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Supplementary methods – Application to different epidemiological situations 
 
2013-2015 Middle East respiratory syndrome outbreak  
 
Between March 2012 and 31 December 2015, 1,646 cases were identified globally (49). We 
analyzed 174 aligned MERS-CoV sequence data sampled in humans between 2013 and 2016 
analyzed in Dudas et al (25) and made available at (50). This set of sequences thus corresponded 
to 10.6% of all detected cases. For the analysis, we explored scenarios where: 

(i) all infections were detected(corresponding to an infection sequencing ratio of 
10.6%) 

(ii) half of infections were detected (corresponding to an infection sequencing ratio of 
5.3%) 

 
For the MERS analysis, we used a threshold 𝑐!"# for the size of cluster of 10,000. Increasing this 
value to 50,000 did not impact our estimates. 
 
2017-2018 measles outbreak in the Veneto Region (Italy) 
 
We used data describing the 2017-2018 measles outbreak in the Veneto Region, located in the 
North-East of Italy (4). We used 30 sequences (out of 322 suspected cases) analyzed in Pacenti 
et al (4). Sequences were aligned using the Nextstrain measles workflow (5–7). This set of 
sequences thus corresponded to 9.3% of detected cases. For the analysis, we explored scenarios 
where: 

(i) all infections were detected (corresponding to an infection sequencing ratio of 
9.3%) 

(ii) half of infections were detected (corresponding to an infection sequencing ratio of 
4.7%) 

 
For the measles analysis, we used a threshold 𝑐!"# for the size of cluster of 10,000. Increasing 
this value to 50,000 did not impact our estimates. 
 
COVID-19 pandemic in New-Zealand 
 
We analyzed 27,565 SARS-CoV-2 sequences from New Zealand downloaded from the GISAID 
EpiCoV database on December 8th, 2022 (8, 9) and curated using the Nextstrain nCoV ingest 
pipeline (10). Clusters of identical sequences were generated using the approach detailed below 
and grouped by time period based on the collection date of the earliest sequence within the 
cluster. 
 
We estimated the offspring distribution of COVID-19 in New Zealand during the Zero COVID era 
(April 2020 – July 2021). We assumed that the dispersion parameter k remained constant 
throughout the period but allowed the reproduction number R to vary between time periods (April-
May 2020, June-December 2020, January-April 2021 and May-July 2021). As a baseline 
scenario, we considered that throughout this period, 80% of infections were detected. Since 
autochthonous transmission remained extremely limited during this period, it is indeed unlikely 
that a large fraction of infections was undetected by the surveillance system. As a sensitivity 
analysis, we also explored scenarios where 50% and 100% of infections were detected. For each 
time period, the fraction of cases sequenced was estimated as the ratio of the number of 
sequences collected and of the number of cases (11) reported during this time period.  
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For this analysis, we used a threshold 𝑐!"#.for the size of cluster of 10,000. Increasing this value 
to 50,000 did not impact our estimates.  
 
As k estimates might be difficult to interpret, we computed the expected proportion of individuals 
contributing to 80% of transmission events. This was done for maximum-likelihood estimates of 
the dispersion parameter and the reproduction numbers across the 4 periods (central estimates) 
and for the bounds of 95% likelihood profile confidence interval for k (while using maximum 
likelihood estimates for R).  
 
COVID-19 pandemic in Washington state 
 
We analyzed 140,790 SARS-CoV-2 sequences from Washington state (United States of America) 
downloaded from the GISAID EpiCoV database on December 8th, 2022 (8, 9) and curated using 
the Nextstrain nCoV ingest pipeline (10). As for the New-Zealand analysis, we allocated a date to 
each cluster of identical sequences based on the collection date of the earliest sequence within 
that cluster.  
 
We applied our transmission advantage framework to the following variants: D614G, Epsilon, 
Alpha, Delta, Omicron BA.1, Omicron BA.2 and Omicron BA.4/BA.5. We defined variant-specific 
study periods beginning on the day when at least 10 variant sequences have been collected 
(cumulative) and lasting between 1 and 60 days (Table S8). For the Omicron BA.1 analysis, we 
only considered time-windows of 50 days maximum, to restrict analyses before the spread of 
BA.2. For each window of analysis, we selected the clusters of identical SARS-CoV-2 sequences 
who started during this period. We generated the size distribution of clusters of identical 
sequences for both the variant and non-variant genetic sub-populations (Figure S12) and only 
considered clusters who were initiated during this time window. From this, we applied tour 
transmission advantage inference framework and computed a p-value associated with the 
statistical test defined by the following null hypothesis: 

 
H0: There is no difference in the reproduction number of the variant and non-variant. 

 
This was done by accounting for the fraction of cases sequenced in Washington state during 
these different time periods and exploring different assumptions regarding the fraction of 
infections detected. We also accounted for the shorter generation time associated with Omicron 
variants (12, 13), which translated on the probability that an infector and an infectee have the 
same consensus sequence (Table S2).  
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Supplementary methods – Estimating the probability that a transmission event occurs 
before a substitution event 
 
The generation time can often not be approximated using an exponential distribution (e.g. its 
variance is generally not equal to its mean). We relaxed this assumption and empirically derived 
the probability that a transmission event occurs before a substitution one using a simulation 
approach for the following pathogens: mumps virus, MERS-CoV, SARS-CoV, Ebola virus, mpox 
during the 2022-2023 outbreak, measles virus, RSV, Zika virus, influenza A (H1N1pdm and 
H3N2) and SARS-CoV-2. For SARS-CoV-2, we accounted for a reduction in the generation time 
for Omicron variant (49,50). For each pathogen, we identified relevant parameters describing the 
mean and the standard deviation of the generation time of these pathogens. The generation time 
describes the average duration between the infection time of an index case and the time at which 
this primary case infects a secondary case. We then drew nsim = 107 generation intervals from a 
Gamma distribution parametrized with the same mean and standard deviation. We also drew nsim 
= 107 delays until the occurrence of a first substitution for these different pathogens from an 
exponential distribution of rate the substitution rate obtained from the literature. We then 
computed the proportion of simulations for which the generation time was shorter than the delay 
until the occurrence of a first substitution to obtain an estimate of the probability that transmission 
occurs before substitution.  
 
We explored how uncertainty around the mean generation time and the pathogen’s substitution 
rate impacted estimates of p. Uncertainty in the substitution rate (respectively the mean 
generation time) was accounted for by fixing the mean generation time (respectively the 
substitution rate) to the central estimate and using the lower and upper bound for the substitution 
rate (respectively the generation time) reported in the different studies. From this, we obtained 4 
values for the probability that transmission occurs before substitution. We reported the lowest and 
the highest of these 4 estimates as our lower and upper bound estimates for p.  
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Table S1: Estimates of the probability that transmission occurs before subtitution for 
different pathogens along assumptions for the generation time distribution and the 
substitution rate used for the estimation. The numbers in parentheses correspond to 
uncertainty ranges.  
 

Pathogen 

Generation time 
in days Substitution rate in 

subs/site/ year 
(uncertainty range) 

Genome 
length 

Ref. for 
the 

generation 
time 

Ref. for the 
substitution 

rate 
Mean 

(uncertainty 
range)  

Standard 
deviation 

(days) 

MERS-CoV 6.8 
(6.0-7.8) 6.3 4.81·10-4 

(2.74·10-4-6.88·10-4) A 30130 (14) (15) 

Measles 
virus 

11.7 
(9.9-13.8) B  1.8 5.13·10-4  

(4.84·10-4-5.13·10-4) C 15894 (16) (17) 

Ebola virus 14.2 
(13.1-15.5) 7.1 9.82·10-4 

(9.01·10-4–10.6·10-4)  18958 (18) (19) 

Zika virus 20.0  
(15.6-25.6) 7.4 1.12·10-3 

(0.97·10-3-1.27·10-3) 10274 (20) (21) 

Mpox virus 
(2022-2023 
outbreak) 

12.5 
(7.5-17.3) 5.7 8.41·10-5  

(7.71·10-5 -9.10·10-5) 197209 (22) (23) 

Influenza A 
(H1N1) 

2.6 
(2.2-3.5) 1.3 3.41·10-3 

(3.15·10-3-3.67·10-3) 13154 (24) (25) 

Influenza A 
(H3N2) 

2.8 
(3.1-4.6) 2.0 1.43·10-3 

(1.41·10-3-1.44·10-3) 13486 (26) 

Obtained from the 
slope of a linear 

regression of 
number of mutations 
accumulated vs time 

Mumps 
virus 

18.0 
(17.4-18.6) 3.5 8.6·10-4 (5.06·10-4-

12.7·10-4) 15384 (16) (19) 

RSV-A 7.5 
(7.0-8.1) 2.1 6.47·10-4 (5.56·10-4 -

7.38·10-4) 15200 (16) (27) 

SARS-CoV 8.7 D 3.6 2.08·10-3  
(0.8·10-3-2.38·10-3) 29714 (28) (29) 

SARS-CoV-
2 (pre-

Omicron) 

5.9 
(5.2-7.0) 4.8 

1.10·10-3 

(7.03·10-4 -1.50·10-3) 29500 
(30) 

(31) 
SARS-CoV-
2 (Omicron) 

4.9 
(4.2-6.0)E 4.8 (12, 13) 

 
A The uncertainty range for the MERS-CoV substitution rate was obtained by subtracting and 
adding the standard deviation reported in (16) to the central estimate. 
B The uncertainty range for the measles generation time was obtained by considering the range 
of values reported for the mean measles generation time in (17). 
C The uncertainty range for the measles’ substitution rate was obtained by subtracting and adding 
the standard deviation obtained with the Nextstrain measles workflow (32).  
D We did not explore any uncertainty around the SARS mean generation time (no estimates 
found). 
E For Omicron, we assumed that the mean generation time was one day shorter than for pre-
Omicron variants (12, 13) and considered that it was characterized by the same standard 
deviation.  



 6 

Table S2: Estimates of the probability that transmission occurs before substitution for 
different pathogens. 
 

Pathogen 

Values used to inform the generation time / the substitution rate  Central 
estimate 

(uncertainty 
range) 

Central / 
Central 

Lower/ 
Central 

Upper / 
Central 

Central / 
Lower 

Central / 
Upper 

MERS-CoV 0.78 0.81 0.75 0.87 0.72 0.78 
(0.72-0.87) 

Measles virus 0.77 0.80 0.74 0.78 0.77 0.77 
(0.74-0.80) 

Ebola virus 0.51 0.54 0.48 0.54 0.49 0.51 
(0.48-0.54) 

Zika virus 0.55 0.63 0.46 0.59 0.51 0.55 
(0.46-0.63) 

Mpox virus 
(2022-2023 
outbreak) 

0.59 0.73 0.47 0.61 0.56 0.59 
(0.47-0.73) 

Influenza A 
(H1N1) 0.74 0.77 0.66 0.75 0.72 0.74 

(0.66-0.77) 
Influenza A 

(H3N2) 0.82 0.85 0.79 0.83 0.82 0.82 
(0.79-0.85) 

Mumps virus 0.53 0.54 0.51 0.68 0.39 0.53 
(0.39-0.68) 

RSV-A 0.82 0.83 0.81 0.84 0.80 0.82 
(0.80-0.84) 

SARS-CoV 0.27 - - 0.58 0.23 0.27 
(0.23-0.58) 

SARS-CoV-2 
(pre-Omicron) 0.64 0.68 0.58 0.74 0.56 0.64 

(0.56-0.74) 
SARS-CoV-2 

(Omicron) 0.69 0.74 0.63 0.78 0.63 0.69 
(0.63-0.78) 
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Table S3: Parameter estimates for MERS. Maximum likelihood estimates are reported along 
50% and 95% confidence intervals (CI). 
 

Estimate used for 
the probability that 

transmission 
occurs before 
substitution 

Proportion of 
infections detected as 

cases 

Reproduction number 
R estimate 

Dispersion parameter 
k estimate 

Central 1.0 0.57 
50%CI: (0.54-0.61)  
95%CI: (0.46-0.70) 

0.14 
50%CI: (0.09-0.20)  
95%CI: (0.04-0.46) 

0.5 0.65 
50%CI: (0.61-0.68)  
95%CI: (0.54-0.77) 

0.09 
50%CI: (0.07-0.13)  
95%CI: (0.03-0.26) 

Lower bound from 
uncertainty range 

1.0 0.63 
50%CI: (0.59-0.67)  
95%CI: (0.50-0.77) 

0.14 
50%CI: (0.09-0.20)  
95%CI: (0.04-0.46) 

0.5 0.71 
50%CI: (0.67-0.75)  
95%CI: (0.59-0.84) 

0.09 
50%CI: (0.07-0.13)  
95%CI: (0.03-0.26) 

Upper bound from 
uncertainty range 

1.0 0.52 
50%CI: (0.46-0.56)  
95%CI: (0.42-0.64) 

0.14 
50%CI: (0.09-0.20)  
95%CI: (0.04-0.46) 

0.5 0.59 
50%CI: (0.55-0.62)  
95%CI: (0.49-0.70) 

0.09 
50%CI: (0.07-0.13)  
95%CI: (0.03-0.26) 
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Table S4: Parameter estimates for measles. Maximum likelihood estimates are reported along 
50% and 95% confidence intervals (CI). 
 

Estimate used for 
the probability that 

transmission 
occurs before 
substitution 

Proportion of 
infections detected as 

cases 

Reproduction number 
R estimate 

Dispersion parameter 
k estimate 

Central 1.0 0.58 
50%CI: (0.47-0.73)  
95%CI: (0.29-1.18) 

0.04 
50%CI: (0.016-0.092)  
95%CI: (0.003-0.45) 

0.5 0.62 
50%CI: (0.50-0.76)  
95%CI: (0.32-1.17) 

0.02 
50%CI: (0.009-0.05)  
95%CI: (0.002-0.19) 

Lower bound from 
uncertainty range 

1.0 0.61 
50%CI: (0.49-0.77)  
95%CI: (0.31-1.23) 

0.04 
50%CI: (0.016-0.092)  
95%CI: (0.003-0.45) 

0.5 0.65 
50%CI: (0.52-0.80)  
95%CI: (0.34-1.23) 

0.02 
50%CI: (0.009-0.05)  
95%CI: (0.002-0.19) 

Upper bound from 
uncertainty range 

1.0 0.56 
50%CI: (0.45-0.71)  
95%CI: (0.28-1.13) 

0.04 
50%CI: (0.016-0.092)  
95%CI: (0.003-0.45) 

0.5 0.59 
50%CI: (0.31-1.13) 
95%CI: (0.48-0.73) 

0.02 
50%CI: (0.009-0.05)  
95%CI: (0.002-0.19) 
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Table S5: Parameter estimates for SARS-CoV-2 in New Zealand under our central estimate 
for the probability p that transmission occurs before substitution. Maximum likelihood 
estimates are reported along 50% and 95% confidence intervals (CI). 
  

Proportion of 
infections detected 

as cases 
Period Reproduction number 

R estimate 
Dispersion parameter 

k estimate 

1.0 

April – May 2020 
0.82 

95%CI: (0.65-1.01) 
50%CI: (0.76-0.88) 

0.63 
95%CI: (0.34-1.56) 
50%CI: (0.5-0.82) 

June – December 2020 
0.87 

95%CI: (0.75-1.01) 
50%CI: (0.83-0.91) 

January – April 2021 
0.74 

95%CI: (0.61-0.90) 
50%CI: (0.70-0.79) 

May – July 2021 
0.66 

95%CI: (0.48-0.87) 
50%CI: (0.60-0.72) 

0.8 

April – May 2020 
0.87 

95%CI: (0.70-1.06) 
50%CI: (0.82-0.93) 

0.62 
95%CI: (0.33-1.54) 
50%CI: (0.49-0.81) 

June – December 2020 
0.92 

95%CI: (0.80-1.05) 
50%CI: (0.88-0.96) 

January – April 2021 
0.80 

95%CI: (0.66-0.95) 
50%CI: (0.75-0.84) 

May – July 2021 
0.71 

95%CI: (0.54-0.92) 
50%CI: (0.65-0.78) 

0.5 

April – May 2020 
0.98 

95%CI: (0.82-1.14) 
50%CI: (0.92-1.03) 

0.59 
95%CI: (0.31-1.43) 
50%CI: (0.47-0.77) 

June – December 2020 
1.02 

95%CI: (0.91-1.13) 
50%CI: (0.98-1.05) 

January – April 2021 
0.90 

95%CI: (0.78-1.04) 
50%CI: (0.86-0.94) 

May – July 2021 
0.82 

95%CI: (0.65-1.02) 
50%CI: (0.77-0.88) 
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Table S6: Parameter estimates for SARS-CoV-2 in New Zealand under our lower bound 
estimate for the probability p that transmission occurs before substitution. Maximum 
likelihood estimates are reported along 50% and 95% confidence intervals (CI). 
  

Proportion of 
infections detected 

as cases 
Period Reproduction number 

R estimate 
Dispersion parameter 

k estimate 

1.0 

April – May 2020 
0.94 

95%CI: (0.74-1.16) 
50%CI: (0.87-1.01) 

0.63 
95%CI: (0.34-1.53) 
50%CI: (0.50-0.82) 

June – December 2020 
1.00 

95%CI: (0.86-1.15) 
50%CI: (0.95-1.05) 

January – April 2021 
0.85 

95%CI: (0.69-1.03) 
50%CI: (0.79-0.90) 

May – July 2021 
0.75 

95%CI: (0.55-1.00) 
50%CI: (0.68-0.83) 

0.8 

April – May 2020 
1.00 

95%CI: (0.80-1.21) 
50%CI: (0.93-1.07) 

0.62 
95%CI: (0.32-1.51) 
50%CI: (0.49-0.80) 

June – December 2020 
1.05 

95%CI: (0.92-1.20) 
50%CI: (1.01-1.10) 

January – April 2021 
0.91 

95%CI: (0.75-1.08) 
50%CI: (0.86-0.96) 

May – July 2021 
0.81 

95%CI: (0.61-1.05) 
50%CI: (0.74-0.89) 

0.5 

April – May 2020 
1.11 

95%CI: (0.93-1.30) 
50%CI: (1.06-1.18) 

0.58 
95%CI: (0.30-1.39) 
50%CI: (0.46-0.76) 

June – December 2020 
1.16 

95%CI: (1.04-1.30) 
50%CI: (1.12-1.21) 

January – April 2021 
1.03 

95%CI: (0.88-1.19) 
50%CI: (0.98-1.08) 

May – July 2021 
0.94 

95%CI: (0.74-1.16) 
50%CI: (0.87-1.01) 
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Table S7: Parameter estimates for SARS-CoV-2 in New Zealand under our upper bound 
estimate for the probability p that transmission occurs before substitution. Maximum 
likelihood estimates are reported along 50% and 95% confidence intervals (CI). 
  

Proportion of 
infections detected 

as cases 
Period Reproduction number 

R estimate 
Dispersion parameter 

k estimate 

1.0 

April – May 2020 
0.71 

95%CI: (0.56-0.87) 
50%CI: (0.66-0.76) 

0.64 
95%CI: (0.34-1.58) 
50%CI: (0.51-0.83) 

June – December 2020 
0.75 

95%CI: (0.65-0.87) 
50%CI: (0.72-0.79) 

January – April 2021 
0.64 

95%CI: (0.53-0.78) 
50%CI: (0.60-0.68) 

May – July 2021 
0.57 

95%CI: (0.42-0.75) 
50%CI: (0.52-0.62) 

0.8 

April – May 2020 
0.75 

95%CI: (0.61-0.91) 
50%CI: (0.71-0.80) 

0.63 
95%CI: (0.33-1.57) 
50%CI: (0.50-0.82) 

June – December 2020 
0.80 

95%CI: (0.70-0.91) 
50%CI: (0.76-0.83) 

January – April 2021 
0.69 

95%CI: (0.57-0.82) 
50%CI: (0.65-0.73) 

May – July 2021 
0.62 

95%CI: (0.46-0.80) 
50%CI: (0.56-0.67) 

0.5 

April – May 2020 
0.84 

95%CI: (0.71-0.98) 
50%CI: (0.80-0.89) 

0.60 
95%CI: (0.31-1.47) 
50%CI: (0.47-0.79) 

June – December 2020 
0.88 

95%CI: (0.79-0.98) 
50%CI: (0.85-0.91) 

January – April 2021 
0.78 

95%CI: (0.67-0.90) 
50%CI: (0.75-0.82) 

May – July 2021 
0.71 

95%CI: (0.56-0.88) 
50%CI: (0.66-0.76) 
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Table S8: Definitions of the study periods for the Washington state SARS-CoV-2 analysis. 
Dates are reported in a YYYY-MM-DD format. 
 

Variant under 
study 

Date of first 
collection of the 

variant 

Date from which at least 10 
variant sequences were 
collected (cumulative) 

Corresponding 
Nextstrain clades 

D614G 2020-02-22 2020-03-10 19A, 19B, 19C 
Epsilon 2020-11-17 2020-12-13 21C (Epsilon) 
Alpha 2020-11-23 2021-01-18 20I (Alpha, V1) 
Delta 2021-04-03 2021-04-12 21A (Delta), 21I 

(Delta), 21J (Delta) 
Omicron (BA.1) 2021-09-29 2021-12-01 21K (Omicron) 
Omicron (BA.2) 2022-01-03 2022-01-12 21L (Omicron) 
Omicron (BA.4, 
BA.5) 

2022-04-15 2022-05-08 22A (Omicron), 22B 
(Omicron) 
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Table S9: Genbank accession numbers for measles sequences used in the analysis. All 
sequences were obtained from Pacenti et al. using the Nextstrain measles workflow (4, 7).  
 

Strain name Accession 
number 

URL 

Padova.ITA/13.17/1/D8 MK513623 https://www.ncbi.nlm.nih.gov/nuccore/MK5136223 
Padova.ITA/14.17/3/D8 MK513625 https://www.ncbi.nlm.nih.gov/nuccore/MK513625 
Padova.ITA/16.17/4/B3 MK513613 https://www.ncbi.nlm.nih.gov/nuccore/MK513613 
Padova.ITA/14.17/7/B3 MK513607 https://www.ncbi.nlm.nih.gov/nuccore/MK513607 
Padova.ITA/16.17/2/B3 MK513611 https://www.ncbi.nlm.nih.gov/nuccore/MK513611 
Padova.ITA/16.17/3/B3 MK513612 https://www.ncbi.nlm.nih.gov/nuccore/MK513612 
Padova.ITA/14.17/2/D8 MK513624 https://www.ncbi.nlm.nih.gov/nuccore/MK513624 
Padova.ITA/16.17/6/B3 MK513615 https://www.ncbi.nlm.nih.gov/nuccore/MK513615 
Padova.ITA/20.17/1/B3 MK513619 https://www.ncbi.nlm.nih.gov/nuccore/MK513619 
Padova.ITA/14.17/4/B3 MK513605 https://www.ncbi.nlm.nih.gov/nuccore/MK513605 
Padova.ITA/13.17/1/B3 MK513600 https://www.ncbi.nlm.nih.gov/nuccore/MK513600 
Padova.ITA/21.17/1/B3 MK513620 https://www.ncbi.nlm.nih.gov/nuccore/MK513620 
Padova.ITA/19.17/1/B3 MK513617 https://www.ncbi.nlm.nih.gov/nuccore/MK513617 
Padova.ITA/14.17/2/B3 MK513603 https://www.ncbi.nlm.nih.gov/nuccore/MK513603 
Padova.ITA/14.17/5/B3 MK513606 https://www.ncbi.nlm.nih.gov/nuccore/MK513606 
Padova.ITA/16.17/1/B3 MK513610 https://www.ncbi.nlm.nih.gov/nuccore/MK513610 
Padova.ITA/13.17/2/B3 MK513601 https://www.ncbi.nlm.nih.gov/nuccore/MK513601 
Venezia.ITA/22.17/3/D8 MK513627 https://www.ncbi.nlm.nih.gov/nuccore/MK513627 
Padova.ITA/19.17/2/B3 MK513618 https://www.ncbi.nlm.nih.gov/nuccore/MK513618 
Padova.ITA/11.17/1/B3 MK513598 https://www.ncbi.nlm.nih.gov/nuccore/MK513598 
Padova.ITA/24.17/1/B3 MK513622 https://www.ncbi.nlm.nih.gov/nuccore/MK513622 
Padova.ITA/15.17/1/B3 MK513608 https://www.ncbi.nlm.nih.gov/nuccore/MK513608 
Padova.ITA/21.17/2/B3 MK513621 https://www.ncbi.nlm.nih.gov/nuccore/MK513621 
Padova.ITA/14.17/1/B3 MK513602 https://www.ncbi.nlm.nih.gov/nuccore/MK513602 
Padova.ITA/15.17/2/B3 MK513609 https://www.ncbi.nlm.nih.gov/nuccore/MK513609 
Padova.ITA/14.17/3/B3 MK513604 https://www.ncbi.nlm.nih.gov/nuccore/MK513604 
Padova.ITA/17.17/3/B3 MK513616 https://www.ncbi.nlm.nih.gov/nuccore/MK513616 
Verona.ITA/19.17/2/D8 MK513626 https://www.ncbi.nlm.nih.gov/nuccore/MK513626 
Padova.ITA/12.17/1/B3 MK513599 https://www.ncbi.nlm.nih.gov/nuccore/MK513599 
Padova.ITA/16.17/5/B3 MK513614 https://www.ncbi.nlm.nih.gov/nuccore/MK513614 

 
 
  

https://www.ncbi.nlm.nih.gov/nuccore/MK5136223
https://www.ncbi.nlm.nih.gov/nuccore/MK513625
https://www.ncbi.nlm.nih.gov/nuccore/MK513613
https://www.ncbi.nlm.nih.gov/nuccore/MK513607
https://www.ncbi.nlm.nih.gov/nuccore/MK513611
https://www.ncbi.nlm.nih.gov/nuccore/MK513612
https://www.ncbi.nlm.nih.gov/nuccore/MK513624
https://www.ncbi.nlm.nih.gov/nuccore/MK513615
https://www.ncbi.nlm.nih.gov/nuccore/MK513619
https://www.ncbi.nlm.nih.gov/nuccore/MK513605
https://www.ncbi.nlm.nih.gov/nuccore/MK513600
https://www.ncbi.nlm.nih.gov/nuccore/MK513620
https://www.ncbi.nlm.nih.gov/nuccore/MK513617
https://www.ncbi.nlm.nih.gov/nuccore/MK513603
https://www.ncbi.nlm.nih.gov/nuccore/MK513606
https://www.ncbi.nlm.nih.gov/nuccore/MK513610
https://www.ncbi.nlm.nih.gov/nuccore/MK513601
https://www.ncbi.nlm.nih.gov/nuccore/MK513627
https://www.ncbi.nlm.nih.gov/nuccore/MK513618
https://www.ncbi.nlm.nih.gov/nuccore/MK513598
https://www.ncbi.nlm.nih.gov/nuccore/MK513622
https://www.ncbi.nlm.nih.gov/nuccore/MK513608
https://www.ncbi.nlm.nih.gov/nuccore/MK513621
https://www.ncbi.nlm.nih.gov/nuccore/MK513602
https://www.ncbi.nlm.nih.gov/nuccore/MK513609
https://www.ncbi.nlm.nih.gov/nuccore/MK513604
https://www.ncbi.nlm.nih.gov/nuccore/MK513616
https://www.ncbi.nlm.nih.gov/nuccore/MK513626
https://www.ncbi.nlm.nih.gov/nuccore/MK513599
https://www.ncbi.nlm.nih.gov/nuccore/MK513614
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Figure S1: Dynamics of extinction for clusters of identical pathogen sequences. A. 
Proportion of clusters of identical sequences that go extinct as a function of the reproduction 
number R (x-axis) exploring different assumptions regarding the dispersion parameter k (colored 
lines) and the probability p that an infector and an infectee have the same consensus sequence. 
B. Mean number of generations until cluster extinction (among clusters that go extinct) extinct as 
a function of the reproduction number R (x-axis) exploring different assumptions regarding the 
dispersion parameter k (colored lines) and the probability p that an infector and an infectee have 
the same consensus sequence. The vertical red dashed lines correspond to the inverse of the 
probability p that that an infector and an infectee have the same consensus sequence.  
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Figure S2: Relative bias on the reproduction number R estimate when the reproduction 
number lies below the threshold of 1/p. For each true value of the reproduction number R (x-
axis) and value of the probability p that an infector and an infectee have the same consensus 
sequence, the boxplot depicts the distribution of the relative bias across 100 simulations for 
different dataset sizes (colours). The relative bias is defined as (𝑅$%& − 𝑅'()*)/𝑅'()* where 𝑅'()* 
is the true reproduction number used to generate synthetic cluster data and 𝑅$%& our maximum 
likelihood estimates. The simulations were run assuming that 50% of infections were sequenced. 
The boxplots represent the 2.5%, 25%, 50%, 75% and 97.5% percentiles. 
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Figure S3: Relative bias on the dispersion parameter k estimate when the reproduction 
number lies below the threshold of 1/p. For each true value of the dispersion parameter k (x-
axis) and value of the probability p that an infector and an infectee have the same consensus 
sequence, the boxplot depicts the distribution of the relative bias across 100 simulations for 
different dataset sizes (colours). The relative bias is defined as (𝑘$%& − 𝑘'()*)/𝑘'()* where 𝑘'()* 
is the true dispersion parameter used to generate synthetic cluster data and 𝑘$%& our maximum 
likelihood estimate. The simulations were run assuming that 50% of infections were sequenced 
and for a true reproduction number of 1.0. The y-axis was cropped at 2 to increase readability. 
The boxplots represent the 2.5%, 25%, 50%, 75% and 97.5% percentiles. 
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Figure S4: Relative bias on the dispersion parameter k estimate when the reproduction 
number lies above the threshold of 1/p. For each true value of the dispersion parameter k (x-
axis) and value of the probability p that an infector and an infectee have the same consensus 
sequence, the boxplot depicts the distribution of the relative bias across 100 simulations for 
different dataset sizes (colours). The relative bias is defined as (𝑘$%& − 𝑘'()*)/𝑘'()* where 𝑘'()* 
is the true dispersion parameter used to generate synthetic cluster data and 𝑘$%& our maximum 
likelihood estimate. The simulations were run assuming that 50% of infections were sequenced 
and for a true reproduction number of 3.0. The y-axis was cropped at 9 to increase readability. 
The boxplots represent the 2.5%, 25%, 50%, 75% and 97.5% percentiles.  
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Figure S5: Impact of reaching the reproduction number threshold on dispersion parameter 
estimates. The relative bias is defined as (𝑘$%& − 𝑘'()*)/𝑘'()* where 𝑘'()* is the true dispersion 
parameter used to generate synthetic cluster data and 𝑘$%& our maximum likelihood estimate. 
The boxplots depict the 2.5%, 25%, 50%, 75% and 97.5% percentiles of relative bias obtained 
across all the simulations we performed and that are detailed in the methods section.  
 
  



 19 

 
Figure S6: Impact of the proportion of infections sequenced on the relative bias on the 
reproduction number R estimate. Results are reported for a probability that an infector and an 
infectee have the same consensus sequence of 50% and a dispersion parameter value of 0.1. 
For each true value of the reproduction number R (x-axis) and different dataset sizes (different 
subplots), the boxplots depict the distribution of the relative bias across 100 simulations for 
different proportion of infections sequenced (colours). The relative bias is defined as (𝑅$%& −
𝑅'()*)/𝑅'()* where 𝑅'()* is the true reproduction number used to generate synthetic cluster data 
and 𝑅$%& our maximum likelihood estimates. The simulations were run assuming that 50% of 
infections were sequenced. The boxplots represent the 2.5%, 25%, 50%, 75% and 97.5% 
percentiles.  
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Figure S7: Relationship between the proportion of singletons among clusters analyzed 
and the relative bias on the reproduction number R estimate. Different assumptions regarding 
the proportion of infections sequenced (columns) and the size of the dataset on which the 
inference was run (rows) are explored. Points are coloured by true reproduction number value. 
Results are reported for a probability that an infector and an infectee have the same consensus 
sequence of 50% and a dispersion parameter value of 0.1. The relative bias is defined as (𝑅$%& −
𝑅'()*)/𝑅'()* where 𝑅'()* is the true reproduction number used to generate synthetic cluster data 
and 𝑅$%& our maximum likelihood estimates. 
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Figure S8: Sensitivity analysis exploring how R and k estimates for MERS and measles are 
impacted by assumptions regarding the probability p that an infector and an infectee have 
the same consensus sequence. Estimates of A. the reproduction number R and B. the 
dispersion parameter k for MERS. Estimates of C. the reproduction number R and D. the 
dispersion parameter k for measles during the 2017-2018 Italy outbreak. 
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Figure S9: Sensitivity analysis exploring how R and k estimates for SARS-CoV-2 in New 
Zealand are impacted by assumptions regarding the probability p that an infector and an 
infectee have the same consensus sequence. Estimates of A. the reproduction number R and 
B. the dispersion parameter k for SARS-CoV-2 in New Zealand. 
  



 23 

 

 
 
Figure S10: Transmission advantage bias as a function of the true transmission advantage 
and varying the probability that an infector and an infectee have the same consensus 
sequence (rows) and the reproduction number of the non-variant RNV (columns). Each 
subplot corresponds to a given assumption regarding the probability that an infector and an 
infectee have the same consensus sequence and the reproduction number of the non-variant. In 
each subplot, the vertical dashed line corresponds to the limit from which the reproduction number 
of the variant RV reaches the threshold of 1/p. Vertical dashed lines before the 10% x-axis tick 
correspond to situations where the reproduction number of the non-variant RNV is also above the 
threshold of 1/p. 
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Figure S11: Impact of accounting for different genetic subpopulations on estimates of the 
dispersion parameter for different assumptions regarding the true dispersion parameter 
(rows) and different dataset sizes (columns) In each subplot, the horizontal dashed grey line 
corresponds to the true dispersion parameter value used to generate synthetic clusters of identical 
sequences. The boxplots summarize the 2.5%, 25%, 50%, 75% and 97.5% percentile of 
maximum-likelihood estimates obtained across 100 simulated datasets. 
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Figure S12: Size distribution of clusters of identical SARS-CoV-2 sequences in Washington 
state split by variant of interest. For each variant that we studied, we displayed the distribution 
of cluster sizes for the variant and the non-variant considering different time window length (1 to 
5 weeks). The time windows begin when the cumulative number of collected in Washington state 
variant sequences reached 10 (See Table S8). We considered that clusters of identical 
sequences fell into the time-window if they were first detected during that time window.  



 26 

 
Figure S13: Sensitivity analysis varying our assumption regarding the fraction of infection 
detected as cases (different panels) on the p-values for variant transmission advantage in 
WA state.  P-values over time since collection of 10 variant sequences for different SARS-CoV-
2 variants during the COVID-19 pandemic in Washington state exploring different assumptions 
regarding the fraction of infections detected (columns). We considered maximum likelihood 
estimated (MLE) to be consistent with a variant transmission advantage if the estimated 
reproduction number of the variant was higher than that of the non-variant. 
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Figure S14: Comparison between estimates of p obtained from household transmission 
pair data and from assumptions regarding the evolutionary rate and the generation time. 
Vertical segments correspond to our uncertainty ranges around p estimates. Horizontal segments 
correspond to 95% binomial confidence intervals around the proportions obtained from 
transmission pair data.  
  



 28 

 
Figure S15: Comparison of the distribution of the time to occurrence of a first substitution 
and the time to transmission for different pathogens. For each pathogen, we additionally 
report the estimated probability p that transmission occurs before substitution. Here, we depict 
the simulations corresponding to the central estimate for the substitution rate and the generation 
time. 
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Figure S16: Difference between identical sequences obtained from the distance matrix and 
the reconstructed clusters of identical sequences for MERS-CoV sequences. Each vertex 
corresponds to a MERS-CoV sequence. Vertices are connected if their pairwise distance is equal 
to 0. Vertices have the same colour if they were allocated to the same cluster of identical 
sequences. The clusters for which there is a disagreement between the distance matrix and the 
cluster allocation (i.e. when some identical sequences are not in the same cluster) are circled. 
For clarity, we only displayed sequences with at least one other identical sequence in the pairwise 
distance matrix.  
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Supplementary text A – Impact of infectious duration and transmission bottleneck size on 
the proportion of transmission pairs with identical consensus sequences 
 
In this manuscript, we assumed that the proportion of infectees that have the same consensus 
sequence as their infector could be approximated by the probability that a transmission event 
occurs before a substitution event. In this section, we report a simulation exercise that was 
conducted to evaluate the relevance of this assumption. In our simulations, we explore different 
assumptions regarding the transmission bottleneck size and the duration of infectiousness. We 
do not account for within-host selection or selection at transmission. This assumption lies in line 
with studies showing that the within-host diversity of several RNA viruses causing acute infections 
(the class of pathogen for which we developed our novel methods) is mainly shaped by purifying 
selection and neutral evolution (32, 33). The simulations account for changes in population size 
over time by accounting for births and deaths and assuming that the pathogen population grows 
to an equilibrium within-host population size. However, we do not account for changes in 
population size that might arise from within-host selective processes. 
 
Description of the simulations 
 
We used the SEEDY R package developed by Worby and Read (34) to simulate deep-sequencing 
in transmission pairs under different assumptions regarding the transmission bottleneck size (1, 
2, and 10) and the generation time (6, 12, 100 or 200 days). We used these transmission pairs to 
compute the fraction of pairs that had the same consensus genome and compared this with the 
probability that a transmission event occurs before a substitution one. 
 
We considered the spread of a pathogen with a genome of length 10,000 kb. We assumed a 
pathogen equilibrium within-host population size of 1000 and that the pathogen would undergo 3 
generations per day. We assumed that substitutions occur on average every 12 days. We 
assumed that individuals were sequenced at a random time between when they were infected 
and when they infect the recipient. Recipients are sampled at random between when they are 
infected and the end of their infectious period. For each scenario, we generated 1200 
transmission pairs. 
 
Within-host population dynamics 
 
We used the simulation framework implemented in the SEEDY R package (34) to incorporate 
pathogen within-host population dynamics. Let Neq denote the within-host equilibrium population 
size and Nt denote the pathogen within-host population size at time t. The within-host population 
is seeded at NB (transmission bottleneck population size) and grows to a size Neq.  Per-generation 
deaths occur with a probability of Nt / (2Neq). Let Nt

g denote the within-host population size at time 
t of a genotype g. Nt+1

g is then drawn from a binomial distribution as follows: 
 

𝑁'+,
- 	~	𝐵(𝑁'

-, 𝑁'.,/𝑁*/) 
 
Relationship between frequency of a mutant in the donor (infector) and the recipient (infectee) 
 
Figure S17 depicts the relationship between the frequency of a mutant allele in the donor of a 
transmission pair and the recipient. As transmission bottleneck size increases, we observe more 
points inside the unity square (square between (0,0) (0,1) (1,1) and (1,0)). This is consistent with 
more intra-host variant being passed from the donor to the recipient.  
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Figure S17: Relationship between the frequency of a mutant in the donor (infector) and the 
recipient (infectee) of a transmission pair. Different assumptions regarding the transmission 
bottleneck size (different columns) and the generation time (in days – different rows) are explored. 
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Proportion of transmission pairs with identical consensus genomes from the simulations 
 
For each of these scenarios, we computed the fraction of transmission pairs with identical 
consensus sequences and compared this to the theoretical probability that a transmission event 
occurs before a substitution one (dashed horizontal lines in Figure S18). For narrow transmission 
bottlenecks of size 1, the theoretical probability value approximates well the proportion of pairs 
with identical consensus sequences. As transmission bottleneck size widens, this theoretical 
probability no longer approximates well the proportion of pairs with identical consensus 
sequences. When simulating the spread and evolution of a pathogen characterized by a longer 
generation time (200 days), we found that the proportion of transmission pairs with identical 
consensus genomes differed slightly from that expected from the theoretical probability that a 
transmission event occurs before a substitution event. 
 
To conclude, this simulation study shows that the probability that transmission occurs before 
substitution is a good proxy for the proportion of pairs with identical consensus genomes for 
pathogens characterized by narrow transmission bottlenecks, relatively short infectious durations 
and limited within host-diversity. 

 
Figure S18: Proportion of transmission pairs with identical consensus sequences exploring 
different assumptions regarding the transmission bottleneck size and the disease generation time 
(“inf. duration” in days). Vertical segments correspond to 95% confidence intervals. Each point 
was obtained by generating 1,200 transmission pairs. The horizontal dotted lines correspond to 
the probability that a transmission event occurs before a substituion event.  
 
 
Within-host diversity 
 
Our simulation framework makes a number of simplifying assumptions regarding the within-host 
mutation process and the pathogen’s population dynamics. We checked whether our simulations 
were associated with reasonable outputs in terms of within-host diversity. We computed the 
nucleotide diversity as the mean number of single nucleotide polymorphism (SNP) differences 
per site across scenarios (Figure S19).  
 
As expected, we found that within-host pairwise nucleotide diversity increases with both the 
duration of infectiousness and the size of the transmission bottleneck. For pathogens 
characterized by narrow transmission bottleneck (1 to 2) and short generation times, we obtained 
nucleotide diversity at the genome level of the order of 10-5 to 10-4 SNPs per site. This fits within 
the range of estimates obtained across RNA viruses causing acute infections (10-6 to 10-4 for 
SARS-CoV-2 (33, 35), 10-5 for RSV (36, 37), 10-4 for DENV-1 (38), 10-5 for influenza A viruses 
(39)). 
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Figure S19: Nucleotide diversity for different infectious durations and transmission 
bottleneck size. Nucleotide diversity was computed as the mean within-host SNP difference per 
site. Boxplots indicate the 2.5%, 25%, 50%, 75% and 97.5% quantiles. Vertical whiskers going to 
the bottom of the plot correspond to 0 values.  
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Supplementary text B - Inference of transmission parameters conditional on cluster 
extinction 
 
In the main text, we showed that our inference framework provides unbiased estimates of both R 
and k when the mean number of offspring with identical sequences is lower than 1 (𝑅 ⋅ 𝑝 < 1), 
corresponding to situations where cluster extinction is almost certain. Our method however 
becomes unreliable when the probability of cluster extinction is strictly lower than 1. This was 
done relying on the full distribution of clusters of identical sequences, including those that did not 
go extinct (which were then set to an arbitrary high threshold value). An alternative approach 
would consist in looking at cluster sizes conditional on extinction (40, 41). Previous theoretical 
work has indeed shown that a supercritical epidemic process where extinction is uncertain 
(characterized by R > 1) can be mapped to a subcritical counterpart characterized by a mean 
number of offspring lower than 1 (R < 1) and the same dispersion parameter (40).  
 
In the following paragraphs, we show how our inference framework could be adapted to look at 
the size of clusters of identical sequences conditional on them having gone extinct. We then 
evaluate the performance of this adapted statistical framework and highlight some remaining 
challenges for real-world applications. 
 
Distribution of the size of clusters of identical sequences conditional on extinction 
 
We used the formalism introduced by Waxman and Nouvellet (40) to describe the size distribution 
of clusters of identical pathogen sequences conditional on extinction. They showed that, 
conditional on extinction, supercritical and subcritical dynamics (respectively characterized by a 
reproduction number below and above 1) cannot be distinguished. Waxman and Nouvellet had 
characterized the size of finite disease outbreaks. Here, we instead consider finite mutation-less 
outbreaks, i.e. clusters of infected individuals characterized by the same pathogen sequence.  
 
Let 𝜖 denote the probability of extinction for a cluster of identical pathogen sequences. If the mean 
number of offspring with identical sequences is lower than 1, 𝜖 is equal to 1. Otherwise, 𝜖 is lower 
than 1. Following Waxman and Nouvellet, we introduce 𝑅0, as the reproduction number 
associated with clusters of identical sequences that got extinct. In the following, we refer to 𝑅0 as 
the subcritical reproduction number. We have the following relationship between the reproduction 
number 𝑅 and 𝑅0: 

𝑅0 = 	𝑅 ⋅ 𝜖,+
,
1 									(∗) 

 
where 𝑘 is the dispersion parameter of the offspring distribution. Figure S20 depicts how the 
subcritical reproduction number 𝑅0 is impacted by the reproduction number 𝑅, the dispersion 
parameter 𝑘 and the probability that an infector and an infectee have the same consensus 
sequence. As Waxman and Nouvellet note, the subcritical reproduction number 𝑅0 mirrors the 
supercritical one 𝑅. This means that inferring the subcritical reproduction number 𝑅0 enables to 
infer the reproduction number 𝑅 as there is a direct relationship between the two (Figure S20).  
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Figure S20: Relationship between the reproduction number R and the subcritical 
reproduction number Rs for different probabilities p that an infector and an infectee have the 
same consensus sequence and different values of the dispersion parameter k. Colored lines 
correspond to reproduction numbers lying above the threshold of 1/p. The dashed grey lines 
correspond to reproduction numbers lying below the reproduction number threshold (for which 
the reproduction number is equal to the subcritical reproduction number). 
 
 
The probability 𝑟2*#'345' for a cluster of identical sequences to be of size 𝑗 conditional on extinction 
is equal to (40, 41):  

𝑟2*#'345' =
Γ(𝑘𝑗 + 𝑗 − 1)
Γ(𝑘𝑗) ⋅ Γ(𝑗 + 1)	

⋅
8𝑝𝑅0𝑘 9

2.,

81 + 𝑝𝑅0𝑘 9
12+2., 

and the probability 𝑟2 for a cluster of identical sequences of being of size 𝑗 is thus equal to: 
 

𝑟2 = 𝑟2*#'345' ⋅ 𝜖														(∗∗) 
 
More specifically, we note that 𝑅0 < 1/𝑝. In the specific situation where 𝑅 < 1/𝑝, we have 𝑅 = 𝑅0 
and 𝑟2*#'345' = 𝑟2. 
 
Inference from the size of clusters of identical sequences conditional on extinction 
 
Assuming we have a dataset comprised of the size of clusters of identical sequences that got 
extinct, we can hence infer the value of the subcritical reproduction number 𝑅0 and the dispersion 
parameter by using the updated formula (∗∗) for the probability of cluster of identical sequences 
of being of size 𝑗 in the derivation of the likelihood. Implementing this updated framework, we then 
obtained maximum likelihood estimates of 𝑅0 and 𝑘 by imposing values of the reproduction 
number ranging between 0.01 and 1/𝑝 and values of the dispersion parameter ranging between 
0.001 and 10.0. 
 
We evaluated our inference framework on synthetic cluster data generated using a branching 
process with substitution (see main text). Clusters were simulated until reaching a maximum size 
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of 10,000. We then considered that clusters who reached 10,000 had not gone extinct and applied 
our inference framework to the subset that got extinct (size < 10,000). Figure S21-S23 shows that 
we were able to recover the expected value of the dispersion parameter and the subcritical 
reproduction number 𝑅0.  
 
Assuming prior knowledge on whether the reproduction number lies above or below the threshold 
of 1/𝑝, the estimated subcritical reproduction number can either directly be interpreted as the 
reproduction number of the outbreak (below the threshold) or mapped to a corresponding 
reproduction number higher than 1/𝑝 (using equation (∗), Figure S20) 
 
Challenges for the application to real-world data 
 
In the previous paragraphs, we introduced an alternative approach to characterize the disease 
offspring distribution when the mean number of offspring with identical genomes is higher than 1. 
By restricting the analysis to clusters of identical sequences that got extinct, we showed that we 
could accurately infer the reproduction number and the dispersion parameter. 
 
However, we acknowledge that determining in practice whether a cluster of identical sequences 
has become extinct may be challenging. Furthermore, we assumed here that the epidemiological 
process under study was stationary (i.e. that the reproduction number and the dispersion 
parameter are constant throughout the study period). In practice, behaviour changes, the 
implementation of interventions or the depletion of the susceptible population as the epidemic 
progresses can modify the effective reproduction number. This is likely especially problematic for 
reproduction numbers greater than 1 (and by extension above the threshold of 1/𝑝). Overall, 
further work is warranted to estimate the offspring distribution’s parameters above the threshold 
of 1/𝑝 from real-world data describing the size of clusters of identical sequences.  
 

 
Figure S21: Estimates of the dispersion parameter k using the size of clusters that got 
extinct. Estimates are reported as a function of the true reproduction number R used to generate 
synthetic clusters. Point estimates correspond to maximum-likelihood estimates and vertical 
segments to 95% likelihood profile confidence intervals obtained from analyzing 1000 synthetic 
clusters of identical sequences.  
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Figure S22: Dispersion parameter estimates as a function of the true reproduction number 
when using the inference framework relying on cluster size distribution conditional on 
cluster extinction. A. Using a dataset comprised of 1,000 clusters of identical sequences. B. 
Using a dataset comprised of 5,000 clusters of identical sequences. Each boxplot represents the 
distribution of k maximum likelihood estimates across 100 simulations (2.5%, 25%, 50%, 75% 
and 97.5% percentiles). We explored different values of the true dispersion parameter k (boxplot 
contour colours) and different values for the probability p that an infector and an infectee have the 
same consensus sequence (boxplot filling).  
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Figure S23: Subcritical reproduction number Rs estimates as a function of the true 
reproduction number when using the inference framework relying on cluster size 
distribution conditional on cluster extinction. Each boxplot represents the distribution of Rs 
maximum likelihood estimates across 100 simulations (2.5%, 25%, 50%, 75% and 97.5% 
percentiles). Results are displayed for a true dispersion parameter of 0.1 and running the 
inference on 1,000 clusters of identical sequences. Each panel corresponds to a different 
assumption regarding the probability p that an infector and an infectee have the same consensus 
sequence. The horizontal dashed segments correspond to the true value of Rs (associated with 
the true reproduction number and the true dispersion parameter).  
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