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Pathogen genomics can provide insights into underlying infectious disease

transmission patterns?, but new methods are needed to handle modern large-scale
pathogen genome datasets and realize this full potential®=. In particular, genetically
proximal viruses should be highly informative about transmission events as genetic
proximity indicates epidemiological linkage. Here we use pairs of identical sequences
to characterize fine-scale transmission patterns using 114,298 SARS-CoV-2 genomes
collected through Washington State (USA) genomic sentinel surveillance with
associated age and residence location information between March 2021 and December
2022. This corresponds to 59,660 sequences with another identical sequencein the
dataset. We find that the location of pairs of identical sequences is highly consistent
with expectations from mobility and social contact data. Outliersin the relationship
between genetic and mobility data can be explained by SARS-CoV-2 transmission
between postcodes with male prisons, consistent with transmission between prison
facilities. We find that transmission patterns between age groups vary across spatial
scales. Finally, we use the timing of sequence collection to understand the age groups
driving transmission. Overall, this study improves our ability to use large pathogen
genome datasets to understand the determinants of infectious disease spread.

Pathogen transmissionisimpacted by amultiplicity of factors associ-
ated withindividual, population and environmental characteristics. As
exposure and transmission are not directly observed, evaluating the
contribution of these different factors to epidemic dynamics generally
proves difficult. However, to anticipate the burden associated with
epidemics and guide control policies, it is pivotal to understand how
these different elements shape transmission risk.

Sequence data can provide insightsinto the proximity of individuals
inatransmission chain. Phylogeographical approaches have helped to
characterize how pathogens spread between different geographical
regions®” and demographic groups®. However, these methods cur-
rently face multiple limitations. First, they do not scale well past a few
hundred or few thousand sequences owing to difficulties in scaling
phylogenetictreeinference. Second, conclusions canbe highly biased
when sequencing is uneven’. Thus, we need new methods to analyse
large pathogen genome datasets, such as those produced during the
COVID-19 pandemic, which number in the millions of genomes™.

As mutations accrue over the course of transmission events, we
expect epidemiologically related individuals to be infected by patho-
gens that are genetically similar. Genetic-distance cut-offs have been
used to distinguish plausibly-linked infections frominfections resulting

fromdistinct introductions within densely sampled outbreaks such as
healthcare facilities or nursing homes™"2. Here we build from this expec-
tation to characterize transmission patterns at the population level.

We introduce astatistical framework describing the relative risk (RR)
of observing genetically proximal sequences in specific subgroups of
the population. Our metric of association accounts for heterogeneity
insequencing effort between sampled locations and does not require
building aphylogenetic tree, therefore making this approach directly
scalable to large pathogen genomic datasets. We use this framework
toinvestigate the spatial and social drivers of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) transmission in Washington
state (WA) by analysing 114,298 sequences (with associated age and
home location information) collected through genomic sentinel sur-
veillance in WA between March 2021 and December 2022.

Spatio-temporal signal inidentical sequences

As mutations accrue over time in pathogen sequences, individuals
who are close together within a transmission chain are expected to
be infected by genetically proximal viruses (Fig. 1a). For example, we
expect that 64% of individuals infected with SARS-CoV-2 are infected
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Fig.1| Temporal and spatial signature of spread in clusters ofidentical
SARS-CoV-2sequences. a, Clustering of identical pathogen sequences across
populationgroups reflects underlying disease transmission patterns at the
populationleveland canbeused to characterize spread patternsbetween
groups. Each colour represents adifferent cluster of identical sequences.

b, Probability for two individuals separated by a fixed number of transmission
generations of beinginfected by viruses atagiven genetic distance assuming
aPoisson process for the occurrence of substitutions (atarate u = 8.98 x 1072
substitutions per day) and gamma-distributed generation time (mean, 5.9 days;
s.d., 4.8 days). ¢, Size distribution of clusters of identical sequencesin the WA
dataset. Clusters of size1correspond to singletons and are therefore not
includedinthe RR computations. d, Spatiotemporal dynamics of sequence

by avirus with the same consensus genome as their infector (Fig. 1b).
Identical sequences should therefore be highly informative about
SARS-CoV-2 transmission events as they are preferentially collected
from the most epidemiologically linked individuals. Thus, their geo-
graphical clustering should be informative about spatial patterns of
transmission. Here we leverage the clustering of identical sequences
between groups to characterize transmission at the population level
(Fig.1a).In WA, we identified 17,231 clusters of identical sequences
excluding singletons, corresponding to 59,660 sequences (Fig.1c).In
some large clusters of identical sequences, we observed local spread
before wider geographical expansion (Fig. 1d). Using postcodes and
collection dates, we estimated cluster radius in kilometres. Across
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collectionintwo large clusters of identical sequences. The black diamonds
indicate the location of Seattle, the largest city in WA. e, Radius of clusters of
identical sequences (red line) and probability for all sequences within acluster
ofidentical sequences of remainingin the same spatial units (black lines) as
afunction of timesincefirst sequence collection. Ine, the cluster radius is
computed as the mean spatial expansion of clusters of identical sequences.

f, Definition of the RR of observing pairs of sequencesin two subgroupsasa
measure of enrichment. g, RR of observing pairs of sequences within the same
county asafunctionofthe genetic distance separating them. The grey points
correspond to values for individual counties. The orange triangles correspond
tothemedian across counties. For a, d and f, maps were generated using
shapefiles fromthe US Census Bureau**.

clusters, we find that the spatial expansion of clusters increases over
time (Fig. le) and is significantly lower than expected at random (Sup-
plementary Fig. 1). The probability for a cluster to remain within the
county and zip code where it was first identified decreases over time.
These probabilities are significantly higher than expected at ran-
dom (Supplementary Fig. 1). This confirms that clusters of identical
sequences contain a strong spatial and temporal signature of spread.

RR framework

To quantify the association between subgroups of the population (such
asgeographical units or age groups) from genetic data, weintroduce a



measure of RR describing how the number of pairs of sequences sepa-
rated by a fixed genetic distance observed in two subgroups differs
from what we expect from the sequencing effort (Fig. 1f and Meth-
ods). ThisRR canbeinterpreted as ameasure of enrichment describing
how the number of pairs shared by these two subgroups differs from
what we expect from the overall number of pairs observed in these
two subgroups.

Figure 1g shows the relationship between the RR of observing
sequences within the same county and the genetic distance between
pairs. Among all counties, the median RR of observing identi-
cal sequences within the same county is equal to 4.7 (interquartile
range =2.4-21.2) across the time period. When considering a greater
genetic distance between pairs, this signal decreases to plateau at 1.
This confirms that the location of genetically close sequences (less
thanacouple of mutations away) and especially identical sequences is
informative about local spread patterns, wherein infected individuals
transmit more often within their home county.

We observe this trend across variants and periods (Extended Data
Fig.1). The magnitude of the absolute RR along with the speed at which
it decays as a function of genetic distance vary. For example, during
the periodin which the prevalence of the Omicron SARS-CoV-2 variant
rises and the Delta SARS-CoV-2 variant declines, the RR of observing
identical sequences in the same county is higher among Delta than
Omicron sequences. This can be explained by differences in transmis-
sionintensity: a higher transmission rate results in larger clusters of
identical sequences® that will tend to be more geographically wide-
spread (Extended DataFig. 1c). The spatial signal from genetically close
sequences is therefore weaker in periods characterized by a higher
transmission intensity. Other factors, such as changes in mixing and
travels patterns, can also impact the magnitude of the RR.

Sampling biases can considerably impact the results of phylogeo-
graphicalinference’. Here, although the proportion of pairs of identical
sequences observed in a county is highly correlated with the number
of sequences observed in this county, we find that the RRis no longer
correlated with sequencing effort (Extended Data Fig. 2). Using a simu-
lation approach, we show that our RR metric captures the migration
probability between population subgroups, including when sequenc-
ing effortis heterogeneous (Extended DataFig. 3 and Supplementary
Table1). This contrasts with migration rates obtained from a discrete
trait analysis (DTA)™ that are poorly correlated with true migration
rates when sequencing effort differs between regions (Extended Data
Fig.3 and Supplementary Table 1). These DTA results are obtained by
inputting the exact simulated transmission tree. In practice, infer-
ring the underlying tree will decrease accuracy due to phylogenetic
uncertainty so that these DTA estimates represent an upper bound of
the DTA’s potential performance. If we compare DTA accuracy between
input phylogeny and phylogeny estimated from sequence data, we
find that Pearson correlation between true migration rates and esti-
mated migration rates changes from 0.54 to 0.10 for unbiased sampling
and changes from -0.22 to 0.15 for biased sampling (Supplementary
Tablel). Runningthe phylogenetic DTA analysis on simulated data with
1,745sequences requires1day when using the empirical tree and 24 days
whenjointly inferring the tree and the migration rates (Methods). Run-
ning our RR analysis on the same sequence dataset takes 33 s. This
result demonstrates that the RR framework constitutes anappropriate
approach to study the determinants of SARS-CoV-2 transmission by
explicitly accounting for sequencing effort and uneven sequencing
between population subgroups.

Patterns of SARS-CoV-2 spread between WA counties

We examined the geographical spread by analysing patterns of
occurrence of identical sequences in WA counties (Fig. 2). The matrix
of pairwise RRs between counties (Supplementary Fig. 2) is charac-
terized by a strong diagonal, which is consistent with within-county

transmission. To better understand the spatial patterns of SARS-CoV-2
spread between counties, we display these RRs on choropleth maps
indicating the RR for different focal counties (Fig. 2aand Supplemen-
tary Fig. 3). These maps suggest that identical sequences have a higher
risk of falling within counties that are geographically nearby. Across all
pairs of counties, we find a geographical gradient in the RR of identical
sequences, whereby the risk is highest within the same county, inter-
mediate between adjacent counties and lowest between non-adjacent
counties (Fig. 2b). The risk of observing identical sequences between
counties also decays as a function of geographical distance (Fig. 2¢c)
andisnolonger significant at distances greater than177 km (95% con-
fidence interval (ClI) =137-241).

To assess whether global spatial structure is maintained, we imple-
mented a multidimensional scaling (MDS) algorithm by defining a
similarity metric based on the RR of observing identical sequences
between counties. MDS enables us to display the relatedness of obser-
vations based on adistance matrix. This MDS ordination shows county
relationships that recapitulate the Western (WWA) and Eastern (EWA)
WAregions, tworegions that are separated by the Cascades mountain
range (Fig. 2d). Within EWA and WWA, we find a strong signal for local
spread, withidentical sequences having a higher risk of being observed
between adjacent than between non-adjacent counties (Fig. 2e). Across
the EWA-WWAborder, we no longer find that identical sequences have
anincreased risk of being observed in adjacent counties. Results are
similar when analysing pairs of identical sequences at the postcode level
(Supplementary Table 2). This lack of associationis not affected by the
low number of pairs of adjacent counties across the EWA-WWA border
(Supplementary Fig. 4). This illustrates how heterogeneous physical
landscape features can impact and distort patterns of disease spread
and genetic diversity” ', We also find that the association between the
RR of observing identical sequences in two counties is significant at
greater distance within EWA than within WWA (Fig. 2f). We do not find
any association with distance across the EWA-WWA border, although
this might be explained by the lack of counties with low distances across
the EWA-WWA border.

Finally, we find that, across epidemic waves, pairs of identical
sequences observed on both sides of the Cascades are consistently
observed firstin WWA (Fig. 2g and Supplementary Fig. 5). As testing
behaviour andaccess to healthcare can beinfluenced by county demo-
graphic characteristics and how rural or urban a county is, we exam-
ined how this trend varied when using symptom onset dates instead
of sequence collection dates, which provides similar trends (Fig. 2g).
Despite the existence of negative serial interval for SARS-CoV-2", this
analysis provides direct insights into the typical transmission direc-
tion between groups as the proportion of SARS-CoV-2 transmission
pairs with positive serial intervals in greater than 50% (ref. 20) (Sup-
plementary Note1). Thisasymmetry suggests thatidentical sequence
clusterstend to percolate from WWA to EWA more so thanthereverse,
indicating that transmission generally flows from WWA to EWA. This
trend is similar to the one reported in phylogeographical analyses of
the first COVID-19 wave in WA that concluded that more introductions
occurred from WWA to EWA than from EWA to WWAZ,

Relationship with human mobility

We next examined the extent to which spatial transmission patterns
inferred from identical sequences can be explained by human mobil-
ity indicators. To compute the RR of movement between two counties
orregions, we used aggregated mobile phone location data obtained
from the SafeGraph ‘Weekly Patterns’ dataset and pre-pandemic
commuting data from the US Census Bureau® (Methods). Despite
commuting data being collected before the pandemic and mobile
phone location data being collected during our study period, we
found that these two mobility data sources are highly correlated (Sup-
plementary Fig. 6). We assessed how the RR of observing identical
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Fig.2|Identical sequencesreveal patterns of spread between WA counties.
a, lllustration of the pairwise RR of observing identical sequences between
counties, using sequences shared between Stevens County (red point) and
other countiesin WA asanexample. Similar maps for the other counties are
depictedin Supplementary Fig. 3. b, RR of observing pairs of identical
sequences by counties’adjacency status. ¢, RR of observing pairs of identical
sequences as afunction of the geographical distance between counties’
centroids. d, Similarity between WA counties obtained from MDS based on the
RRof observing pairs of identical sequences in two counties. Counties are
coloured by east-west region membership. e, RR of observing pairs of identical
sequences by counties’ adjacency status stratified by counties east-west region
membership.f, RR of observing pairs of identical sequences as afunction of the

sequences in two counties relates to the RR of movement (Fig. 3a,
Extended Data Fig. 4 and Extended Data Table 1) by implementing a
generalized additive model (GAM) that includes a single predictor
of smoothed RR of movement between two counties as a covari-
ate. We used a GAM rather than linear regression as we expect the
functional form of the relationship to be nonlinear (Supplementary
Fig. 7). This nonlinearity can be explained by the indirect mapping
between transmission events and identical sequences that encompass
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. Using sequence

N Imputing symptom
collection dates

onset dates

geographical distance between counties’ centroids stratified by counties east-
west region membership. g, Proportion of pairs of identical sequences observed
inEWA and WWA that werefirst observedin WWA. Incandf, thelines correspond
to LOESS curves onthelogarithmicscale.Inbande, Pvalues calculated

using Wilcoxon tests are as follows: ***P<0.0001, **P < 0.001, *P<0.05; NS,
P>20.05.Inb, Wyininadjacene = 6,195 (P=3.7 x 107?)and W agjacent non-adjacent = 65,542
(P<2.2x107).Ine, for within EWA, W,yhin adgjacen: = 120.5 (P=6.7 x 10%) and
Wagiacent non-adjacent = 4,555.5 (P=4.0 x 107%). For within WWA, W,iin adjacent = 95
(P=9.9 x107) and W,gjacent non-adjacent = 3626 (P=1.1x10"*). For between EWA and
WWA, W=2,719 (P=0.17).Foraand d, maps were generated using shapefiles
from the US Census Bureau**.

both direct transmission pairs and pairs of individuals a couple
generations apart.

When comparing RRs at the county level, we found that 60% of the
variance inidentical sequence data is explained by between-county
flows derived from the mobile phone data (Fig. 3a and Extended
Data Table 1). For a subset of counties, the number of pairs of identi-
cal sequences or the number of trips reported in the mobility data-
set is low. For these low counts, we expect RRs to be more noisy.
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Fig.3|Comparison ofthelocation ofidentical sequences with expectations
from mobility datareveals spread between WA male prison postcodes.

a, Relationshipbetween the RR of observing identical sequencesin two counties
andthe RR of movementbetween these counties as obtained from mobile phone
mobility data. Thetrend line corresponds to the predicted RR of observing
identical sequencesintwo regions froma GAM. The R?indicates the variance
explained by the GAM. b, Scaled Pearson residuals of the GAM plottedinaasa
function of the number of pairs of identical sequences observed in pairs of
counties. ¢, Map of male state prisons in WA. Mason, Walla Walla and Franklin

To remove potential noise associated with these lower counts, we
repeated this analysis at a larger spatial scale. Aggregating pairs at
the regional level (9 regions in WA for 39 counties; Supplementary
Fig. 8) increases the variance explained to 81% (Supplementary Fig.9).
We also find that pre-pandemic workflow data are highly informative
ofthe spatial distribution of pairs of identical sequences with asimilar
strength of relationship to that observed for mobile phone mobility
data (Extended Data Fig. 4, Supplementary Fig. 9 and Extended Data
Table1).

Sequence collection week

Cluster C (50/54)
== Cluster D (44/51)

== Cluster E (43/45)
== Cluster F (18/20)

== Cluster G (19/19)
Cluster H (16/16)

male prisonsare coloured.d, RR of observingidentical sequence between
Mason and Franklin County’s postcodes. e, RR of observing identical sequence
between Mason and Walla Walla County’s postcodes. f, Centrality score
(eigenvector centrality) for each postcode thatis the home of a male state prison.
g, Week of sequence collection within eight large clusters of identical sequences
identified in postcodes with WA male state prisons. Ing, the top coloured
segmentsindicate the period during which each cluster wasidentified. Forc,
maps were generated using shapefiles from the US Census Bureau*.

Non-pharmaceutical interventions along with behavioural changes
have impacted human mobility patterns throughout the COVID-19
pandemic. We find that mobility data explain a high percentage of vari-
ance in the RR of observing identical sequences between WA regions
across individual epidemic waves (Supplementary Fig. 10) but not to
agreater extent than over the entire study period. This can probably
be explained by the high stability of the structure of the mobility net-
work between WA counties across epidemic waves (Supplementary
Fig.11). This suggests that analysing COVID-19 waves separately tends
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tointroduce noise rather thanincrease the spatial resolution, consist-
entwith aformer analysis that concluded that there was a high stabil-
ity of between-county mobility patterns during the beginning of the
pandemicin the United States®.

Among counties located across the EWA-WWA border, the risk of
movement across the border is lower than the risk of movement within
the sameregion (Supplementary Fig.12). This shows that human mobil-
ity is highly predictive of the location of pairs of identical sequences
and explains some of the spatial patterns reported in Fig. 2.

Association between outliers and male prisons

Weidentified unexpected patterns of transmission between counties
from outliers in the relationship between mobility and genetic data
(Fig. 3a). We define outliers as pairs of counties for which the abso-
lute value of the scaled Pearson residual from the GAM is greater than
3. As we expect RRs computed from a low number of pairs of identi-
cal sequences to be noisier, we focused on pairs of counties between
which atleast100 pairs of identical sequences are observed. We found
unexpected patterns of SARS-CoV-2 spread between two non-adjacent
pairs of counties, Franklin-Mason and Walla Walla-Mason counties,
with more pairs of identical sequences observed than expected from
mobility data (Fig. 3b). The association between Franklin and Mason
(RR0f13.4,95% Cl =11.4-16.4) and Walla Wallaand Mason (RR of 5.9, 95%
Cl=4.0-8.3)is particularly surprising given that they are non-adjacent
countieslocated on different sides of the Cascades. As no demographic
orgeographical factors provide a straightforward explanation for such
an association, we hypothesized that such a pattern might arise from
SARS-CoV-2 spread on a dissemination network that differs from the
general community. We identified that these three counties are the
home of male state correction centres (Fig. 3c). We also found that
identical sequences have a higher risk of being observed within Lin-
coln County and a lower risk of being observed within Pacific County
than expected from cellphone mobility data, without identifying any
demographic factor explaining these associations.

To investigate whether the unexpected pattern of association
between Franklin and Mason, and Walla Walla and Mason counties
can be explained by transmission within the prison network, we
looked at patterns of association between Franklin and Mason and
Walla Wallaand Mason postcodes (Fig. 3d,e). For most of these pairs of
postcodes, we do not observe any pair of identical sequences through-
out the study period. Notably, for each pair of counties, the genetic
signal can be explained by a high RR of observing identical sequences
between two postcodes, which correspond to the postcodes that are
thehome to the male correction centres that weidentified. The greater
number of pairs of identical sequences observed between Mason and
Franklin and Mason and Walla Walla counties than expected from
mobile-phone-derived mobility data can therefore be explained by
alarge number of pairs of identical sequences in specific postcodes
with male correction centres.

We also investigated patterns of occurrence of pairs of identical
sequences between the two counties (Mason and Pierce) that are the
home to female prisons. At the county level, identical sequences do not
have anincreased risk of occurring between Mason and Pierce counties
(RR 0f 0.59,95% Cl = 0.49-0.67). However, at the postcode level, we
found that the RR of observingidentical sequencesis highest between
the two postcodes with female prisons (Supplementary Fig. 13). This
shows how our framework enables exploration of patterns of spread
atdifferent spatial scales: we do not find any signal at the county level,
probably because Mason and Pierce are adjacent counties, but we can
identify association at the postcode level.

Itisinteresting that the pairs of outliers that we identified systemati-
cally involved Mason County (Fig. 3b), which is the home of only the
sixth (out of ten) most populated male prison in the state (Fig. 3c).
The prison in Mason County (Washington Corrections Center) has a
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particularrolein the WA prison network asitservesboth asareception
centre for anyone entering the WA prison system and as a transfer hub®.
Tounderstand whether the prison network structure can explain pat-
terns of SARS-CoV-2 transmission, we conducted a centrality analysis.
Todo so, we analysed the network of postcodes with WA male prisons
and we defined the weight of each edge by the RR of observing identi-
cal sequences between these two postcodes. We found that the two
nodes with the highest eigenvector centrality scores are the postcodes
that are the home of Washington Corrections Center (Fig. 3f) and of
the Franklin County prison (most populated prison). This shows that
patterns of occurrence of identical sequences in WA are imprinted by
the structure of the prison network.

Finally, we investigated whether large clusters of identical sequences
areshared between postcodes with male state prisons, which we define
asclusters with more than 15 sequencesin male state prisons postcodes.
Figure 3g depicts the timing of the large clusters that we identified.
Notably, the largest cluster (cluster A) includes 71 sequences collected
between 18July and 31July 2022, 67 of which came from postcodes with
male state prisons. The second largest cluster (cluster B) iscomposed
of 58 sequences collected between 21 February and 29 March 2023,
among which 51 came from 7 different prison postcodes. Notably, the
postcode of Washington Corrections Center is the only one in which
all of these eight clusters were observed.

Populations who are incarcerated have been particularly affected
by the COVID-19 pandemic®?*. To mitigate the impact of the pandemic
in these congregate settings, various interventions have been imple-
mented. In WA, for example, testing followed by quarantine protocols
were carried outin Washington Corrections Center after admission and
before any transfer. Active screening of staff was also implemented
throughout the pandemic. However, individuals incarcerated who
were diagnosed with COVID-19 at times had to be transferred from
Washington Corrections Center to other WA prisons due to the finite
capacity of the reception centre. With vaccine mandates, staff also
had to be relocated to cope with the departure of other employees.
Our results reveal multiple SARS-CoV-2 introductions between WA
prisons, that could be explained by the movements of bothindividuals
incarcerated and staff.

This analysis showcases how identical sequences can help to iden-
tify under-recognised viral dissemination networks that differ from
transmission pathways in the general community. The counties that we
identified as outliers in the relationship between genetic and mobility
datahavea particularly high ratio between the prison population size
and the county population size (between around 2% and 4%; Supple-
mentary Table 3). This probably explains why we were able to detect
thissignal at the county level but had toinvestigate transmission at the
postcode level to study transmission between other prisons.

Age transmission patterns vary across spatial scales

Spatial and social factors (such as age) are key determinants of the
spread of respiratory infections such as SARS-CoV-2 and influenza® .
We expect movement patterns to differ between age groups (such as
children, adultsand older people), which canimpact patterns of disease
transmission® . However, there hasbeen limited empirical evidence
ofthis phenomenon and datasources that canbe leveraged to charac-
terizethisinteraction are critically needed. Here, we show that we can
combine pathogen sequence information with detailed metadata to
investigate how age mixing patterns vary across spatial scales.
Wefirstexamined whether we could recover the expected age-mixing
signature from the sequence data before delving into the interaction
between age and space. We found that the age groupsin whichidentical
sequences are observed are consistent with assortative mixing patterns
and mixing between generations (Extended Data Fig. 5). Comparing
this with expectations from synthetic social contact data for WA**,
we found that the signal obtained from identical sequences is highly
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Fig.7.c,RRof observingidentical sequencesbetweentwoage groupsacrossall  Cls.Ind, the heat mapsrepresent symmetric matrices P=(p;;) characterized
pairs of sequences, only pairsindifferent postcodes and only pairs in different byp;;+p;;=1.

correlated with that expected from age-mixing matrices (Fig. 4a; GAM:  patterns of spread might indeed not be apparent from sequences at
90% of variance explained; Spearman p = 0.86, P<107®). Thesignalfor more than a couple of mutations away. This emphasizes the value of
SARS-CoV-2 transmission between generations (such as betweenthe  analysingidentical pathogensequencesto characterize subtle patterns
0-9 yearand 30-39 year age groups) fades out when considering pairs  of pathogen spread and population mixing, especially when population
of sequences separated by a greater genetic distance (Extended Data  subgroups are very mixed.

Fig.6). Assequencesatagreater genetic distance come fromindividuals Next, we compared the RR of observing identical sequences between
who are further apart within a transmission chain (Fig. 1a), fine-scale  two age groups by looking at either all pairs of sequences or only pairs
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of sequences fromindividualsliving in different counties or postcodes.
We found that the spatial scale modulates patterns of disease transmis-
sionbetween age groups (Fig. 4b,c and Extended DataFig. 7). We found
that pairs of identical sequences coming from the same county and
postcode are enriched in same-age pairs. This enrichment is particularly
importantinolder groups. For example, the RR of observingidentical
sequencesinindividuals aged 80 years and older drops from 1.80 (95%
Cl=1.65-2.01) when considering all pairs to 0.79 (95% Cl = 0.71-0.85)
when considering pairs coming from individuals living in different
counties (Extended Data Fig. 7). This shows that transmission to and
fromolder age groups tends to occur close to theirhomelocationand
suggests that older individuals’ typical radius of movement is smaller
than that of other age groups. Only considering pairs of sequences in
0-9 year olds coming from different spatial units largely decreases
the signal for SARS-CoV-2 transmission between children and adults
aged 30-49 years (Fig. 4c). This is expected given that we anticipate
that most of these contacts occur within the household®. Overall, we
find that looking at patterns of occurrence of identical sequences ata
greater geographical scale largely distorts the contact structure. For
example, thelocation of identical sequences suggests that transmission
toand from older individuals outside of their home counties tends to
occur with younger age groups, including younger children (such as
grandchildren).

Mixing patterns between age groups have been extensively stud-
ied**. Asocial contact survey performedin southern Chinareported
that older individuals’ contacts occurred closer to their homes com-
pared withyounger individuals’ contacts®. However, overall, there has
beenlimited evidence to quantify the spatial distribution of these con-
tacts. Spatial mixing is generally measured from aggregated mobility
datasources that generally do not provide demographicinformation
suchas age. As spatial and age mixing are reconstructed from different
data sources, understanding their interplay has been difficult. Here
we show that we can directly leverage pathogen genome data with
linked age and spatial information to understand where age-specific
transmission is occurring. This suggests that the wider availability of
sequencing data might provide an opportunity to directly infer how
populationgroupsinteractinaway thatis relevant for pathogenspread,
without the need to implement laborious contact surveys or collect
mobility data.

Timing ofidentical sequence collection

Finally, we used the timing of identical sequence collection to investi-
gate the age groups driving SARS-CoV-2 transmission over the course
ofthe pandemicin WA. Within pairs of identical sequences, weindeed
expectage groups actingas sources to be consistently detected before
groups acting as sinks (Supplementary Fig. 14). InFig. 4d, we display for
every age group combination and across epidemic waves the propor-
tion of pairs of identical sequences first collected in agiven age group.
During the fourth and fifth pandemic wave in WA (mainly caused by
the Alphaand Delta SARS-CoV-2 variants of concern, respectively), we
found that pairs of identical sequences are consistently observed later
in older groups even though the RR of observing identical sequences
in older groups and younger groups is low (Extended Data Fig. 5).
This could be consistent with younger age groups acting as source
of infections for older individuals. During the fourth pandemic wave,
sequences fromindividuals aged 20-29 years and 40-59 years are sys-
tematically observed before any other groups within pairs of identical
sequences and likewise during the fifth pandemic wave, sequences from
individuals aged 20-29 years and 40-69 years are observed earlier than
other age groups. This could be consistent with these groups acting as
sources of infection for the other age groups. During the sixth wave,
sequences fromindividuals aged 10-19 years tend to be observed first
within pairs ofidentical sequences, which suggests their role as sources
for other ages groups and corresponds to the Omicron wave during
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atime when schools had recently returned to in-person instruction.
From March 2022, the contribution to transmission is more evenly
distributed across age groups.

Therole played by young children during the COVID-19 pandemic has
been highly debated***®, Here we find that, during the Alphaand Delta
epidemics (waves 4 and 5), children aged 0-9 years could have acted
as asource of SARS-CoV-2 infections for older individuals but not for
younger adults. This pattern disappears during the Omicron epidemic
(wave 6) in which pairs ofidentical sequences tend to be observed first
inotherage groups before being collected inyoung children aged 0-9
years. This could be explained by behavioural changes or by different
immune profiles across age groups, resulting in different relative suscep-
tibility to Omicronrelative to Delta*°. Overall, we do not find anindica-
tion that young school-age childrenact as major sources of SARS-CoV-2
transmission in the population, even after schools reopened.

Overall, our results highlight the porosity of SARS-CoV-2 transmis-
sionacross age groups and suggest arole played by lower-risk groups
in seeding infections in higher-risk groups. We come to similar con-
clusions when looking at the timing of symptom onset dates (Sup-
plementary Fig.15), which suggests that our conclusions are robust to
differences in testing behaviours across age groups. Our conclusions
are consistent with existing literature emphasizing theimportant role
played by young adults and teenagers and the limited contribution of
children and older individuals in driving SARS-CoV-2 spread®***.. Ana-
lysing the timing of identical sequence collection providesimmediate
insights into pathogen flow between population subgroups.

Here, we focus on understanding patterns of SARS-CoV-2 spread
between age groups, but this approach can be applied to investigate
the spread of fast-evolving pathogens between various demographic
groups, such as occupational and ethnic groups, behavioural and risk
groups. For example, we find thatidentical sequences collected within
anage group tend to be enriched with same-vaccine status pairs during
the Alpha, Delta and Omicron BA.2/BA.5 waves in WA (Supplemen-
tary Fig.16).Social clustering of unvaccinated individuals or generally
individuals with a different immune background can have important
implications regarding the size and likelihood of infectious disease
outbreaks***, This suggests that our approach has the potential to shed
light on suchaphenomenonand more generally onbroad determinants
of disease transmission.

Caveats

Although our RR metric explicitly accounts for sampling intensity in
locations in which pairs of identical sequences are collected, it cannot
describe patterns of spread from non-sampled locations. In theory,
unsampled locations could impact our assessment of local transmis-
sion patterns if two individuals with an identical sequence are both
infected by someone outside the study area. However, in practice, we
find that non-sampled locations have littleimpact on our RR computa-
tion (Extended DataFig. 8). This suggests that background sequences
arenot required to evaluate SARS-CoV-2 transmission at the state level.
Other epidemiological settings might nonetheless require more careful
considerations, for example, in the hypothetical scenario in which a
non-sampled locationis responsible for the majority of the infections
within the study area.

Compared with existing phylogeographical methods, our approach
doesnotrequireincluding background sequences from outside loca-
tions, asnon-sampled locations havelittleimpact on the RR computa-
tion (Extended Data Fig. 8). Our approach could also overestimate RRs
associated with transmission events that are over-represented in the
sequencing data. For example, applying this analysis to sequences pre-
dominantly collected through household studies could overestimate
the contribution of contacts within the household to the overallinfec-
tionburden. Inour case, patterns of occurrence of identical sequences
in WA are potentially affected by intensive testing performed during



outbreaks within WA prisons during the pandemic. Part of the signal
that we have detected might therefore come from a higher sequencing
ratein prisons compared withinthe general community. However, the
very large clusters of identical sequences shared between multiple
prison postcodes confirm that SARS-CoV-2 extensively spread within
the prison network.

Our results suggest that the timing of sequence collection within
clusters of identical sequences provides valuable information to under-
stand transmission direction. Here, we report asimple quantity based
on the proportion of pairs first observed in a group that summarizes
the earliness of a group compared with another within pairs of identi-
cal sequences. Such an earliness metric might incompletely capture
the transmission process as clusters can for example span more than
two groups. We performed a sensitivity analysis in which we relied
only on clusters of identical sequences observed in two groups, pro-
viding similar results (Supplementary Fig. 17). Overall, more work is
warranted to robustly quantify transmission rates from the timing of
identical sequences.

Finally, the magnitude of RRs isimpacted by transmission intensity
(Extended Data Fig. 1), so that values computed between two regions
across different time periods cannot be directly compared. However,
withinatime period, the ranking of RRs is informative about patterns of
transmission between groups. Overall, further work exploring how pat-
terns of occurrence ofidentical sequences can be used to directly infer
mixing rates between groups, while incorporating temporal changes
in transmissibility would be particularly interesting.

Applicability beyond SARS-CoV-2

Here we studied patterns of SARS-CoV-2 transmission between geo-
graphies and age groups in WA using a particularly rich sequence
dataset, bothgiven the amount of sequences available and the quality
ofthe associated metadata. However, this work can readily be applied
to other densely sampled pathogens.

The power of our method is determined by the number of pairs of
identical sequences available, which will be impacted by transmission
intensity (higher reproduction numbers will tend to result in larger
clusters of identical sequences') and the relative timescale at which
substitution and transmission events occur®, Overall, this approach
is well tailored to study densely sampled outbreaks. Compared with
phylogeny-based methods of which the power comes from the number
of unique haplotypes, our ability to characterize spread from identi-
cal sequences depends on the number of haplotypes with multiple
observations. Whereas we expect diminishing returns when sequenc-
ing a greater proportion of cases using phylogeny-based methods,
with adecreasing number of new haplotypes per additional sequence,
the number of haplotypes with multiple occurrences will increase for
each additional sequence included in the dataset (Supplementary
Fig.18). The number of population groupsincluded in the analysis will
also impact the amount of sequencing data required. In situations in
which the sample size results in a lower number of pairs of identical
sequences, aggregating groups can be a valuable strategy to reduce
uncertainty. Within our WA sequencing dataset, we find that assessing
spread between two age groups requires around 10°-10° sequences,
whereas nine age groupsincreases the number of sequences required
t010*-10° (Supplementary Fig.19).

Extending the analysis to pairs of sequences separated by a greater
Hamming distance could also increase the statistical power by increas-
ing the amount of data available, in particular for pathogens charac-
terized by a higher mutation rate (Extended Data Fig. 9). However,
increasing the threshold comes at the cost of diluting the signal by
including pairs that are less epidemiologically linked in the analysis,
therefore introducing more noise (Extended DataFig. 9). Other factors,
suchastherate of mixing between groups or the natural history of the
infection, canimpact the optimal threshold.

Perspectives

Large-scale pathogen genome sequencing provides an incredible
opportunity tounderstand where and how transmission is occurring.
The computational cost of existing methods that rely oninferring the
phylogenetictree has limited their ability to elucidate fine-scale trans-
mission patterns. Analysing datasets that are orders of magnitude
larger thanthose enabled by existing tree-based methods could provide
insights into disease spread at finer granularity, such as among more
numerous and smaller population groups. Here we show thatasimple
count-based metric based on pairs of identical pathogen sequences
with detailed linked metadata can provide unique insights into the
determinants of SARS-CoV-2 transmission. Future work investigating
how to better describe asymmetry in transmission between groups
and how to infer group-level contributions to epidemic growth from
such data are a promising research direction. This shows that relying
on pairs of identical or nearly identical pathogen sequences along with
fine-grained metadatais valuable to understand how and where trans-
mission is happening. By providing scalable new tools to understand
detailed pathogen spread patterns, we believe that this work represents
animportant development to guide future epidemic control efforts.
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Methods

Data sources and preprocessing
Sequence data and metadata. We analysed 116,791 SARS-CoV-2
sequences from Washington state genomic sentinel surveillance sys-
tem* sampled between1March 2021and 31 December 2022.Sequence
metadata are collated by the Washington State Department of Health
andinclude sample collection date, symptom onset date, de-identified
patient ID, county of home location, postcode of home location, age
group (0-9 years,10-19 years,20-29 years, 30-39 years, 40-49 years,
50-59 years, 60-69 years, 70-79 years and 80 years and above) and vac-
cination status upon positive test. For patients with multiple sequences
inthe database (2,309 out 0f 114,306 patients), we restricted our analysis
to the earliest sequence collected. Among these 114,306 sequences,
the age information is missing for 1 sequence, the county information
for 659 sequences and the postcode information for 1,011 sequences.
Consensus sequences are extracted from the GISAID EpiCoV data-
base***” and curated using the Nextstrain nCoV ingest pipeline*s. We
discard sequences with undefined Nexstrain clade assignments (8
sequences out 0of114,306). This leaves us with 114,298 sequences, with
114,297 sequences gathered from patients with known age, 113,639
sequences gathered from patients with known county ofhome location
and 113,287 sequences gathered from patients with known postcode of
homelocation. Intotal, 96% of sequences have coverage ingreater than
90% of the genome. We match postcodes to zip code tabulation areas
(ZCTAs). For postcodes that do not have a ZCTA with the same name,
we manually match them by looking at ZCTA boundaries. All analyses
at the postcode level use ZCTA metadata information. We extracted
the postcodes of WA prison facilities online®.

Pairwise genetic distances. We compute pairwise genetic distances
between Washington state sequences with the ape R package*™ using
Hamming distances. To avoid unnecessary computational costs, we
compare only sequences belonging to the same Nextstrain clade™ and
generate one distance matrix per clade. We do not expect the clade
definitiontoimpact the pairs of identical sequences that we identified
as pairs ofidentical sequences should always belong to the same clade.
Generating pairs ofidentical sequences from asequence datafileis
the most computationally expensive step in this analysis. To provide
context, generating a distance matrix from 1,000 sequences takes
33 s, while10,000 sequences takes1 h37 min,on1core ofan Apple M2
chip. Generatingthe full distance matrix for the analysis set 0f 113,287
sequences took around 96 hours of compute time readily parallelized
across acompute cluster. More efficient software tools can significantly
bring that compute time down (for example, 1.14 h with pairsnp®).

Workflow data. We use data describing the daily number of commut-
ers between each WA county from the American Community Survey
(2016-2020)*. This dataset provides the number of directed com-
muting flows between residence and workplace counties. We use the
number of commuting flows between counties to compute the RR of
commute between two regions (see below).

Mobile phone location data. We obtain mobile device location
data from SafeGraph (https://safegraph.com/), a data company that
aggregates anonymized location data from 40 million devices, or
approximately 10% of the US population, to measure foot traffic to
over 6 million physical places (points of interest (POls)) in the United
States. Following a previous study®, we estimate movement within and
between counties in Washington fromJanuary 2020 to June 2022, using
SafeGraph’s Weekly Patterns dataset, which provides weekly counts
ofthe total number of unique devices visiting a point of interest (POI)
froma particular home census block group (CBG). POls are fixed loca-
tions, suchasbusinesses or attractions. A visitindicates thata device
entered the building or spatial perimeter designated as aPOl. The home

location of adeviceis defined as its common nighttime (18:00-07:00)
CBG for the past 6 consecutive weeks. We restrict our dataset to POIs
that have beentracked by SafeGraph since December2019. To measure
movement within and between counties, we extract the home CBG
of devices visiting POls in each week and limit the dataset to devices
with home CBGs in the county of a given POI (within-county move-
ment) or with home CBGs in counties outside of a given POI's county
(between-county movement). To adjust for variation in SafeGraph’s
device panelsize over time, we divide each county’s census population
size by the number of devices in SafeGraph’s panel with home locations
inthat county each month and multiply the number of weekly visitors
by that value. For each mobility indicator, we sum adjusted weekly
visits across POIs from March2021to June 2022. We use the number of
visits between counties to compute the RR of movement from mobile
phone databetween two regions (see below).

To explore potential geographical biases in the mobility data, we
divided the weekly number of devices residing in each county by the
weekly number of devices residing in WA state (observed proportions)
and compared these values to expected proportions based on county and
state census populationsizes during 2020-2022. SafeGraph’s panel con-
sistently captured 2-5% of each county’s population, with strong correla-
tions between device counts and census population sizes (Spearman’s
p=0.99; Supplementary Fig. 20). We estimated county-level biasasthe
observed proportion of devices tracked by SafeGraphin individual coun-
ties relative to WA state minus the expected proportion based on census
population sizes. Annual bias estimates for individual counties ranged
from-2.2%t01.7%, withno clear trend of over- or under-representation
by population size or urban-rural classification (Supplementary
Fig. 21). Although the most populous counties in WA state tend to have
greater absolute bias, large counties are both under-represented and
over-represented inthe SafeGraph dataset (Supplementary Fig. 21). For
example, the most populous county in WA, King County, was slightly
under-represented each year (-2.2% to -1.6% bias; green negative outlier
inSupplementary Fig. 21), while three of the other top five largest coun-
ties (Clark, Pierce and Spokane) were slightly over-represented (1.1% to
1.7% bias; pink, blue and goldenrod positive outliers in Supplementary
Fig. 21). Our method for estimating geographical bias is based on Saf-
eGraph’s Google Co-Lab Notebook on Quantifying Bias*.

Social-contact data. We use synthetic social contact data for WA gen-
erated previously** based on reconstructing synthetic populations
of interacting individuals using WA population demographics. They
describe the per-capitaprobability for anindividual of age i of interact-
ing withsomeone of agejduring a day.

Quantifying connectivity between groups

From genetic data. To quantify connectivity from genetic data, we
compute the RR for sequences separated by a given genetic distance
of beingin given subgroups of the population. Let n denote the number
of sequences included in the study and H;; the Hamming distance
between sequences indexed by i and}. Let S; denote the subgroup of
sequencei. Weintroducenigthe number of Hamming distance matrix
elements (excluding the diagonal) equal to d where sequence i belongs
togroup A and sequencejbelongs to group B.

M=

d _
nypg=

n
2. Loy Ly e sy Lisomy
i=1 j=1

where X~ 1,is theindicator function whichis equal to1if Xis true and
O otherwise.

Letn{.=Y n{zandn®=Y ¥ ni,.

We derive the RR RR,‘{‘B for sequences separated by a genetic dis-
tance d of being observed in subgroups A and Bcompared to what is
expected from the sequencing effort in the different subgroups of
the population as:


https://safegraph.com/
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The numerator n/‘{,B/nj’,_ corresponds to the proportion of the pairs
where the subgroup of sequence i is A that are occurring with the
Bgroup.

The denominator n[{,/n,f’, is anormalization factor quantifying the
contribution of group B to the total number of pairs separated by a
Hamming distance of d. The ratio between these two quantities there-
fore quantifies the extent to which pairs of sequences observed in
groups A and Bare enriched compared with the number of sequences
observedinthese groups.

We used a subsampling strategy to compute Cls around these RRs.
Bootstrapping (random sampling with replacement) would resultin
comparing sequences with themselves and therefore lead to biased
upwards RRs of observing identical sequences in the same group. To
avoid this, we used a subsampling strategy (random sampling without
replacement) with a80% subsampling rate (1,000 replicate subsamples).

We provide the tools to compute this RR metric fromuser-provided
sequence and metadatafilesinthe GitHub repository associated with
this Article®*,

From mobility data. To quantify connectivity from mobility data, we
compute the RR of movement between two geographical locations.
Both the mobile phone and commuting mobility data provide directed
flows between WA counties. Let w,,; denote the number of commuters
reported inthe commuting data (respectively the number of visits for
the mobile phone mobility data) whose homeresidenceisin county A
and who work in county B (respectively for which a visitin county Bis
reported). We compute the total movement flow between counties A
andBas:

Wy p=Ws5>p+ Wgsy

We then calculate the RR RR}'S>"™ of movement between counties A
andBas:

Wy p*xW,.

mobility _
RRyp ™ = W, X W
X W,

wherew,.=Y wy,andw,.= Y, Wy,
We compute asimilar statistic by aggregating counties at the regional
level (Supplementary Fig. 8).

From social contact data. To quantify connectivity fromsocial contact
data, we compute the RR of contact between two age groups. Mistry
et al.>* estimated the average daily number of contacts M, ; that indi-
viduals of age i have with individuals of agej (considering one-year age
bins). Aswe are interested in the age groups available in the sequence
metadata, wereconstruct the average daily number of contacts c, s that
individuals withinage group A have withindividualsin age group Bas:

Diea ZjeB M, ;xn;

ZieA n;

where n;is the number of individuals of age i. We can then derive the
total daily number of contacts between age groups A and B as
I,5=Ca5%N,whereN,isthe number ofindividualsinage group A. We
then compute the RR RR{% " for a contact of occurring between age
groups A and Bcompared to what we expect if contacts were occurring
atrandom in the population as:

CaB=

XTI,

contacts _
RRas™ =T T,
A, B,

where T ,.is the total daily number of contacts involving individuals
within age group A andT. . is the total daily number of contacts in the
population.

Studying directionality in transmission
We use the timing of sequence collection to understand directionality
intransmission.

From sequence collection dates. Weintroduce ¢, as the time at which
the sequence x was collected. Let /, ; denote the ensemble of pairs of
identical sequences observed ingroups A and B.

1,6={(a,b) €1, glit,~ t;| > O}
therefore denotes the subset of these pairs with different sequence

collection dates. We compute the proportion p,.; of pairs consistent
with the transmission direction A - B as:

_#({l(a,b) €1, glt,<tp})
Pysp= #(l, )

where #(X) is the cardinal of X.
We also report 95% binomial Cls around these proportions.

From symptom onset dates. The delay between infection and seq-
uence collection can be impacted by healthcare-seeking behaviours
and access to testing, which might vary across age groups, geographical
locations and time periods. If the distribution of the delay until test-
ing differs between two subgroups A and B, the proportion of pairs of
identical sequences p,.; that are first collected in group A will both
reflect the timing of infections and healthcare-seeking behaviours.
When available, symptom onset dates should be less impacted by
healthcare-seeking behaviours.

Amongthe 113,638 SARS-CoV-2 sequences with associated age group
and county of home location information, symptom onset dates are
available for 34,167 of them (30%). The availability of symptom onset
informationis susceptible tobeimpacted by individual demographic
profiles (such as age), which could result in sequences with symptom
onsetinformation not being representative of all the sequences avail-
able. To avoid this, we impute missing symptom onset dates based on
the empirical delay distribution between symptom onset and sequence
collection (computed from individuals with known symptom onset
dates) stratified by age group, time period and EWA/WWA region (Sup-
plementary Fig.22). Out of the sequences with known symptom onset
dates, the absolute value of the delay between sequence collection and
reported symptomonsetis strictly greater than 30 days for 192 ofthem
(<0.6%). We discarded these sequences in the computation of the symp-
tomonset to sequence collection delay and considered that they were
equivalent to sequences with missing symptom onset information
(and therefore imputed their symptom onset dates). We generate 1,000
imputed datasets. For each of these imputed datasets, we compute the
proportion pji";p“’ of pairs with symptom onset dates occurring first
ingroup A among pairs of identical sequences in groups A and B with
distinct symptomonset dates. We then report the median across these
1,000 imputed datasets. We also generate a measure of uncertainty by
computing on each of the imputed datasets 95% binomial Cls around
the proportion pj{“é"“’. We then report an uncertainty range around
these proportion by using the minimum lower bound of the 95% Cland
the maximumupper bound of the 95% Cl across the imputed datasets.

Spatial analyses

Spatial extent of clusters. We reconstruct clusters of identical seq-
uences from the pairwise genetic distance matrices®. Supplementary
Fig.23 depicts the typical size and duration of these clusters of identi-
cal sequences throughout the study period. To assess the spatial and



temporal signalin clusters of identical sequences, we evaluate how the
spatial extent of a cluster (summarized by its radius) evolves over time.
For each cluster, we define primary sequences as the cluster’s earliest
collected sequence. We then define the cluster’s primary ZCTAs as the
ZCTAs of its primary sequences. We exclude clusters with ambiguous
primary ZCTA (several primary ZCTAs) from this analysis. We define the
radius of a cluster at a given time as the maximum distance between
the primary ZCTA and the ZCTAs of the sequences collected by that
time. We also compute the time required for sequences to be collected
outside the primary ZCTA and primary county (using a similar defini-
tion as for the primary ZCTA). We report the mean cluster radius and
the proportion of clusters remaining within the same geographical
unit (ZCTA and county) as afunction of the time since collection of the
first sequence within a cluster. We generate 95% Cl using a bootstrap
approach with1,000 replicates.

We compare the observed cluster radius and the observed propor-
tion of clusters remaining within the same geographical unit to those
expected from a null distribution assuming no spatial dependency
betweensequences withinacluster ofidentical sequences. We simulate
anulldistribution by randomly permuting the geographical locations
ofthe WA sequences and recomputing our statistics of interest (cluster
radius, proportion of clusters within the same county and proportion
of clusters within the same ZCTA).

Impact of counties’ adjacency status. We compare the RRs of observ-
ingidentical sequences between two counties depending on counties’
adjacency status (within the same county, between adjacent counties
and between non-adjacent counties) using Wilcoxon signed-rank tests.

Impact of distance between counties. We examine how the RRs of
observing identical sequences in two distinct counties compare with
the geographical distance between counties’ centroids. We summarize
thistrend by reporting the LOESS curves with 95% Cls between the log
RRs and the distance in kilometres.

Mapping using MDS. We evaluate the extent to which patterns of
association obtained when looking at the location of pairs of identi-
cal sequences are consistent with global spatial structure. To do so,
we performed non-metric MDS (NMDS) based on the matrix of RR of
observing pairs of identical sequences between two counties. We res-
trict our analysis to the subset of counties for which there was always
atleast five pairs ofidentical sequences observed with the other coun-
ties in the subset. This is done to remove potential noise associated
with low number of pairs observed. As the NMDS algorithm requires
ameasure of similarity between counties, we define the similarity s, ,
between counties A and B as:

_RRO
Sip=€ RR4 B

We perform two-dimensional NMDS using the vegan R package®.

Transmission direction: EWA and WWA. We evaluate whether the
timing of identical sequence collectionis consistent with transmission
rather occurring from WWA to EWA or EWA to WWA. We define four
time periods corresponding the four epidemic waves experienced by
WA during our study period (Supplementary Fig. 24): wave 4, March
2021-June 2021; wave 5,July 2021-November 2021; wave 6, December
2021-February 2022; and wave 7, March 2022-August 2022. For each
ofthesetime periods, we compute the proportion of pairs of identical
sequences first collected in EWA among pairs of identical sequences
observed in both EWA and WWA that were not collected on the same
day. Wereport 95% binomial proportion Claround these proportions.
To examine whether our conclusions could be explained by differ-
ences in testing behaviours between EWA and WWA, we conduct a
sensitivity analysis by imputing the date of symptom onset.

Mobility analyses

Relationship with mobility data. We compute the Spearman cor-
relation coefficient between the RR of observing identical sequences
between two counties and the RR of movement between two counties
(both from mobile phone derived and commuting mobility data) as
well as the geographical distance between counties’ centroids. We
determine the percentage of variance in the genetic data explained by
the mobility data by fitting GAMs predicting the RR of observingiden-
tical sequences based on the RR of movement between two counties,
both on alogarithmic scale, using a thin-plate smoothing spline with
5Sknots. For the GAM analyses, we remove pairs of counties for which
the number of pairs of identical sequences or the total mobility flow
isequal to O, which ensures that both the RR of observing identical
sequences and the RR of movement are strictly positive. We also fit a
GAM between the RR of observing identical sequences between two
counties (on alogarithmic scale) and the distance between counties
centroids. We repeat these analyses at the regional level, instead of at
the county level.

Outliers from that relationship. We define outliers in the relationship
between genetic and mobility data as pairs of counties for which the
absolute value of the scaled Pearson residuals of the GAM is greater than
3. Aswe expect RRs computed from alow number of pairs of identical
sequences to be more noisy, we focus on pairs of counties for which
atleast 100 pairs of identical sequences are observed throughout the
study period.

Spread between male prison postcodes

Centrality analysis. We characterize transmission between the ten
postcodes with male state prisons by performing a network central-
ity analysis. We consider a network with ten nodes corresponding to
these different postcodes. We define the weight of each edge as the
RR of observing identical sequences between the two postcodes that
define the nodes connected by this edge. This results in a fully con-
nected network. For each node (postcode with a male state prison),
we compute eigenvector centrality scores using the Rigraph package.
This centrality score measures anode’sinfluence in the network: nodes
have higher scores when they are connected to other influential nodes.

Shared big clusters between postcodes. We define large clusters
of identical sequences in the prison networks as clusters of identical
SARS-CoV-2 sequences (1) that are observed in at least two postcodes
with male prisons and (2) with atleast 15sequencesin prison postcodes.

Age analyses

Relationship with social contact data. We quantify the association
between the RR RRY ; of observing identical sequences between
two age groups A and B and the RR of contacts RR{%"“** between
these two groups using a GAM on alogarithmic scale. We report the
percentage of variance in the RR of identical sequences explained
by the RR of contact from the GAM. We also report the Spearman
correlation coefficient between RR ; and RR{5™°.

Age-specific transmission across scales. To understand how age-
specific transmission patterns vary across spatial scales, we compare
the RR of observingidentical sequences between age groups using all
pairs of identical sequences, using only pairs of identical sequences
in different postcodes and using only pairs of identical sequences in
different counties.

Typical direction of spread between ages. We use sequence col-
lection dates to explore transmission direction between age groups
across four periods (March 2021-June 2021, July 2021-November
2021, December 2021-February 2022 and March 2022-August 2022).
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To facilitate the interpretation of these results, we introduce an ear-
liness score that measures the contribution of a given age group to
transmission to other age groups. For anage group A, this scoreis equal
to the proportion of pairs of identical sequences first observedin age
group Aamong all pairs of identical sequences observed in age groups
A.Wealsoreport the 95% binomial Cl around this score.

To explore whether our conclusions could be explained by differ-
encesintestingbehaviours betweenage group, we conduct asensitivity
analysis by imputing the dates of symptom onset and using symp-
tomonset datesinstead of sequence collection ones (Supplementary
Fig.15). We also compute earliness scores oneach of the 1,000 datasets
with imputed symptom onset dates using the same definition as that
based on sequence collection dates. We then report the median earli-
ness score across all 1,000 datasets as well as an uncertainty range
defined as the minimum lower bound and the maximum upper bound of
the 95% binomial Cl around this score for each of theimputed dataset.

RR between vaccination groups. Available matched patient informa-
tioninclude details regarding the individuals’ vaccination statuses upon
positive test: No valid vaccination record (denoted unvaccinated);
completed primary series (denoted vaccinated); and completed pri-
mary series with an additional dose (denoted boosted).

Here, we use this information to quantify mixing between groups
characterized by their vaccination status. We focus on the mixing
between vaccination groups within age groups to avoid biases com-
ing from age group and vaccination status being correlated. Among
sequences collected within each period (4 waves) and age groups in
decade, we compute the RR of observingidentical sequences between
vaccination groups. We included the boosted vaccination group for
wave 6 (Omicron BA.1 wave) only for age groups older than 10 years,
and included the boosted vaccination group for wave 7 for the 0-9
year age group. We included the 0-9 year age group in our analysis
only from wave 6 (Omicron BA.1 wave) and the 10-19 year age group
from wave 5 (Delta wave).

To quantify the tendency of individuals of transmitting to individu-
alswiththe same vaccination status, we compute for each vaccination
groups (V,, V) theratioRRy, ,/RR,, . Valueslower thanlindicate that
the enrichment of pairs of identical sequences is greater within the
same vaccination group than between different vaccination groups.
Suchvalues suggest assortativity in mixing patterns between vaccina-
tion groups.

Sensitivity analysis: direction analysis

Inthe former paragraphs, we describe anapproachbased on the timing of
pairsofidentical sequencestobetter understand the typical transmission
direction betweengroups. Theinterpretation of this pair-based analysis
is complicated by several factors. First, clusters of identical sequences
canspanmore thantwo groups. Second, evenininstances where clusters
only span two groups, counting pairs couldimproperly capture transmis-
siondirection, forexampleiflocal transmission of the clusteris occurring
within the two groups. We implemented this pair-based approach as
anintuitive exploration of whether the timing of sampling of identical
sequences might provide some signal about transmission direction. This
pair-based approachis crudebut yetinteresting as we do expect groups
thattend tobe the source to more often be observed first within clusters
or pairs ofidentical sequences. As asanity check, we performasensitiv-
ity analysis relying on clusters of identical sequences that are observed
only within two groups. We define the source group as the group of the
earliest collected sequence within the cluster of identical sequences. We
remove ambiguous clusters, meaning clusters with two potential source
groups, from the analysis. For clusters observed in groups A and B, we
compute the proportion of clusters with source group A. We refer to
this proportion as ‘proportion from clusters’ to distinguish it from the
‘proportion from pairs’ that we use in our main analysis. We compute
the 95% Cl around the proportion from clusters. This proportion from

clusters should be more robust that the proportion from pairs but tends
tobenoisier as we are computing the proportion fromless observations.
We then compare the proportion obtained from pairs and from clusters.
We compute the Spearman correlation coefficient between these two
proportions using all pairs of groups or only pairs of groups for which
the Cls do not contain 50% for the two proportions.

Link between mutations and generations

In this section, we derive the probability distribution of the number
of mutations M, separating the consensus genomes of two infected
individuals A and B conditional on the number of transmission genera-
tions G,z separating them.

Generation time distribution. We assume that the generation time
(thatis, the average duration between the infection time of aninfector
and aninfectee) follows a Gamma distribution of shape a and scale .
The time between g generations then follows a Gamma distribution
of shapeg x aandscale fassumingindependence of successive trans-
mission events. Let f, 4(-) denote the probability density function of a
Gammadistribution of shape a and scale 5.

Mutations events. Let M, denote the number of mutations separating
their infecting viruses. Let # denote the mutation rate of the virus (in
mutations per day). Let T5}° denote the evolutionary time separating
Aand B (indays).

Assuming a Poisson process for the occurrence of mutations, we
have:

My~ Plu < T35°)

Probability distribution. Let G,; denote the number of generations
separating two infected individuals A and B belonging to the same
transmission chain.
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Application to SARS-CoV-2. We compute these probabilities for
SARS-CoV-2 considering amutationrate i = 8.98 x 102 substitutions per
day (32.76 substitutions per year)*s. We assume that the generation time
is Gamma distributed withamean 5.9 days and s.d. of 4.8 days (ref. 59).

Performance of the RR framework

We conduct a simulation study to evaluate how our RR framework
performs under different sequencing scenarios. We also compare the
results obtained from a phylogeographical analysis.



Simulating synthetic sequence data. We use ReMASTER® to simu-
late an SEIR epidemic in a structured population with 5 demes, each
populated with 100,000 inhabitants. We simulate an epidemic char-
acterized by abasic reproduction number R, of 2 with adaily time-step.
Weinitiate the simulations by introducing a single infected individual
(compartment /) in the population (group of index 0). We consider a
pathogen with a3,000 kb genome evolving following a Jukes-Cantor
evolution model with a substitution rate of 3 x 107 substitutions per
site per day. After infection, infected individuals enter an exposed (E)
compartment during which they are not infectious yet and that they
exitatarate of 0.33 per day. They then enter aninfectious (I) compart-
ment where they are infectious that they exit at a rate of 0.33 per day.
Sequencing occurs after exit of the | compartment. Given that our
RR does not account for directionality in transmission, we consid-
ered a scenario with symmetric migration rates. We draw migration
rates between demes from a log-uniform distribution of parameters
(1073,107%).

Wethen explore two sequencing scenarios. In an unbiased scenario,
we assume that each individual has the same probability of being
sequenced in each deme. In a biased scenario, we assume that the
sequencing probability varies between demes. We draw deme-specific
relative sequencing probabilities from a log-uniform distribution of
parameters (107%,107). In the unbiased scenario, we fix sequencing
probability to the mean of the sequencing probabilities across demes
inthebiased scenario. We explore different sequencing intensities by
scaling these probabilities by different multiplicative factor (Supple-
mentary Table1): ascaling factor of 0.1resulting ina mean sequencing
probability of 0.43% and a dataset of around 1,700 sequences (used for
the DTA analyses); ascaling factor of 0.5 resulting inamean sequencing
probability of 2.16% and a dataset of around 8,600 sequences (used
forthe RRand the DTA analyses); and ascaling factor of 2resultingina
mean sequencing probability of 8.66% and a dataset of around 34,500
sequences (used for the RR analyses).

DTA. We conduct phylogeographical inference using symmetric DTA™
using the Bayesian stochastic search variable selection (BSSVS) model
implemented in BEAST (v.1.10.4)% applied to the synthetic data simulated
inour two sequencing scenarios. To isolate the accuracy and precision of
the phylogeographical reconstruction, we run our DTA using an empiri-
caltreethatisgenerated directly from ReMASTER simulations. Directly
inputtingsuchatreeisnot possible inreal-world scenarios inwhich the
genealogical tree must be (noisily) estimated from empirical sequence
data. In this case, it serves a demonstration of the power of DTA when
provided perfect genealogical signal. The empirical tree approachalso
requires substantially less computationand therefore enabled us to ana-
lyse datasets of thousands of sequences using DTA in acceptable time.

Two independent Markov chain Monte Carlo (MCMC) procedures
are run for 2.5 x 10% iterations and sampled every 1,000 iterations.
The resulting posterior distributions are combined after discarding
initial 10% of sampled trees as burn-in from each of them. We used
Tracer (v.1.7)%? to assess convergence and to estimate the effective
sampling size (ESS), ensuring ESS values greater than 200 for each
migration rate estimate. We adjust the estimated migration rates by the
estimated rate scalar to calculate the per-day rates of transition between
demes.

To evaluate how estimating the genealogical tree from empirical
sequence dataimpacts both results and computing times, we perform
anadditional phylogeographical analysis based on simulated but this
timejointly inferring the genealogical tree and migration rates. Werun
this model for 24 days (corresponding to 475,733,000 MCMC steps),
until each migration rate parameter has an ESS greater than 200.

RR analysis. We compute the RR of observing identical sequences
between two demes i andjand compare these RR to the daily prob-
ability p, ;of migration between these two demes whichis computedas:

p,;= 1-exp(-my;) j#i

p;=1- > Pk
k#i

where m;;is the migration rate between demes i and j. We generate
95% subsampling Cls around the RRs using an 80% subsampling rate.

Expected relationship with RR of contact

We perform a simulation study to characterize the expected relation-
shipbetween the RR of observingidentical sequences between groups
and the RR of contacts between these groups. We illustrate this by
looking at transmission between age groups but we expect a similar
relationship between the RR of observing identical sequences between
regions and the RR of movement between these regions.

To do so, we generate clusters of identical sequences including
the age group of the corresponding infected individuals assuming
a probability that an infector and an infectee have the same consen-
sus sequences p of 0.7 (close to the value we previously estimated for
SARS-CoV-2"), areproduction number R of 1.2 and a sequencing frac-
tion p,.,0f 0.1.

We use a contact matrix estimated previously** to characterize dis-
ease transmission between age groups. We assume that the probability
p4sforacontact from an infected individual in age group A to occur
with a susceptible individual in age group Bis equal to:

p, .= Ca,B
AB~
zB/CA,B'

where c, 5 is the mean daily number of contacts that an individual
in age group A has with individuals in age group B. We introduce an
age-specificreproduction number (R,) describing the average number
of secondary cases infected by a single primary case within age group
A. As different age groups have different average daily total number of
contacts, the age-specific reproduction number varies between age
groups. It can be derived as:

ZB' CA,B’ «

B="pc) R

where p(C) is the maximum eigenvalue of the matrix C=(c, ;)*. We then

simulate individual clusters of identical sequences using the following

steps. First, we initialize clusters by drawing the age of the primary
case A imary fromauniformdistribution. Second, we simulate clusters
as successive infections with identical genomes. At each generation,
for each individual infected at the previous generation, let A denote
the age of this infectious individual. We use the following procedure:

1. Draw the number of infections with the same genotype:/~ P((pxR,) ™)
(Poisson distribution).

2. Draw the age of these individuals:(4;, ..., A)) ~ M/, Rage. (D, 1, - - -
pA:"age)) where M(n, k, (py...,p)) isa multinomial distribution
with ntrials, k possible events with probabilities (p;, ..., py)-

3. Draw the sequencing status of each new cluster member from a
Bernoulli distribution of parameter p,.

We end simulations after ten generations to minimize computational
costs.

Dataset size required to compute RRs

We implement a downsampling strategy to understand the amount
of sequencing data required to compute RR estimates. We con-
sider genome datasets of the following sizes: {1 x 10?2 x10?, 3 x 107,
4x10%5x10% 6 x10%,7x10%, 8 x10%,9 x10%,1x10% 2 x10% 3 x 10?,
4 x103% 5x10% 6 x10% 7 x 10% 8 x10% 9 x10%,1x10%, 2 x10*, 3 x 10*,
4 x10* 5x10% 6 x10*, 7 x10*, 8 x10*, 9 x 10*,1 x 10%}. For each of
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these dataset sizes, we generated 100 downsampled datasets from

our WA sequencing data. For each of these downsampled datasets,

we compute the RR of observing identical sequences between age

groups (Supplementary Fig. 25). To understand how the number of

groups studied impacts the amount of data required, we also com-

pute RR of observing identical sequences between aggregated age

groups:

« 0-39years and over 40 years for 2 age groups;

« 0-29 years, 30-59 years and over 60 years for 3 age groups;

« 0-19 years, 20-39 years, 40-59 years and over 60 years for 4 age
groups;

* 0-9years,10-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59
years, 60-69 years, 70-79 years and over 80 (standard definition used
throughout the paper) for 9 age groups.

We compute the error between the RR obtained fromasubsampled
dataset RR?and the RR from the full dataset RR as:

RRY - RR/
€E=——"—
RRS

For each pair of age groups, we then compute the number of pairs of
identical sequences required for the error to be below 10%.

Extending the Hamming distance threshold

In this work, we assess how pairs of infected individuals whose
infected genome is separated by O mutations can help to character-
ize population-level transmission patterns. We apply this method to
SARS-CoV-2 sequences from WA but our approach should be broadly
applicable forepidemics caused by pathogens where the timescale of
mutation eventsis similar to that of transmission events. In this section,
we describe a simulation approach to understand how a pathogen’s
mutation rate could impact the optimal Hamming distance threshold
to apply our RR framework.

Weimplement the same simulation framework as the one described
in the section ‘Performance of the RR framework’. We consider that
eachinfection has the same probability of being sequenced (equal to
4.33%, corresponding to asequencing probability scaling factor of 1).
We explore a range of scenarios for the pathogen’s mutation rate. To
do so, we introduce a multiplicative scaling factor for the baseline
pathogen’s mutation rate (3 x 10~ substitutions per site per day) with
values ranging between 0.1 and 10. For each multiplicative scaling
factor, we perform 100 replicate simulations.

For each simulated epidemic, we count the number of pairs separated
by less than d mutations between two regions (for d varying between
0 and 10). In certain scenarios (for example, those characterized by
a high mutation rate and a low Hamming distance threshold d), we
sometimes do not observe any pairs less than d mutations away in a
specificgroup. Tobe able to compute the RR evenin those scenarios, we
reportamodified version of the RR of observing sequences separated
by less than d mutations between two regions:

(nf g+ x(nl+1)

(nf.+1) x(nf.+1)

~ d
4,8~

with the same notations as the ones used in the definition of the
RR of observing sequences less than d mutations away in groups A
andB.

We then compute the Spearman correlation coefficient between
the RR for pairs of sequences less than d mutations apart of being
in two regions and the daily migration probability between these
regions. In simulations in which the s.d. of the RR is equal to O (all
modified RRs have the same value), we assume that the Spearman
correlation coefficient is equal to O (RRs are not informative about
migration rates).
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Data availability

All114,552 SARS-CoV-2 genome sequences referenced in this Article are
sharedin the GISAID EpiCoV database and are available with standard
metadata (generally consisting of date of sample collection, state of
sample collection and sometimes county of sample collection)***.
GISAID accessions and asequence-level acknowledgements table are
provided in the GitHub repository associated with this manuscript®¢,
Intotal, 102,528 of these sequences are available publicly in NCBI Gen-
Bank and GenBank accessions are referenced in the acknowledgment
table. More detailed metadata curated by Washington State Depart-
ment of Health (WA DOH) of county, postcode, age group and vaccina-
tion status were shared with the Fred Hutchinson Cancer Center under
aDataSharing Agreement for Confidential Datawith anassociated IRB
exempt determination as determined by the Washington State Institu-
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sharing agreements and human subjects review. To initiate a collabo-
ration, interested parties can contact A.B. (alli.black@doh.wa.gov).
RR computations in the Article derive entirely from counts of pairs of
identical sequences shared between groups. To reproduce analyses,
we share counts of pairs of identical sequences between population
groups (counties and age groups) obtained from processing these
sequence dataalongside granular metadata at GitHub (https://github.
com/blab/phylo-kernel-public)®¢. We also provide a detailed expla-
nation on how to reproduce the analyses using only the data publicly
available on NCBI GenBank.

Code availability

Codetoreproduceour analysesisavailable at GitHub (https://github.
com/blab/phylo-kernel-public)* and Zenodo (https://doi.org/10.5281/
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ment our RR approach is available at GitHub (https://github.com/
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Extended DataFig. 9 |Impact ofthe pathogen’s mutationrate on the
optimal Hamming distance threshold to apply our RR framework. Boxplots
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Mutation rate scaling compared to a SARS-CoV-2 like pathogen
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Extended Data Table 1| Comparison between the relative risk of observing identical sequences between two geographic
regions and the risk of movement between different geographies

At the county level

At the region level

Spearman correlation p

Mobile phone mobility 35% 61%
Workflow mobility data 40% 59%
Geographic distance -35% -48%
Spearman correlation p (without 0)

Mobile phone mobility 43% 61%
Workflow mobility data 56% 59%
Geographic distance -36% -48%
Variance explained (GAM)

Mobile phone mobility 60% 81%
Workflow mobility data 70% 79%
Geographic distance 32% 57%

We consider three data sources to inform the relative risk of movement between geographies: the relative risk for a visit to occur between two geographies (from mobile phone data), the rela-
tive risk for a work commute to occur between two geographies (from workflow data) and the geographic distance between geographies’ centroids.
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