
Simultaneously estimating evolutionary history and

repeated traits phylogenetic signal: applications to viral

and host phenotypic evolution

BramVrancken1, Philippe Lemey1, AndrewRambaut2, 3, Trevor Bedford4, Ben Longdon5,

Huldrych F. Günthard6 andMarc A. Suchard7, 8

1Department of Microbiology and Immunology, Rega Institute, KU Leuven – University of Leuven, Leuven, Belgium; 2Institute

of Evolutionary Biology, University of Edinburgh, Edinburgh, UK; 3Fogarty International Center, National Institutes of Health,

Bethesda,MD, USA; 4Vaccine and InfectiousDiseaseDivision, Fred HutchinsonCancer ResearchCenter, Seattle,WA, USA;
5Department of Genetics, University of Cambridge, Cambridge, UK; 6Division of Infectious Diseases andHospital

Epidemiology, University Hospital of Z€urich, University of Z€urich, Z€urich, Switzerland; 7Departments of Biomathematics and

HumanGenetics, DavidGeffen School of Medicine at UCLA, University of California, Los Angeles, CA 90095-1766, USA; and
8Department of Biostatistics, UCLAFielding School of Public Health, University of California, LosAngeles, CA 90095-1766, USA

Summary

1. Phylogenetic signal quantifies the degree to which resemblance in continuously valued traits reflects phyloge-

netic relatedness. Measures of phylogenetic signal are widely used in ecological and evolutionary research and

are recently gaining traction in viral evolutionary studies. Standard estimators of phylogenetic signal frequently

condition on data summary statistics of the repeated trait observations and fixed phylogenetics trees, resulting in

information loss and potential bias.

2. To incorporate the observation process and phylogenetic uncertainty in a model-based approach, we develop

a novel Bayesian inference method to simultaneously estimate the evolutionary history and phylogenetic signal

from molecular sequence data and repeated multivariate traits. Our approach builds upon a phylogenetic diffu-

sion framework that models continuous trait evolution as a Brownianmotion process and incorporates Pagel’s k
transformation parameter to estimate dependence among traits.We provide a computationally efficient inference

implementation in the BEAST software package.

3. We evaluate the synthetic performance of the Bayesian estimator of phylogenetic signal against standard esti-

mators and demonstrate the use of our coherent framework to address several virus-host evolutionary questions,

including virulence heritability for HIV, antigenic evolution in influenza and HIV, and Drosophila sensitivity to

sigma virus infection. Finally, we discuss model extensions that will make useful contributions to our flexible

framework for simultaneously studying sequence and trait evolution.
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Introduction

A central premise of comparative biology is that evolutionary

history shapes the distribution of phenotypic traits in extant

species. The field has long realized that shared ancestry induces

statistical dependence among observed trait values and that

this correlation structure needs to be taken into account in

comparative analyses (Felsenstein 1985; Harvey & Purvis

1991). Recent advances in comparative analyses of continu-

ously valued trait data focus on the tempo and mode of trait

evolution, for example testing for different evolutionary rates

(O’Meara et al. 2006), identifying rate shifts (Revell et al.

2012) and on correlations among traits (Revell & Collar 2009).

However, the question also frequently arises to what extent

shared ancestry needs to be controlled for (Freckleton, Harvey

& Pagel 2002). Different measures have been proposed to

quantify and test the tendency for related species to share simi-

lar traits, which is generally referred as ‘phylogenetic signal’.

This quantification is particularly relevant for traits that are

heavily impacted by ecological as well as evolutionary pro-

cesses (Losos 2008).

Measures of phylogenetic signal are often classified into

indices based on phylogenetic autocorrelation or on Brownian

diffusion models of trait evolution (M€unkem€uller et al. 2012).

Building on spatial autocorrelation functions, phylogenetic

autocorrelation quantifies the degree of correlation across

observations that the evolutionary history explains, but does

not provide a generative model for how the traits arise along

this history; popular examples include Moran’s I (Moran

1950) and Abouheif’s Cmean (Abouheif 1999). On the other

hand, Blomberg’s K (Blomberg, Garland & Ives 2003) and*Correspondence author. E-mail: bram.vrancken@rega.kuleuven.be
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Pagel’s k (Pagel 1999) are commonly used measures that

advance a Brownian diffusion process along the history as a

data generative model and serve to both quantify and test for

phylogenetic correlation. Under both measures, a value of 0

reflects independence across observations, whereas a value

of 1 suggests that traits arise according to the generative

process. Recent performance evaluations of different indices

based on simulations under Brownian diffusion indicate that

Pagel’s k and Abouheif’s Cmean perform well in testing pro-

cedures and that Pagel’s k provides the most reliable quanti-

fication of phylogenetic signal (M€unkem€uller et al. 2012;

Shirreff et al. 2013).

Phylogenetic comparative methods are permeating evolu-

tionary biology, but they have only sporadically been

adopted in virus evolutionary studies due to a strong geno-

typic focus and a comparatively lower availability of pheno-

typic trait data. There is however a growing interest in

studying a variety of viral phenotypic measurements ranging

from traits that remain close to the genotype, like antigenic

properties, to those that may be heavily impacted by the

host environment, such as virulence or infections traits

(Hartfield, Murall & Alizon 2014). Because of its importance

for vaccine selection, antigenic evolution has been exten-

sively studied in human influenza viruses. Although per-

forming assays to measure influenza antigenic properties

may be relatively straightforward, they produce challenging

data explaining perhaps why antigenic evolutionary studies

have largely been divorced from, or at best contrasted

against (Smith et al. 2004), sequence evolution (but see

Bedford et al. (2014) for recent efforts to integrate both).

The human immunodeficiency virus (HIV) also evades

humoral immune responses within a host, but this has far less

impact at the population or epidemiological scale as compared

to the continuous turnover characteristic for antigenic drift in

seasonal influenza. The question still remains to what extent

the virus may adapt to humoral immunity at the population

level. Current studies addressing this generally do not account

for phylogenetic dependence among the viruses for which anti-

genic neutralization is measured [e.g. Bunnik et al. (2010); Eul-

er et al. (2011)], and it is unclear how this affects the results.

The interest in HIV adaptation at the population level also

extends to cell-mediated immunity (Kawashima et al. 2009),

drug therapy (Little et al. 2002) and viral fitness, all of which

can impact virulence and disease severity. This leads to a more

general question as to what extent the HIV genotype can con-

trol for the rate of progression to AIDS. Disease progression

rates vary extensively among HIV patients, but they can be

predicted by the level of viraemia in early infection, referred to

as set point viral load (spVL) (Mellors et al. 1996). To assess

the heritability of spVL, many studies have focused on HIV

transmission pairs, which resulted in a broad range of herita-

bility estimates [e.g. Tang et al. (2004); Hollingsworth et al.

(2010); van der Kuyl et al. (2010)], although this may be

narrowed down by interpreting the results using a consistent

measure of heritability (Fraser et al. 2014). Phylogenetic signal

estimators have recently been proposed as an alternative

approach to study spVL heritability (Alizon et al. 2010;

Shirreff et al. 2013). This represents a rare application of the

comparative approach to continuously valued viral characters,

but one that in essence also attempts to disentangle the impact

of ecological – in this case the host environment – and evolu-

tionary processes.

Virulencemay therefore also be addressed from the host per-

spective, as closely related hosts may exhibit more similarity in

their susceptibility to viral infection. This has been elegantly

addressed for sigma viruses in fruit flies (Longdon et al. 2011).

By experimentally testing the susceptibility of 51 host species

to viral infection with three different host-specific viruses, this

study showed that the host species phylogeny is a strong deter-

minant of viral persistence and replication in novel Drosophila

hosts. Such investigations represent interesting applications

for phylogenetic signal estimators that can both test and quan-

tify the degree to which the host phylogeny controls pathogen

susceptibility.

The examples of viral phenotypic evolution discussed above

are all based on traits that can be subject to considerable quan-

tification error (inherent to the assays) or natural individual

variation. To characterize the measurement error, many stud-

ies produce repeatedmeasures, but then generally condition on

the trait means and variances for each strain or taxon in the

subsequent analysis. This is akin to how intraspecific variation

has been traditionally treated by maximum likelihood estima-

tion procedures in phylogenetic comparative approaches

across different species, which raises the problem of error prop-

agation [but see Lynch (1991) and Housworth, Martins &

Lynch (2004) for a notable exception]. To address this, Revell

&GrahamReynolds (2012) have proposed a Bayesianmethod

to accommodate intraspecific variation through simulta-

neously inferring species means and trait evolutionary model

parameters. While taking into account uncertainty, a joint

Bayesian inference also allows for cross talk between the differ-

ent model components (Revell & Graham Reynolds 2012).

Importantly however, the problem of error propagation

extends to all aspects of comparative phylogenetic estimation,

adding further to its imprecision. For example, there is gener-

ally considerable uncertainty in the reconstructed tree, includ-

ing both branch lengths and tree topology estimates, to which

trait evolutionary processes are typically fitted. Although

phylogenetic error can be empirically captured by considering

a (posterior) distribution of trees (Barker, Meade & Pagel

2007; Longdon et al. 2011; de Villemereuil et al. 2012), all

these separate efforts indicate that trait evolutionary analyses

would benefit from a general and coherent statistical frame-

work, one that solely conditions on the observed sequence and

trait data, rather than on data summary statistics such as trait

means and variances of repeated measures and collections of

independently inferred phylogenies. This has recently become

realistic by the development of an integrated Bayesian infer-

ence approach that connects sequence and trait evolutionary

processes in a phylogeographic context ( Lemey et al. 2009,

2010). Here, we build upon these Bayesian phylogenetic diffu-

sionmodels and extend them to simultaneously estimate evolu-

tionary history and trait phylogenetic signal. This framework

has several additional advantages, including the general

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 67–82

68 B. Vrancken et al.



applicability to traits of any dimension, the quantification of

correlations among them and the possibility for ancestral

state reconstructions. Furthermore, it allows incorporating

measurement uncertainty in a natural way by numerically inte-

grating the unobserved average tip trait values based on

repeated measures. We use simulations to compare estimator

performance of our Bayesian implementation of Pagel’s k (kB)
to standard phylogenetic signal estimators, and demonstrate

its use through several applications to viral traits. We revisit

heritability estimation for HIV virulence, contrast phyloge-

netic signal for antigenic evolution in influenza H3N2 and

HIV-1 subtype B, and finally return to virulence, but from the

perspective of Drosophila hosts challenged by host-specific

sigma virus infection. Taken together, we demonstrate how a

coherent framework can advance trait evolutionary studies

and discuss extensions that may further promote its role in

comparative analyses.

Methods

We begin with a brief description of Brownian diffusion along a phylo-

genetic tree and the construction of Pagel’s k as a measure of phyloge-

netic signal, parameterized within this diffusion process. Extensive

derivations find themselves in Felsenstein (1985) and Pagel (1999).

PHYLOGENETIC BROWNIAN PROCESS

Let Y = {yij} be the N 9 K matrix of K-dimensional trait values real-

ized at the tips of a tree T forN taxa. The diffusion process posits that

dataY arise from conditionally independent,multivariate normally dis-

tributed displacements along each branch in T . These displacements

are centred around the hypothesized trait value at the parent node of

the branch and have variance proportional to a K 9 K positive defi-

nite, symmetric matrix Σ, where the proportionality constant is the

branch length. The diagonal elements of Σ describe the (relative) rates

at which the different trait dimensions evolve over the tree and the off-

diagonal elements reflect the covariation in trait dimensions after con-

trolling for their shared history. Conditioning on the hypothesized

ancestral trait values a at the root of T , the joint distribution of vec [Y]

falls out as

pðvec½Y�jR;VT ; aÞ

¼
expf� 1

2 ðvec½Y� � XaÞtðR� VT Þ�1ðvec½Y� � XaÞg
ð2pÞKN=2jR� VT j1=2

;
eqn 1

where vec[�] is the vectorization operator that stacks the column vectors

of its argument below one another,⊗ is the Kronecker product and X

is a NK 9 K design matrix in which entries in column k contain 1 for

trait k or 0 otherwise, following Freckleton, Harvey & Pagel (2002).

More importantly, VT ¼ fvii0 g is an N9N variance matrix that is a

deterministic function of T ; we return to its definition shortly as this

relates to Pagel’s k. Equation ( 1) relates that vec[Y] is multivariate nor-

mally distributed with NK9NK variance matrix R� VT , fallaciously

suggesting computational order OðN3K3Þ to decompose the variance

matrix and evaluate the density. We prefer to work directly with the

joint density ofY,

pðYjR;VT ; aÞ ¼
expf� 1

2 tr R�1ðY� 1atÞtV�1
T ðY� 1atÞ

� �
g

ð2pÞNK=2jRjN=2jVT jK=2
; eqn 2

that is a matrix-normal probability density function (Dawid 1981),

where tr[�] is the trace operator and 1 is aN-dimensional column vector

of ones. Importantly, eqn ( 2) clarifies the smaller computational order

OðN3 þ K3Þ required to evaluate the density without specialized

knowledge of Kronecker product identities. Leading software to esti-

mate Pagel’s k for multivariate traits, such as the caper package (Orne

et al. 2013) in R, relies implicitly on this representation to afford com-

putational efficiency.

However, Pybus et al. (2012) show that it is possible to evaluate eqn

( 2) in computational orderOðNK2Þ by modelling explicitly in terms of

precision Σ�1 and, more importantly, exploiting an original dynamic

programming algorithm. We adopt this approach here since repeated

evaluation of eqn ( 2) is the rate-limiting step in both profiling the likeli-

hood function in a maximum likelihood framework and numerical

integration in a Bayesian framework. This critical insight enables us to

scale comparative methods to trees with hundreds or thousands of tips,

a situation regularly encountered in viral evolution.

In brief, the dynamic programming algorithm starts with the joint

density of Y and the hypothesized trait values at each of the internal

and root nodes in T . From this joint density, we recover the marginal-

ized density of Y by integrating out the internal and root node values.

We achieve this high-dimensional integration through a post-order tree

traversal over the OðNÞ internal and root nodes. Each nodal visit

entails a simple integration of the hypothesized value at the node to

arrive at the partial density of the tip trait values descendent to the node

given the unobserved value of the parent of the node or the prior distri-

bution assumed on the root trait value. This recursive task has an ana-

lytic solution involvingOðK2Þ computational operations.

To complete specification of the Brownian diffusion process along T
and introduce Pagel’s k, we return to our definition of VT ðkÞ that we
now explicitly parameterize in terms of k. Let dT ðu; vÞ equal the sum of

branch lengths along the shortest path between node u and node v in T .

Then, diagonal elements vii ¼ dT ðm2N�1; miÞ, the time distance between

the root node m2N�1 and tip node i. To interpret these elements, themar-

ginal distribution of Yi given a has variance proportional to the time

since the root. For ultrametric trees, these diagonal entries are all equal;

for rapidly evolving pathogens, non-contemporaneous sequences are

common, leading to different times. Further, the off-diagonal elements

vii0 ¼ k
dT ðm2N�1; miÞ þ dT ðm2N�1; mi0 Þ � dT ðmi; mi0 Þ

2

� �
; eqn 3

specifying the rescaled time distance between the root node and the

most recent common ancestor of tip nodes i and i
0
. Intuitively, the

covariance between two tip traits is a function of their shared evolution-

ary history, and the traits become conditionally independent at their

most recent common ancestor node in T . Scalar k exists on the contin-

uum between 0 and 1 (Pagel 1999), with k = 1 returning a variance

matrix VT that perfectly adheres to a Brownian process along T (Fel-

senstein 1985). On the other hand, k = 0 reflects the absence of any

phylogenetic correlation. Intermediate values of k indicate that the phy-
logeny exerts a weaker effect on the trait evolutionary process than

expected from aBrownianmotionmodel.

Althoughk operates directly onVT given the phylogeny T , it is often

convenient to view k as a transformation of the phylogeny to fit the

Brownian motion model to the trait data. Figure 1 shows these trans-

formations for three different values of k on an example phylogeny

relating six taxa as well as their correspondingVT . The transformation

involves rescaling the internal node heights, with all internal node

heights equal to the root node as the most extreme case (k = 0, starlike

tree in Fig. 1). Freckleton, Harvey & Pagel (2002) demonstrate how to

construct, in a maximum likelihood (ML) setting, an estimator kML of

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 67–82
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k for hypothesis testing about the strength of phylogenetic signal in

fully observedmultivariate traits conditional on a known phylogeny.

BAYESIAN ESTIMATOR OF REPEATED TRAITS

PHYLOGENETIC SIGNAL

We develop a coherent estimator kB set in a Bayesian framework for

simultaneously estimating the phylogeny and trait signal with poten-

tially missing or repeated measures. Assume that at each tip i in T , we

observe Ri trait realizations Xi = (Xi1, . . ., XiRi). To model these

repeated measures, we build upon Guo et al. (2007) by asserting that

tip traitsYi are unobserved and characterize a sampling distribution on

Xi. Specifically, we posit that each observed value Xir is multivariate

normally distributed aboutYiwith varianceΓi = (Ri�1) 9 Γ, whereΓ

is an estimableK 9 K variancematrix that quantifies themeasurement

error in the observation process across all taxa. Over all taxa and all

trait observationsX = (X1, . . .,XN), wewrite

pðXjY;CÞ ¼
YN
i¼ 1

YRi

r¼ 1

expf� 1
2 ðXir � YiÞtC�1

i ðXir � YiÞg
ð2pÞK=2jCij1=2

" #
: eqn 4

Conveniently, when no repeated measures exist for tip i, Ri = 1 and

the density function in eqn ( 4) enforces Xi = Yi, returning the original

model.

To simultaneously estimate the phylogeny T and account for its

uncertainty, we further consider aligned molecular sequences S from

theN taxa and model S using standard Bayesian phylogenetics models

parameterized in terms of other phylogenetic and demographic process

parameters /. Conditional on T , we assume independence between S

and X, enabling us to write down the joint density pðT ;/;SÞ and view

it, for the purposes of this paper, as a prior on T after integrating out

/. We refer interested readers to, for example, Suchard, Weiss & Sins-

heimer (2001) and Drummond et al. (2012) for detailed development

of pðT ;/;SÞ.
Combining the Brownian diffusion process, repeated measures and

phylogenetic uncertainty return the joint posterior distribution

pðk;R;C; T ;/jX;SÞ / pðXjk;R;C; T Þ pðkÞ pðRÞ pðCÞ

pðT ;/;SÞ ¼
Z

pðXjY;CÞ pðYjR;VT ðkÞ; aÞ pðaÞdYda
� �

� pðkÞpðRÞpðCÞpðT ;/;SÞ

;

eqn 5

where p(k), p(Σ), p(Γ) and p(a) are prior distributions, and the integra-

tion in the second line of eqn ( 5) reflects a data augmentation proce-

dure with the unobserved tip traits Y and root node trait a. Lemey

et al. (2010) and Pybus et al. (2012) develop priors p(Σ) and p(a) that

enable convenient analytic and numerical integration of the augmented
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Fig. 1. Phylogenies and corresponding variance–covariancematrices for three different k values. The tree on the left (k = 1, no transformation) pro-

vides an example of a phylogeny estimated or hypothesized for six taxa. The numbers above the branches represent the time elapsed on the branches.

The corresponding variance–covariance matrix is shown beneath the tree. Under a Brownian motion model of trait evolution, the expected covari-

ances (off diagonals) between each pair of taxa are proportional to shared ancestry for the taxa. The expected variances (diagonal elements) for the

tip traits are proportional to the summed branch lengths between the root and each tip.Wemultiply the off-diagonal elements by two different k val-
ues (k = 0�5 and 0, respectively) in thematrices to the right and show the corresponding tree transformation. The tree fork = 0 collapses into a star-

like tree and therefore represents phylogenetic independence.
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data, in the latter case via Markov chain Monte Carlo (MCMC). To

construct pΓ, we structure Γ�1 = diag(c1,. . .,cK) as a diagonal matrix,

where a priori we assume cj is gamma-distributed with expectation 1

and a large variance 1000 for j = 1,. . .,K. We explore several choices

for p(k) in the Results section; these involve the family of beta distribu-

tions that constrain 0 ≤ k ≤ 1 for consistency with Freckleton, Harvey

&Pagel (2002).

We define our Bayesian estimator kB as the marginal posterior mean

E kjX;Sð Þ and report uncertainty in this estimate via the 95% highest

posterior density (HPD) interval of p(k|X,S).We estimate these quanti-

ties by extendingMCMCmethods implemented in the Bayesian Evolu-

tionary Analysis by Sampling Trees (BEAST) software package.

Specifically, we use a random-scan Metropolis-with-Gibbs approach

that employs standard transition kernels to integrate over the parame-

ter spaces of T and /. To sample realizations ofΣ and Γ, we consider

Gibbs samplers, and we develop random-walk Metropolis–Hastings

transition kernels on k and missing entries in X; this latter procedure

assumes a missing completely at random structure (Heitjan & Basu

1996), such that the probability that any particular datum is missing is

independent of both the observed trait values and othermodel parame-

ters. Integrating out the missing entries enables us to continue to draw

inference in the presence of partially observed tip trait values, without

needing to trim out trait dimensions that are not completely observed

across all taxa or taxa that aremissing traits. Finally, to compare differ-

ent restrictedmodels, for example k = 0 (no phylogenetic signal) versus

k is random and estimates phylogenetic signal, we use Bayes factors

derived from stepping stone estimation of the marginal likelihood for

each competing model (Baele et al. 2012). We accompany our BEAST

implementation with graphical user interface support in BEAUti for

setting up phylogenetic signal analyses withmultivariate traits.

BENCHMARK

Weextend a previous simulation study that wasmodelled after the heri-

tability of set point viral load (spVL) in HIV infection history (Alizon

et al. 2010). Briefly, this procedure involves simulating a birth–death

infection process in which each branching event represents a new infec-

tion event. Starting from an initial value drawn from an empirical dis-

tribution of traits (spVL), traits diverge at transmission events. At each

branching event, one daughter branch inherits the trait on the parental

branch, yP, whereas the trait on the other daughter branch evolves into

yD, following

yD ¼ h2yP þMð1� h2Þ; eqn 6

where h2 represents the heritability of the trait andM is a random vari-

able drawn from an empirical log(spVL) trait distribution (taken from

one of data sets, we analyse in this study). Following the original proce-

dure (Alizon et al. 2010), this process is simulated over 13 generations

with a death probability of 1 out of 3 of the transmission probability;

each time, a subtree of 128 taxa with associated tip trait values is drawn

randomly from the process reflecting incomplete sampling. Whereas

the original simulation evolved 20 replicates for four different heritabil-

ity values (h2 = 0�3, 0�5, 0�7 & 0�9), we also include the same amount

of replicates for h2 = 0�1 to ensure symmetric simulation scenarios and

because existingmethods have difficulties detecting low degrees of heri-

tability (Shirreff et al. 2013).

We also perform simulations according to a more recent procedure

proposed by Shirreff et al. (2013). Here, traits are simulated along an

empirical phylogeny starting from the mean log(spVL) at the root.

Each node (and not just a single daughter branch) inherits a log(spVL)

according to the following process with stationary variance:

yD ¼ h2yP þM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðh2Þ2

q
; eqn 7

whereM is now drawn from a normal distribution with the mean and

variance of the population log(spVL).We iterate through awider range

of heritability values (from 0�05 to 0�95 with a step size 0�05) and simu-

late 100 replicates for each heritability level.We use both sets of simula-

tions to compare our Bayesian estimate of k to a maximum likelihood

estimate of lambda [kML, for which various implementations exist, for

example Revell (2012); Harmon et al. (2008); Orme et al. (2013); Para-

dis, Claude & Strimmer (2004); Lavin et al. (2008); Pinheiro et al.

(2013)] and Blomberg’s K, both obtained by the phytools R package

(Revell 2012). In order to estimate confidence intervals for kML, we

extend the phytools estimation procedure to obtain the k values for

1�92 log likelihood units on either side of the maximum likelihood esti-

mate and construct confidence intervals.

VIRAL EXAMPLES

We analyse four different data sets that examine the phenotypic evolu-

tion in infectious diseases; these phenotypic traits include both virus-

specific characteristics and host susceptibility to viral infection.We first

focus on the Swiss HIV Cohort Study (SHCS) data set (Swiss HIV

Cohort Study et al. 2010), previously used to investigate the heritability

of spVL (Alizon et al. 2010). This study selected HIV-1 subtype B-

infected participants who had a genotypic drug resistance test and at

least three HIV RNA measurements, but remained treatment-naive at

entry. In addition to spVL from cohort participants, the study also

measured the declining slope of CD4+ T-cell (dsCD4) counts; this

quantity also predicts virulence to some extent (Mellors et al. 2007). As

a ‘control trait’ in our analyses, we followed Alizon et al. (2010) and

considered the estimated probability that a treatment-naive virus is

resistant to zidovudine (prAZT) from the pol sequence using the geno2-

pheno system (Beerenwinkel et al. 2003). We examine spVL, dsCD4

and prAZTboth independently and jointly as amultivariate trait.

The sequence data for the SHCS consist of population sequences of

the HIV-1 polymerase (pol) gene for each patient, and we used align-

ments in which amino acid positions that are strongly associated with

antiretroviral drug resistance were removed. Having access to multiple

viral load measures per patient after acute infection, but prior to start

of antiretroviral therapy, the first CDC C event, or the time when the

CD4 count first drops below 200 cells, Alizon et al. (2010) considered

two different spVL criteria to distinguish different patients subsets. The

‘strict’ criterion only considers cases where all the viral load measure-

ments fluctuate within a 1-log band around the patient-specific mean,

whereas the ’liberal’ definition applies to all cases where at least three

consecutive viral loadsmeasurements are available that fluctuatewithin

a 1-log band of theirmean.We also followAlizon et al. (2010) in study-

ing the transmission group of men who have sex with men (MSM) sep-

arately from other transmission groups that are heterosexuals and

injection drug users. Because the densely sampledMSMsequences tend

to cluster in phylogenetic trees (Kouyos et al. 2010), it is suggested that

they may yield more accurate phylogenies. Furthermore, focusing on

the MSM transmission group may remove some confounding factors,

such as patient gender, transmission group or age, on infection trait val-

ues (Alizon et al. 2010). The distinction between a strict and liberal

spVL definition and between MSM and the general population results

in four data sets listed in Table 2. For the SHCS analysis, our full prob-

abilistic model included a general time-reversible substitution model

with discretized gamma-distributed rate variation among sites, an un-

correlated log-normal relaxed molecular clock model and a flexible

Gaussian Markov random field model of population size change
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through time as a tree prior (Minin, Bloomquist & Suchard 2008). For

the isolates with unknown sampling times, we integrate out their dates

by assuming a uniform prior distribution over a plausible time interval

(Shapiro et al. 2011). Because the SHCS provides a large number of

taxa (n = 661 for all risk groups and a liberal viral load criterion), we

perform the different trait analyses on the full data set using an empiri-

cal tree distribution inferred separately from the nucleotide data [cfr.

Lemey et al. (2014)]. Finally, we estimate marginal likelihoods on a

fixed tree topology for the different SHCS data sets because marginal

likelihood estimation, for example via stepping stone sampling,

requires a series of MCMC simulations for different power posteriors;

this is generally much more computationally demanding than a stan-

dardMCMCexploration of the posterior (Baele et al. 2012).

Our second data set explores antigenic evolution in human influenza

H3N2 and consists of 1441 hemagglutinin (HA) sequences with known

date of sampling and with associated antigenic measurements previ-

ously obtained by Russell et al. (2008). These sequences were sampled

globally from 2002 to 2007 and represent a subset of strains from a lar-

ger antigenic sampling (13 000 isolates) for which HA sequence was

available (Russell et al. 2008). Antigenicitywasmeasured using hemag-

glutination inhibition (HI) assays and mapped into a two-dimensional

space using multidimensional scaling (MDS) (Smith et al. 2004). Here,

we consider the first two principal antigenic coordinates resulting from

a previous MDS fit (Russell et al. 2008) as traits in our phylogenetic

diffusion model. Given the size of the data set, we approximate phylo-

genetic uncertainty by integrating over a set of trees previously recon-

structed as part of a phylogeographic study (Lemey et al. 2014).

For the third data set, we return to HIV and study antigenic evolu-

tion in the context of enhanced resistance to the broadly neutralizing

antibodies (nAb) PG9, PG16 and VRC01 over the course of the HIV-1

epidemic (Euler et al. 2011). The sequence data set encompasses clon-

ally sequenced viral variants from contemporary and historic serocon-

verters (seroconversion between 2003 and 2006 and between 1985 and

1989, respectively). To focus on the population-level evolution of neu-

tralization resistance and avoid the impact of within-host evolutionary

dynamics, we randomly choose one sequence per patient for our analy-

ses and examine the 50% inhibitory concentration (IC50) assay values

for the three different antibodies. This assay measures per cent neutral-

ization by determining the reduction in p24 production in the presence

of neutralizing agent compared to the levels of p24 in the cultures with

virus only; a detailed description can be found in Euler et al. (2011). To

constrain the trait values (concentrations) to be strictly positive values

under the diffusion process, wemodel the log-transform of the IC50 val-

ues observed at the tips of the tree. When the observed log IC50 value

falls outside the tested antibody concentration range, we integrate out

the concentration over a plausible IC50 interval. For those IC50s lower

than the lowest antibody concentration, we set up a uniformprior rang-

ing from the lowest tested ln(nAb) concentration to the 32x diluted low-

est tested concentration. The values at the opposite end of the

spectrum, where 50% neutralization is not reached at the highest nAb

concentration, are integrated out over an appropriately scaled expo-

nential distribution. Other evolutionary models and tree priors follow

the same specifications as for the SHCS analyses.

Finally, we return to infection traits and study the heritability of

host susceptibility to viral infection. To this purpose, we focus on

a data set that has been used to investigate the ability of three

host-specific Drosophila sigma viruses to persist and replicate in 51

different species of Drosophilidae (Longdon et al. 2011). In this

experimental study, fly species are injected with host-specific sigma

virus from D. affinis (DAffSV), D. melanogaster (DMelSV) and D.

obscura (DObsSV), and a change in viral titre is measured between

day 0 and day 15 post-infection using quantitative reverse-tran-

scription PCR. The copy number of viral genomic RNA is

expressed relative to the endogenous control housekeeping gene

RpL32 (Rp49) based on species-specific primers for this gene. The

authors aim at performing three replicate measures for each virus

per fly species (3 replicates each of the day 0 and day 15 treat-

ments). We incorporate these repeated measures in our analyses.

We refer to Longdon et al. (2011) for further details on the experi-

mental procedure. We use the sequence data for the COI, COII,

28S rDNA, Adh, SOD, Amyrel and RpL32 genes to jointly recon-

struct the Drosophila host phylogeny with the diffusion process

and follow the evolutionary model and analysis settings from

Longdon et al. (2011).

Results

PERFORMANCE

We conduct a simulation study to compare the relative perfor-

mance of the kB estimator to two standard indices of phyloge-

netic signal. We extend the simulation study by Alizon et al.

(2010) aimed at evaluating the performance of Blomberg’s K

(Blomberg, Garland & Ives 2003) and Pagel’s k (Pagel 1999) in

capturing the heritability of viral trait evolution. Briefly, the

original simulation procedure considers a birth–death infec-

tion process with incomplete sampling and evolves a trait along

the resulting transmission tree using different degrees of herita-

bility (0�3, 0�5, 0�7 and 0�9). Here, we extend the study to a heri-

tability value of 0�1 to explore a symmetric range of heritability

values around 0�5. A comparison of the phylogenetic signal

estimates for replicate data generated under different heritabil-

ity values (Fig. 2) suggests that kB captures the underlying heri-
tability with less bias and lower variance compared to

Blomberg’s K and kML. This is confirmed by the quantitative

bias and mean-squared error (MSE), which quantifies the

amount by which the estimator differs from the true value, esti-

mates as tabulated across all heritability scenarios (Table 1).

Because of the somewhat distinct behaviour for small and large

heritability values (Fig. 2), we also summarize the bias for

heritability values smaller and larger than 0�5 (Table 1). This
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Fig. 2. Estimator performance of Blomberg’s K, Pagel’s kML and kB
on simulated data. Twenty phylogenies are simulated tomodel the evo-

lution of an infection trait with known heritability (h2 = 0�1, 0�3, 0�5,
0�7 & 0�9). Phylogenetic signal is then estimated on each tree using only

128 leaves to account for incomplete sampling. The box plots show the

median values, the three quartiles and the outliers for Blomberg’s K

(blue), Pagel’s kB (red) and kB (grey).
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confirms the finding that existing methods have difficulties in

estimating relatively low heritability values [h2<0�4, Shirreff
et al. (2013)]; Blomberg’s K and kML result in over- and

underestimation, respectively (Table 5). kB follows the sigmoi-

dal pattern for kML to a lesser extent and is characterized by

smaller biases for both small and large heritability values.

We also report estimator coverage for kB and kML; coverage

reflects the probability that the true value from which the data

derive falls within the model estimated nominal confidence

interval. The uncertainty for the kB estimator is quantified by a

95% Bayesian high posterior density (HPD) interval, the size

of which - unlike a frequentist confidence interval - does not

necessarily have to correspond to the nominal coverage. To

obtain a 95% confidence interval (CI) for kML, we construct a

likelihood ratio test and find its points of rejection using a

numerical optimizer in R. The need to independently imple-

ment a confidence interval constructor reflects the fact that

kML is frequently reported as a point estimate without quanti-

fying its uncertainty. We note that Blomberg’s K phylogenetic

signal statistic is computed as a ratio of twoMSE ratios, com-

paring observed against expected ratios under Brownian

motion, and is therefore less amenable to constructing confi-

dence intervals (Blomberg, Garland& Ives 2003).

We continue to explore the effect of prior specification on kB
estimates and compare the b(1,1) prior to a U-shaped prior [b
(0�5,0�5)] and several bell-shaped priors. Figure 3 shows that

bias andMSE can be further minimized while raising coverage

close to nominal values for a b(2,2) prior. This prior may help

to linearize the general sigmoidal relationship between k and

the known heritability spectrum as well as reduce the generally

large variance of k estimates for intermediate heritability val-

ues. We therefore adhere to this prior specification in further

data analyses, but accompany the k estimates with a posterior

divergence measure to quantify the potential prior influence.

Specifically, we computed the Kullback–Leibler (KL) diver-

gence between the prior and posterior using the FNN package

in R (Boltz, Debreuve & Barlaud 2007; Beygelzimer et al.

2013).

We find largely similar performance differences among the

three estimators, and for the different beta priors on kB, in a

simulation analysis following a procedure similar to that of

Shirreff et al. (2013) (Supporting Information).

HIV-1 INFECTION TRAITS

We estimate phylogenetic signal for spVL and dsCD4, either

as separate traits or in combination as a bivariate trait, in the

different SHCS data sets and include prAZT as a control

(Table 2). Because the latter is measured directly from the

genotype, it is expected to be strongly heritable. We confirm

this by estimates of kB that are consistently close to maximum

phylogenetic signal for the different SHCS data sets (Table 2).

We also compare model fit of the standard diffusion model

with estimable kB to a model that represents no phylogenetic

Table 1. Comparison of bias, mean-squared error (MSE) and cover-

age for different phylogenetic signal estimators across a range of herita-

bility values

Estimator

Bias

MSE CoverageTotal h2<0�5 h2>0�5

Blomberg’sK 0�031 �0�101 0�120 0�048 NA

Pagel’s kML,MLE 0�073 0�130 �0�024 0�045 0�830
kB, b(1�0,1�0) 0�018 0�009 �0�004 0�020 0�820
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Fig. 3. Performance of the Bayesian phyloge-

netic signal estimation under various priors on

kB. Different b(a,b) priors are explored for

a = b. We plot bias (filled black circles) and

MSE (crosses) according to the primary axis

and coverage (open squares) according to the

secondary axis. The dotted horizontal line

represents zero bias andMSE.
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signal (kB = 0) and a model with perfect Brownian phyloge-

netic signal (kB = 1) using Bayes factors in Table 3. This dem-

onstrates that the support for a nonzero phylogenetic signal

for prAZT increases as the data set size increases while, in line

with the very high kB estimates for prAZT, the support for a

perfect Brownian phylogenetic signal increases. For all prAZT

kB estimates, there is also a relatively high KL divergence

between the prior and posterior distribution, suggesting

that the phylogenetic signal estimates are well informed by the

trait data.

In accordance with Alizon et al. (2010), we find a relatively

high phylogenetic signal for spVL (posterior mean = 0�501,
95% HPD [0�165–0�857]), but only in the MSM subset with

the strict spVL criterion (Table 2). In contrast to the prAZT,

the spVL phylogenetic signal decreases as the data set increases

in size and also the support for a nonzero signal is low, and

there is even support in favour of the absence of spVL phyloge-

netic signal in the MSM liberal data set. The KL divergence

indicates that the posterior divergence from the prior is limited,

implying that the data do not contribute strongly to the phylo-

genetic signal estimate in theMSM strict data set. The fact that

the posterior stays close to prior distribution for kB is also illus-
trated in Fig. S1 under both a b(2,2) and b(1,1) prior. Phyloge-
netic signal estimates for dsCD4 are generally lower, with a

similar decrease for larger data sets (and increase in KL), and

no data set supports a nonzero signal. The same is true for

spVL and dsCD4 as a bivariate trait; in this case, the two

dimensions show a negative correlation (correlation coefficient

posteriormean = �0�22, Table 2).
Phylogenetic signal in the MSM strict data set does not

find strong support using BFs or KL information gain.

This may be due to the typical starlike nature of HIV-1

subtype phylogenies that is very similar to the null model

for phylogenetic signal estimation. The kB estimate may

therefore be mostly informed by clusters of closely related

viruses from epidemiologically linked patients. The maxi-

mum clade credibility (MCC) tree with ancestral spVL trait

estimates for the MSM strict data set in Fig. 4 illustrates

this point. In the tree, we indicate a number of clusters

with closely related viruses and similar spVL values.

Because these clusters have relative recent MRCAs, consti-

tuting the density at small node heights in the bimodal

node height density plot (Fig. 4), they may offer the strong-

est resistance against transforming the phylogeny into a

fully starlike tree. In fact, it has been suggested that restrict-

ing the data set to MSM patients, which are more densely

sampled in the SHCS, yields more accurate phylogenies

because of better resolution of transmission chains between

patients and that this may explain a higher spVL heritabil-

ity in the MSM strict data set (Alizon et al. 2010). We

therefore examine whether a differential proportion of such

transmission clusters in the different SHCS data sets may

be responsible for the differences in kB estimates, by split-

ting up the data set into one that contains only taxa that

share relatively recent nodes with other taxa (< 15 years)

and one that exclusively has taxa related by deeper branch-

ing patterns (internal node > 15 years), and performing sep-

arate analyses on each.

Estimates for the prAZT control trait indicate that taxa

sharing more recent common ancestry are indeed most

informative about phylogenetic signal. Both the kB esti-

mates and the associated KL divergences are high for taxa

Table 2. Phylogenetic signal estimates for the SHCS data sets

Data set n

prAZT log(spVL) dsCD4 dsCD4,log(spVL)

kB KL kB KL kB KL kB KL r

MSMstrict 134 0�964
(0�911,0�999)

3�421 0.501

(0�165,0�857)
0�036 0�315

(0�024,0�628)
0�398 0�368

(0�056,0�727)
0�215 �0�195

(�0�377,�0�050)
all strict 230 0�986

(0�965,1�000)
3�725 0�303

(0�038,0�596)
0�599 0�303

(0�022,0�632)
0�513 0�206

(0�026,0�431)
1�380 �0�221

(�0�344,�0�097)
MSM liberal 404 0�997

(0�992,1�000)
3�858 0�228

(0�037,0�352)
1�397 0�181

(0�012,0�366)
1�631 0�113

(0�015,0�256)
2�398 �0�235

(�0�323,�0�144)
all liberal 661 0�992

(0�974,1�000)
3�758 0�158

(0�050,0�285)
2�328 0�093

(0�038,0�194)
2�747 0�119

(0�023,0�212)
2�665 �0�221

(�0�288,�0�148)

Table 3. Comparing different phylogenetic signal models for the SHCS data sets using Bayes factors. We report Bayes factors for comparing a

model in which parameter kB is estimated (or free) versus amodel in which it is fixed to 0 (no phylogenetic signal),BFf0, and or comparing amodel in

which the Pagel’s kB is estimated versus amodel in which it is fixed to 1 (phylogenetic signal expectation under Brownianmotion),BFf1

Data set

prAZT log(spVL) dsCD4 dsCD4& log(spVL)

BFf0 BFf1 BFf0 BFf1 BFf0 BFf1 BFf0 BFf1

MSM strict 1�637 1�998 1�363 4�536 �1�696 7�359 �0�870 10�249
All strict 14�068 �3�790 0�601 32�837 �1�452 8�037 �0�661 68�446
MSM liberal 53�682 �9�713 �0�921 77�527 �3�111 65�486 �2�931 130�696
All liberal 120�742 �10�861 0�234 168�002 �3�816 458�896 �0�702 404�368
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that descend from relatively recent nodes (< 15 years in

Table 4), whereas the kB estimates are much closer to their

prior expectation of 0�5 for the remaining taxa yielding con-

siderably lower KL divergences. For spVL, however, the

KL divergences remain low for the small data sets com-

posed of taxa descending from more recent nodes, and

focusing also on transmission clusters in the other data sets

does not lead to noticeably higher phylogenetic signal

estimates; this suggests that a higher phylogenetic accuracy

for transmission clusters does not explain the higher

phylogenetic signal.

HUMAN INFLUENZA H3N2 ANTIGENIC EVOLUTION

We study antigenic drift in human influenza H3N2 based on a

large sequence data set sampled between 2002 and 2007 with

matching HI assay data (Russell et al. 2008). HI assays mea-

sure the cross-reactivity of viruses against reference antisera

and the resulting table with measurements across a multitude

of viruses is frequently mapped in two-dimensional space

based on MDS approaches (Smith et al. 2004). Here, we treat

the two principal coordinates of a previous MDS analysis on

the HI data as traits evolving along the influenza genealogy

and estimate their phylogenetic signal (Table 5). We find rela-

tively high signal for the first coordinate, but approximately

half of that signal for the second coordinate. These differences

are also reflected in the reconstructed trait patterns along the

evolutionary history (Fig. 5). Despite the much lower phyloge-

netic signal for the second coordinate, it still receives support

for a nonzero estimate (Table 5). The large amount of influ-

enza data included in the analysis may contribute to the more

precise kB estimates compared to the smaller SHCS HIV data

sets, and probably to a large extent also to the different order

of magnitude in BF support. Both the magnitude of the phylo-

genetic signal for the two coordinates as a bivariate trait and its

support appear to be dominated by the signal for the first coor-

dinate. As expected from coordinates resulting from an MDS

analysis, we find also little correlation between them when

accounting for the ancestral history (r = �0�098
[�0�158,�0�051]).
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HIV-1 RESISTANCE TO BROADLY NEUTRALIZ ING

ANTIBODIES

By comparing viruses isolated from individuals who serocon-

verted in recent years to viruses from individuals who serocon-

verted early in the epidemic, Bunnik et al. (2010) showed a

decreased sensitivity of HIV-1 to polyclonal and monoclonal

antibodies. Euler et al. (2011) extend this by examining

whether the circulating HIV-1 population has also evolved

towards resistance against neutralizing activity of the recently

identified broadly neutralizing monoclonal antibodies (MAbs)

PG9, PG16 and VRC01 (Walker et al. 2009; Zhou et al.

2010). Here, we adopt a phylogenetic perspective on such

studies that traditionally ignore shared ancestry and ask

whether these viral evolutionary patterns translate into a

noticeable phylogenetic signal for resistance to neutraliza-

tion. Table 6 lists the kB estimates for the IC50 measure-

ments, both as univariate and combined multivariate traits.

The mean posterior phylogenetic signals suggest intermediate

heritability of resistance to neutralization for the three

MAbs, but the broad credible intervals and low KL diver-

gences indicate that these estimates are poorly informed by

the data. For the PG9 IC50 in particular, a nonzero estimate

cannot be supported. The lower mean trivariate trait signal

is accompanied by a somewhat higher KL and an even

stronger support against a nonzero estimate. As expected

from the fact that PG9 and PG16 both mainly bind to a

quaternary epitope on the second variable loop in the viral

envelope trimer (Walker et al. 2009), their log(IC50) values

are highly correlated (0�95 [0�831,0�963]). VRC01 on the

other hand is directed against the CD4-binding site (Zhou

et al. 2010), and its IC50 values are only moderately

correlated with those for PG9 (0�362 [0�015,0�649]) and

PG16 (0�462 [0�146,0�730]). We illustrate the evolutionary

pattern for resistance against PG16 and VRC01 in Fig. 6

and also summarize the mean log(IC50) across all lineages at

different points through time below the trees. The latter indi-

cates an overall rise in resistance through time, in particular

within the first 5 years since the early samples in the mid-

to-late 1980s. The early time points generally have lower

resistance, and although they may indeed have led to less

descendants, it is also cautious to bear in mind potential

sampling artefacts.

DROSOPHILA SUSCEPTIB IL ITY TO SIGMA VIRUS

INFECTION

In our final example, we investigate the ability of three

host-specific sigma viruses (family Rhabdoviridae) to persist

and replicate in different species of Drosophilidae. This has

been previously studied by infecting 51 Drosophila species

with three host-specific viruses and measuring virus titres at

fixed time points (Longdon et al. 2011). The authors use a

phylogenetic mixed model to demonstrate that host related-

ness strongly determines the viral persistence and replica-

tion in new hosts. Here we revisit this problem by diffusing

the virulence measure, log2 viral load [log2(VL)], over the

host phylogeny and measuring its phylogenetic signal while

accommodating the multiple measurements through numer-

ical integration of the unobserved average trait values at

the tips. Wing size (a proxy for body size) is included as a

control as it is expected to be a heritable trait for

Drosophila species.

Our analysis indicates that the capacity to infect and

replicate in different hosts for three different host-specific

sigma viruses (DAffSV, DMelSV and DObsSV) shows rela-

tively high phylogenetic signal, matching that of wing size in

the Drosophila species (Table 7). These estimates are

associated with relatively high KL divergences and strong sup-

port in favour of a nonzero estimate, but also strong support

against a perfect Brownian trait evolutionary process. When

combined into a trivariate trait, the virulence evolutionary

patterns showed similar, moderate-to-high positive correla-

tions (0�760 [0�545–0�936], 0�675[0�408,0�954] and 0�661
[0�436,0�856] between DAffSV andDMelSV, between DAffSV

and DObsSV, and between DMelSV and DObsSV, respec-

tively). In Fig. 7, we illustrate the trait evolutionary patterns

for susceptibility to infection with two viruses from relatively

closely related hosts.

Table 4. Phylogenetic signal estimates for the SHCS data sets

Data set

n

PrAZT log(spVL)

< 15 > 15

< 15 > 15 < 15 > 15

kB KL kB KL kB KL kB KL

MSM strict 39 95 0�926 (0�798,1�000) 2�604 0�553 (0�136,0�957) 0�031 0�537 (0�168,0�881) 0�049 0�569 (0�186,0�941) 0�058
All strict 99 131 0�996 (0�903,1�000) 3�351 0�631 (0�199,0�992) 0�185 0�37 (0�098,0�683) 0�330 0�509 (0�111,0�882) 0�011
MSM liberal 276 128 0�996 (0�989,1�000) 3�858 0�462 (0�071,0�856) 0�017 0�243 (0�065,0�421) 1�376 0�464 (0�102,0�841) 0�029
All liberal 396 265 0�997 (0�994,1�000) 3�856 0�363 (0�043,0�783) 0�193 0�184 (0�063,0�319) 2�036 0�341 (0�043,0�658) 0�338

Table 5. Phylogenetic signal estimates for human influenza H3N2

antigenic evolution

Trait kB KL BFf0 BFf1

PC 1 0�821 (0�761,0�879) 2�611 1327�565 290�183
PC 2 0�420 (0�258,0�563) 0�921 31�773 406�558
PC1,PC2 0�731 (0�668,0�787) 2�246 1350�579 675�260
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Discussion

We present a Bayesian implementation of Pagel’s k (kB) to
quantify phylogenetic signal of multivariate traits. The

estimator accommodates the different sources of uncertainty

associated with both the sequence and (repeated) trait

evolutionary processes and outperforms other estimators,

including its maximum likelihood equivalent kML, in terms of

accuracy and precision on simulation data under different

degrees of heritability. Further exploration of prior specifica-

tion on kB suggests that a bell-shaped prior [b(2,2)], preferring
intermediate phylogenetic signal a priori, further improves

estimator performance. This priormay help to linearize the sig-

moidal relationship between k and the known heritability spec-
trum as well as reduce the generally large variance of k
estimates for intermediate heritability values. These character-

istics are not specific to the relationship between simulated her-

itability and phylogenetic signal as they have been observed in

other simulation studies as well (M€unkem€uller et al. 2012).

Instead of prior specification, it may therefore be useful to

examine transformations like to logit function for this type of

phylogenetic signal estimators. We did not perform an exhaus-

tive evaluation of different phylogenetic simulators, but more

comprehensive simulation studies have shown that kML andA-

bouheif’s Cmean fulfilled most of the criteria for a good perfor-

mance (M€unkem€uller et al. 2012). This, and the fact that kML

was also the most robust and sensitive among different meth-

ods to estimate spVL heritability (Shirreff et al. 2013), reas-

sures that the kB estimator will generally performwell.

We here focus on different traits related to viral virulence,

infectivity and phenotypic evolution. Only recently, phyloge-

netic signal estimators have been proposed to examine the

heritability of viral traits throughout transmission history

2000
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Fig. 5. Influenza H3N2 antigenic evolution based on two MDS coordinates derived from HI assay data. Ancestral reconstructions for two MDS

coordinates (PC1 and PC2) are represented by a colour gradient on the samemaximum clade credibility (MCC) tree summary.

Table 6. Phylogenetic signal estimates for HIV evolution towards

resistance to antibodies

Trait kB KL BFf0 BFf1

IC50PG9 0�468 (0�079,0�841) 0�005 �0�459 5�207
IC50PG16 0�570 (0�175,0�958) 0�044 2�359 0�243
IC50VRC01 0�558 (0�184,0�870) 0�048 2�232 9�241
IC50PG9,PG16,VRC01 0�364 (0�075,0�677) 0�230 �5�052 15�743
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[e.g. Alizon et al. (2010)]. Although we can reproduce a herita-

bility of about 50% for HIV-1 spVL, a predictor of disease pro-

gression, in the MSM strict data set from Alizon et al. (2010),

we acknowledge that this estimate is not strongly informed by

the data. As for the example of HIV-1 resistance to antibody

neutralization, the fact that HIV trees represent exponentially

growing populations resulting in starlike tree topologies

(Lemey, Rambaut & Pybus 2006), may offer little opportunity

to quantify phylogenetic trait association with great precision.

However, when focusing on the subset of taxa in clusters with

relatively recent common ancestors, we retrieve similar, uncer-

tain estimates for spVL phylogenetic signal in the MSM strict

data set, but still lower signal in the other data sets. While in

general, phylogenetic signal estimates are likely to benefit from

higher phylogenetic accuracy, the potentially higher

phylogenetic accuracy gained by focusing on transmission clus-

ters in the SHCS does not appear to explain the higher spVL

phylogenetic signal for the MSM strict data set. Other data set-

specific characteristics may therefore be more important.

Adhering to a more strict definition for spVL may reduce mea-

surement error, and focusing on the MSM risk group may

remove the effect of patient sex and to a large extent also age as

confounding factors (Alizon et al. 2010). It is for example well

established that spVL is affected by patient sex, withmales tend-
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Fig. 6. HIV-1 sensitivity to the broadly neutralizing monoclonal antibodies. Log IC50 measurements for twoMAbs, PG16 and VRC01, are shown

at the tips of the same tree (left and right for PG16 andVRC01, respectively), with tip circles areas proportional to these values. Higher log IC50 val-
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Table 7. Sigma virus infectivity inDrosophila

Trait kB KL BFf0 BFf1

Wing size 0�790 (0�588,0�938) 1�307 34�951 24�264
DAffSV log2(VL) 0�770 (0�529,0�969) 0�971 37�811 45�629
DMelSV log2(VL) 0�786 (0�567,0�971) 1�152 24�523 7�654
DObsSV log2(VL) 0�711 (0�494,0�896) 0�842 29�608 21�715
DAffSV/DMelSV/

DObsSV log2(VL)

0�781 (0�616,0�921) 1�313 32�813 38�680
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ing to have a higher spVL (Alizon et al. 2010) [reviewed in

Langford, Ananworanich & Cooper (2007)]. Ignoring this

variability as well as spVL measurement error may of course

result in lower estimates of phylogenetic signal. In agreement

with the low phylogenetic signal for the larger data sets,

Hodcroft et al. (2014) recently found small but significant spVL

heritability in a large UK data set by making use of a

phylogenetic mixed modelling, which can also be extended to

accommodate intraspecific variation (Lynch 1991; Housworth,

Martins & Lynch 2004). The heritability of spVL therefore

requires further investigation, in particular because it has impor-

tant implications for understanding HIV dynamics (Hool,

Leventhal&Bonhoeffer 2013).

Despite the different assays involved, it is clear that the anti-

genic evolutionary patterns are associated with different phylo-

genetic signals in human influenza and HIV-1. Although also

governed by a limited number of genetic changes (Koel et al.

2013), escaping the antibody response has a strong effect on the

influenza population dynamics as reflected by the ladder-like

trees for sequences sampled throughout different epidemic sea-

sons. This pattern reflects a continual turnover and a relatively

low standing genetic variation at any point in time [akin to the

within-host HIV-1 phylodynamics, Lemey, Rambaut & Pybus

(2006)](Grenfell et al. 2004). It is therefore not surprising that

this tree structure translates into a strong phylogenetic signal

and that major MDS coordinate shows a clear drift pattern

across the tree (Fig. 5). On the other hand, the phylogenetic

structure of HIV at the population level, with multiple cocircu-

lating lineages within a particle subtype, does not reflect the

action of (humoral) immune selection (Grenfell et al. 2004). It

is therefore remarkable to find population evolution towards

increased resistance (Bunnik et al. 2010; Euler et al. 2011;

DAffSV log2VL
1·238

–6·370

0·00·010·020·03

Divergence (substitutions per site) Divergence (substitutions per site)
0·040·05

D.teisseri

D.flavomontana

S.lebanonensis

D.lini

D.hydei

D.littoralis

D.ananassae

D.pseudoobscura

D.bifasciata
D.guanche

H.duncani

D.simulans

D.obscura

D.melanogaster

D.ohnishii

D.tristis

Z.badyi

D.willistoni

D.paramelanica

D.mauritiana

S.pallida

D.persimilis

D.virilis

D.phalerata

D.erecta

D.takahashii

D.borealis

S.stonei

D.nebulosa

D.montana

D.santomea
D.yakuba

D.mojavensis

D.tenebrosa

D.americana

D.ambigua

D.nigromelanica
D.buzzatii

D.algonquin

D.buskii

D.novamexicana

D.affinis

D.saltans

D.sechellia

D.miranda

D.pseudotakahashii

D.lummei

D.lacicola

D.subobscura

D.orena

D.immigrans

DObsSV log2VL
5·914

–8·295

0·0 0·01 0·02 0·03 0·04 0·05

Fig. 7. Drosophila evolutionary history with reconstructed susceptibility to infection with different host-specific sigma viruses. The ancestral

reconstruction of log2(VL) measurements for two host-specific viruses (DAffSV in D. affinis, left; DObsSV in D. obscura, right) is shown using a

colour gradient along the branches of the same MCC tree. Higher log2(VL) values reflect higher levels of viral replication; circles are proportional

to these values.

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 67–82

Pagel’s lambda: a Bayesian approach 79



Bouvin-Pley et al. 2013). Despite the uncertain phylogenetic

signal estimates, the apparently non-random clustering of early

and late time point viruses in the example we examined hints at

the importance of using a phylogenetic approach to address

such questions and advocates for caution against potential

sampling artefacts.

According to the support against kB = 1 (Table 5), the influ-

enza antigenic evolutionary patterns do not adhere to a perfect

Brownian motion process. On the one hand, measurement

errormay be partly responsible for this because theMDS coor-

dinates are based on sparse HI tables with interval and trun-

cated measurements susceptible to experimental noise. On the

other hand, a Brownian trait evolutionary model is unlikely to

be appropriate for antigenic drift processes because it assumes

zero-mean displacement. Therefore, it would be useful to relax

this assumption and allow for an unknown estimable drift vec-

tor for the mean displacement in the multivariate diffusion

model. Such a model extension may also prove useful for the

example of HIV-1 resistance against neutralization if there

would indeed be a need to model a population evolution

process towards increased resistance.

To quantify phylogenetic signal in influenza antigenic

evolution, we here focus on the MDS coordinates that were

readily available for the data set under investigation (Russell

et al. 2008).We note however that the process ofmapping anti-

genic phenotypes, referred to as ‘antigenic cartography’ (Smith

et al. 2004), can be integrated with the genetic information by

modelling the diffusion of antigenic phenotype over a shared

virus phylogeny using the diffusion framework we also adopt

here (Bedford et al. 2014). It would therefore be straightfor-

ward to use the tree transformation approach, resulting in the

phylogenetic signal estimates, in this integrated genetic–anti-

genic framework. Perhaps the phylogenetic signal estimators

may assist in selecting the number of dimensions in the Bayes-

ian MDS approach. We have recently shown that a 2D model

yielded optimal predictive power for a different H3N2 data set

(Bedford et al. 2014), which seems to be in agreement with the

phylogenetic signal estimates we obtain here. The second

dimension still results in reasonable phylogenetic signal, but

with drastically reduced support compared to the first dimen-

sion. It is therefore questionable that a third dimension would

still be characterized by tree-based evolutionary patterns.

Our approach is not restricted to viral traits as shown by the

sigma virus virulence study, where we in fact measure phyloge-

netic signal for a host trait (host susceptibility to viral infection).

The phylogenetic signal estimates confirm that host phylogeny

explains most of the variation in sigma virus replication and

persistence in different Drosophila species, in a quantitatively

similar way as the host phylogeny controls for the variation in

wing sizes. Both measurement error and limitations to the

model may again be responsible for deviations from a pure

Brownian process, although we attempted to take into account

the former by integrating out a mean tip trait value based on

the repeated measurements. Longdon et al. (2011) showed that

in addition to a ‘phylogenetic effect’, which explains similar lev-

els of susceptibility for related species, there is also a ‘distance

effect’ ensuring that viral titre is higher in species that are more

closely related to the natural host. This systematic change in

viral titre as a function of the distance from the natural host

implies that drift, perhaps due to viral adaptation to its natural

host, can also play a role in this trait evolutionary history. The

correlation among the virulence patterns in the host phylogeny

for the three different sigma viruses suggests that, despite a rela-

tively high divergence, they may share similar modes of infec-

tion and replication in the same host tissues. As a consequence,

genetic changes in different host lineages that impact cellular or

immune components involved in replication and persistence

may impact susceptibility to the three different viruses.

The Bayesian phylogenetic signal estimator has a number of

advantages over other approaches.Whereasmany implementa-

tions of alternative estimators are restricted to single traits, our

extension of general-purpose phylogenetic diffusion models can

be used to determine the phylogenetic association of multivari-

ate traits of any dimension. As noted by Freckleton, Harvey &

Pagel (2002), simultaneously estimating the precision matrix

and k allows quantifying the correlation between pairs of traits

that is optimal under a common random effects Brownian pro-

cess. In addition, our framework is also equipped with ancestral

trait reconstruction, which is also naturally achieved under the

appropriate degree for statistical dependence. The phylogenetic

signal estimator can also be connected to model extensions that

relax the Brownian motion assumptions. We have previously

presented a relaxed random-walk model that accommodates

diffusion rate heterogeneity by rescaling the precision matrix in

a branch-specific manner (Lemey et al. 2010). Future studies

will therefore be able to examine how phylogenetic signal esti-

mates are affected by violations of the constant variance

assumption in Brownian processes. Most of the examples we

study also demonstrate that the there is a need to relax the zero-

mean displacement assumption and incorporate some degree of

drift. The Ornstein–Uhlenbeck (OU) process has been pro-

posed as a ‘mean reverting’ extension of Brownian motion

(Hansen 1997; Blomberg, Garland & Ives 2003; Butler & King

2004), but perhaps more natural generalizations may be devel-

oped through stochastic modelling in our Bayesian framework.

While it is important tomodel trait evolutionary processesmore

realistically, it may also be useful to accommodate heterogene-

ity in phylogenetic signal throughout evolutionary history

because different lineages in a phylogeny may exhibit different

degrees of phylogenetic signal (M€unkem€uller et al. 2012).

Bayesian inference is a natural framework to accommodate

different sources uncertainty. In addition to phylogenetic

error and uncertainty in the sequence and trait evolutionary

process, we also take into account measurement error for our

phylogenetic signal estimates when multiple measurements are

available for the tip traits. One drawback of adequately accom-

modating uncertainty through simultaneous estimation is the

computation time that may need to be invested, in particular

when attempting to average over all plausible evolutionary

histories. While we show here that this is still feasible for data

sets includingmore than 600 taxa, we abandoned random trees

when comparing model fit using marginal likelihood estima-

tion. We use a stepping stone sampling approach for marginal

likelihood estimation, which has proved to provide a relatively

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 67–82
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accurate measure of model fit, but at the price of considerable

computational burden (Baele et al. 2012). Therefore, future

studies may need to pursue more efficient testing procedures,

for example by allowing k to shrink to zero with some prior

probability in our inference and estimating Bayes factors

through comparison of prior and posterior odds [see, e.g., Su-

chard,Weiss& Sinsheimer (2005)].

In summary, many questions in evolutionary biology need

to be addressed using a comparative phylogenetic approach.

Although we have focused on phylogenetic signal in this study,

we hope to have demonstrated that Bayesian phylogenetic dif-

fusion models offer a flexible framework for evolutionary

hypothesis testing.We also hope that future advances will open

up more opportunities for unravelling trait evolutionary

processes and their underlying genetic determinants, for viral

pathogens as well as other organisms in general.
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