labels from tip to parent nodes using a backwards tra-
versal algorithm. If a nodehadmultiple potential clade labels, the clade
first identified was passed up to the parent node, i.e. 19 A preceded
19B. We calculated ORF8 dN/dS for each clade with more than
500 samples using the same method applied to the entire phylogeny,
except subsetting the tree to only nodes in that clade.

To test the growth advantage of nonsynonymous mutations over
synonymousmutations for individual clades, we calculated the ratio of
the geometric mean size of nonsynonymous clusters divided by the
geometric mean size of synonymous clusters. We calculated the ratio
split out bymissenseandnonsensemutations for eachcladewithmore
than 500 samples. Confidence intervals were generated by boot-
strapping 10,000 times across nodes. We chose this approach, rather
than modeling cluster growth rate, because it was more robust to
biases froma single cluster, given themuch smaller number of clusters
in eachclade relative to the entire tree. Since clades encompass smaller
time windows than the entire phylogeny, average cluster size is less
biased by different cluster starting times.

Clinical analysis
Under Washington State IRB Exempt Determination 2020-102, age,
sex, hospitalization, death, and vaccination history was provided by
the Washington Department of Health from the Washington Disease
Reporting System for individuals with linked sequenced SARS-CoV-2
samples from June 1, 2020 through July 31, 2022.We limited the clinical
analysis to pre-Omicron lineages since Omicron was associated with
reduced clinical severity and loss of vaccine efficacy.

We used a Fisher’s exact test to compare the number of indivi-
duals who were hospitalized or died due to SARS-CoV-2 infection by
presence of an ORF8 knockout in their sequenced sample.

To estimate the impact of ORF8 knockout on clinical outcomes of
hospitalization and death, we used a multivariate logistic regression:

logitðPiÞ= β0 + Σβjxi,j + ϵi ð4Þ

Where P is the probability of hospitalization or death, β is the coeffi-
cient of the predictor variable, x is the predictor variable, and ϵ is the
residual error. Predictor variables were: ORF8 knockout (binary vari-
able), sex assigned at birth (binary variable), age group (discrete vari-
able), vaccinated (binary variable, variant of concern (binary variable),
and week of collection (categorical variable). Only sex assigned at
birth:Male or Femalewere included in themodel as therewere too few
Other samples to estimate a coefficient. Age groups were 0–4yo,
5–17yo, 18–44yo, 45–65yo, 65–79yo, and 80+yo. Variants of concern
were Alpha, Beta, Delta, and Gamma lineages as designated by the
World Health Organization75. Individuals were considered to be vac-
cinated if two weeks passed since any COVID-19 vaccination. The
model was fit in R using the GLM package (https://cran.r-project.org/
web/packages/glm2/glm2.pdf).The package Glm was used to conduct
the logistic regression. To identify the power to determine a significant
effect of ORF8 knockout on death, we used the pwr package in R.
Specifically, we used the power test for the general linear model
“f2.test” to estimate our power to identify the effect estimated by the
general linear model. We calculated Cohen’s f2 for ORF8 knockout as
previously described76 by the below equation:

f 2 =
R2
AB � R2

A

1� R2
AB

ð5Þ

where R2
AB is the McFadden’s R-Squared value for the model with all

coefficients, including ORF8 knockout, and R2
A is the McFaden’s

R-Squared value for the model with all coefficients, except ORF8
knockout.
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Given the challenges of classifying ORF8 knockouts due to large
deletions, we explored robustness of our model fit and effect size by
the criteria required to classify an ORF8 knockout. We introduced the
additional criteria that an ORF8 knockout had to cluster with some
threshold number of other ORF8 knockout samples in order to be
considered a true knockout. We then computed Akaike Information
Criterion and the odds ratio of ORF8 knockout for outcomes of hos-
pitalization and death using thresholds from 0 to 50.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All GISAIDmetadata and sequences used to identify knockouts in ORF8
inWA and to buildWA focused phylogenies in analyses are available at:
gisaid.org/EPI_SET_230921by. Sequencing reads from the intrahost
analysis have been deposited on the SRA under bioproject number
PRJNA738869: https://ncbi.nlm.nih.gov/bioproject/PRJNA738869 and
PRJNA610428: https://ncbi.nlm.nih.gov/bioproject/PRJNA610428. The
list of samples whose intrahost variants were analyzed and the identi-
fied variants after quality control are available at: https://github.com/
blab/ncov-orf8/blob/main/intrahost/. The UShER phylogeny used in
selection analyses is available at: http://hgdownload.soe.ucsc.edu/
goldenPath/wuhCor1/UShER_SARS-CoV-2/2023/05/01/.

Clinical data was provided by the Washington Department of
Health. To protect patient privacy, the full dataset is not publicly
available per the termsof thedata use agreement. However, a subset of
the data variables (vaccination status, sex assigned at birth, ORF8
knockout, variant of concern, hospitalization, death) are available at:
https://github.com/blab/ncov-orf8/blob/main/data/clinical_subset.
tsv. The full data is available from the authors upon reasonable request
and permission of theWashington State Department of Health. Source
data for all figures are provided with this paper. Source data are pro-
vided with this paper.

Code availability
All code used in this analysis is publicly available at: https://github.
com/blab/ncov-orf877. Code was written in both Python 3.10.9 and
R 4.1.2.
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