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Fine-scale patterns of SARS-CoV-2 spread 
from identical pathogen sequences

Cécile Tran-Kiem1 ✉, Miguel I. Paredes1,2, Amanda C. Perofsky3,4, Lauren A. Frisbie5, 
Hong Xie6, Kevin Kong6, Amelia Weixler6, Alexander L. Greninger1,6, Pavitra Roychoudhury1,6, 
JohnAric M. Peterson5, Andrew Delgado5, Holly Halstead5, Drew MacKellar5, Philip Dykema5, 
Luis Gamboa3, Chris D. Frazar7, Erica Ryke7, Jeremy Stone3, David Reinhart3, Lea Starita3,7, 
Allison Thibodeau5, Cory Yun5, Frank Aragona5, Allison Black5, Cécile Viboud4 & 
Trevor Bedford1,8

Pathogen genomics can provide insights into underlying infectious disease 
transmission patterns1,2, but new methods are needed to handle modern large-scale 
pathogen genome datasets and realize this full potential3–5. In particular, genetically 
proximal viruses should be highly informative about transmission events as genetic 
proximity indicates epidemiological linkage. Here we use pairs of identical sequences 
to characterize fine-scale transmission patterns using 114,298 SARS-CoV-2 genomes 
collected through Washington State (USA) genomic sentinel surveillance with 
associated age and residence location information between March 2021 and December 
2022. This corresponds to 59,660 sequences with another identical sequence in the 
dataset. We find that the location of pairs of identical sequences is highly consistent 
with expectations from mobility and social contact data. Outliers in the relationship 
between genetic and mobility data can be explained by SARS-CoV-2 transmission 
between postcodes with male prisons, consistent with transmission between prison 
facilities. We find that transmission patterns between age groups vary across spatial 
scales. Finally, we use the timing of sequence collection to understand the age groups 
driving transmission. Overall, this study improves our ability to use large pathogen 
genome datasets to understand the determinants of infectious disease spread.

Pathogen transmission is impacted by a multiplicity of factors associ-
ated with individual, population and environmental characteristics. As 
exposure and transmission are not directly observed, evaluating the 
contribution of these different factors to epidemic dynamics generally 
proves difficult. However, to anticipate the burden associated with 
epidemics and guide control policies, it is pivotal to understand how 
these different elements shape transmission risk.

Sequence data can provide insights into the proximity of individuals 
in a transmission chain. Phylogeographical approaches have helped to 
characterize how pathogens spread between different geographical 
regions6,7 and demographic groups8. However, these methods cur-
rently face multiple limitations. First, they do not scale well past a few 
hundred or few thousand sequences owing to difficulties in scaling 
phylogenetic tree inference. Second, conclusions can be highly biased 
when sequencing is uneven9. Thus, we need new methods to analyse 
large pathogen genome datasets, such as those produced during the 
COVID-19 pandemic, which number in the millions of genomes10.

As mutations accrue over the course of transmission events, we 
expect epidemiologically related individuals to be infected by patho-
gens that are genetically similar. Genetic-distance cut-offs have been 
used to distinguish plausibly-linked infections from infections resulting 

from distinct introductions within densely sampled outbreaks such as 
healthcare facilities or nursing homes11,12. Here we build from this expec-
tation to characterize transmission patterns at the population level.

We introduce a statistical framework describing the relative risk (RR) 
of observing genetically proximal sequences in specific subgroups of 
the population. Our metric of association accounts for heterogeneity 
in sequencing effort between sampled locations and does not require 
building a phylogenetic tree, therefore making this approach directly 
scalable to large pathogen genomic datasets. We use this framework 
to investigate the spatial and social drivers of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) transmission in Washington 
state (WA) by analysing 114,298 sequences (with associated age and 
home location information) collected through genomic sentinel sur-
veillance in WA between March 2021 and December 2022.

Spatio-temporal signal in identical sequences
As mutations accrue over time in pathogen sequences, individuals 
who are close together within a transmission chain are expected to 
be infected by genetically proximal viruses (Fig. 1a). For example, we 
expect that 64% of individuals infected with SARS-CoV-2 are infected 
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by a virus with the same consensus genome as their infector (Fig. 1b). 
Identical sequences should therefore be highly informative about 
SARS-CoV-2 transmission events as they are preferentially collected 
from the most epidemiologically linked individuals. Thus, their geo-
graphical clustering should be informative about spatial patterns of 
transmission. Here we leverage the clustering of identical sequences 
between groups to characterize transmission at the population level 
(Fig. 1a). In WA, we identified 17,231 clusters of identical sequences 
excluding singletons, corresponding to 59,660 sequences (Fig. 1c). In 
some large clusters of identical sequences, we observed local spread 
before wider geographical expansion (Fig. 1d). Using postcodes and 
collection dates, we estimated cluster radius in kilometres. Across 

clusters, we find that the spatial expansion of clusters increases over 
time (Fig. 1e) and is significantly lower than expected at random (Sup-
plementary Fig. 1). The probability for a cluster to remain within the 
county and zip code where it was first identified decreases over time. 
These probabilities are significantly higher than expected at ran-
dom (Supplementary Fig. 1). This confirms that clusters of identical 
sequences contain a strong spatial and temporal signature of spread.

RR framework
To quantify the association between subgroups of the population (such 
as geographical units or age groups) from genetic data, we introduce a 
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Fig. 1 | Temporal and spatial signature of spread in clusters of identical 
SARS-CoV-2 sequences. a, Clustering of identical pathogen sequences across 
population groups reflects underlying disease transmission patterns at the 
population level and can be used to characterize spread patterns between 
groups. Each colour represents a different cluster of identical sequences.  
b, Probability for two individuals separated by a fixed number of transmission 
generations of being infected by viruses at a given genetic distance assuming  
a Poisson process for the occurrence of substitutions (at a rate μ = 8.98 × 10−2 
substitutions per day) and gamma-distributed generation time (mean, 5.9 days; 
s.d., 4.8 days). c, Size distribution of clusters of identical sequences in the WA 
dataset. Clusters of size 1 correspond to singletons and are therefore not 
included in the RR computations. d, Spatiotemporal dynamics of sequence 

collection in two large clusters of identical sequences. The black diamonds 
indicate the location of Seattle, the largest city in WA. e, Radius of clusters of 
identical sequences (red line) and probability for all sequences within a cluster 
of identical sequences of remaining in the same spatial units (black lines) as  
a function of time since first sequence collection. In e, the cluster radius is 
computed as the mean spatial expansion of clusters of identical sequences.  
f, Definition of the RR of observing pairs of sequences in two subgroups as a 
measure of enrichment. g, RR of observing pairs of sequences within the same 
county as a function of the genetic distance separating them. The grey points 
correspond to values for individual counties. The orange triangles correspond 
to the median across counties. For a, d and f, maps were generated using 
shapefiles from the US Census Bureau44.
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measure of RR describing how the number of pairs of sequences sepa-
rated by a fixed genetic distance observed in two subgroups differs 
from what we expect from the sequencing effort (Fig. 1f and Meth-
ods). This RR can be interpreted as a measure of enrichment describing 
how the number of pairs shared by these two subgroups differs from 
what we expect from the overall number of pairs observed in these 
two subgroups.

Figure 1g shows the relationship between the RR of observing 
sequences within the same county and the genetic distance between 
pairs. Among all counties, the median RR of observing identi-
cal sequences within the same county is equal to 4.7 (interquartile 
range = 2.4–21.2) across the time period. When considering a greater 
genetic distance between pairs, this signal decreases to plateau at 1. 
This confirms that the location of genetically close sequences (less 
than a couple of mutations away) and especially identical sequences is 
informative about local spread patterns, wherein infected individuals 
transmit more often within their home county.

We observe this trend across variants and periods (Extended Data 
Fig. 1). The magnitude of the absolute RR along with the speed at which 
it decays as a function of genetic distance vary. For example, during 
the period in which the prevalence of the Omicron SARS-CoV-2 variant 
rises and the Delta SARS-CoV-2 variant declines, the RR of observing 
identical sequences in the same county is higher among Delta than 
Omicron sequences. This can be explained by differences in transmis-
sion intensity: a higher transmission rate results in larger clusters of 
identical sequences13 that will tend to be more geographically wide-
spread (Extended Data Fig. 1c). The spatial signal from genetically close 
sequences is therefore weaker in periods characterized by a higher 
transmission intensity. Other factors, such as changes in mixing and 
travels patterns, can also impact the magnitude of the RR.

Sampling biases can considerably impact the results of phylogeo-
graphical inference9. Here, although the proportion of pairs of identical 
sequences observed in a county is highly correlated with the number 
of sequences observed in this county, we find that the RR is no longer 
correlated with sequencing effort (Extended Data Fig. 2). Using a simu-
lation approach, we show that our RR metric captures the migration 
probability between population subgroups, including when sequenc-
ing effort is heterogeneous (Extended Data Fig. 3 and Supplementary 
Table 1). This contrasts with migration rates obtained from a discrete 
trait analysis (DTA)14 that are poorly correlated with true migration 
rates when sequencing effort differs between regions (Extended Data 
Fig. 3 and Supplementary Table 1). These DTA results are obtained by 
inputting the exact simulated transmission tree. In practice, infer-
ring the underlying tree will decrease accuracy due to phylogenetic 
uncertainty so that these DTA estimates represent an upper bound of 
the DTA’s potential performance. If we compare DTA accuracy between 
input phylogeny and phylogeny estimated from sequence data, we 
find that Pearson correlation between true migration rates and esti-
mated migration rates changes from 0.54 to 0.10 for unbiased sampling 
and changes from −0.22 to 0.15 for biased sampling (Supplementary 
Table 1). Running the phylogenetic DTA analysis on simulated data with 
1,745 sequences requires 1 day when using the empirical tree and 24 days 
when jointly inferring the tree and the migration rates (Methods). Run-
ning our RR analysis on the same sequence dataset takes 33 s. This 
result demonstrates that the RR framework constitutes an appropriate 
approach to study the determinants of SARS-CoV-2 transmission by 
explicitly accounting for sequencing effort and uneven sequencing 
between population subgroups.

Patterns of SARS-CoV-2 spread between WA counties
We examined the geographical spread by analysing patterns of 
occurrence of identical sequences in WA counties (Fig. 2). The matrix 
of pairwise RRs between counties (Supplementary Fig. 2) is charac-
terized by a strong diagonal, which is consistent with within-county 

transmission. To better understand the spatial patterns of SARS-CoV-2 
spread between counties, we display these RRs on choropleth maps 
indicating the RR for different focal counties (Fig. 2a and Supplemen-
tary Fig. 3). These maps suggest that identical sequences have a higher 
risk of falling within counties that are geographically nearby. Across all 
pairs of counties, we find a geographical gradient in the RR of identical 
sequences, whereby the risk is highest within the same county, inter-
mediate between adjacent counties and lowest between non-adjacent 
counties (Fig. 2b). The risk of observing identical sequences between 
counties also decays as a function of geographical distance (Fig. 2c) 
and is no longer significant at distances greater than 177 km (95% con-
fidence interval (CI) = 137–241).

To assess whether global spatial structure is maintained, we imple-
mented a multidimensional scaling (MDS) algorithm by defining a 
similarity metric based on the RR of observing identical sequences 
between counties. MDS enables us to display the relatedness of obser-
vations based on a distance matrix. This MDS ordination shows county 
relationships that recapitulate the Western (WWA) and Eastern (EWA) 
WA regions, two regions that are separated by the Cascades mountain 
range (Fig. 2d). Within EWA and WWA, we find a strong signal for local 
spread, with identical sequences having a higher risk of being observed 
between adjacent than between non-adjacent counties (Fig. 2e). Across 
the EWA–WWA border, we no longer find that identical sequences have 
an increased risk of being observed in adjacent counties. Results are 
similar when analysing pairs of identical sequences at the postcode level 
(Supplementary Table 2). This lack of association is not affected by the 
low number of pairs of adjacent counties across the EWA–WWA border 
(Supplementary Fig. 4). This illustrates how heterogeneous physical 
landscape features can impact and distort patterns of disease spread 
and genetic diversity15–18. We also find that the association between the 
RR of observing identical sequences in two counties is significant at 
greater distance within EWA than within WWA (Fig. 2f). We do not find 
any association with distance across the EWA–WWA border, although 
this might be explained by the lack of counties with low distances across 
the EWA–WWA border.

Finally, we find that, across epidemic waves, pairs of identical 
sequences observed on both sides of the Cascades are consistently 
observed first in WWA (Fig. 2g and Supplementary Fig. 5). As testing 
behaviour and access to healthcare can be influenced by county demo-
graphic characteristics and how rural or urban a county is, we exam-
ined how this trend varied when using symptom onset dates instead 
of sequence collection dates, which provides similar trends (Fig. 2g). 
Despite the existence of negative serial interval for SARS-CoV-219, this 
analysis provides direct insights into the typical transmission direc-
tion between groups as the proportion of SARS-CoV-2 transmission 
pairs with positive serial intervals in greater than 50% (ref. 20) (Sup-
plementary Note 1). This asymmetry suggests that identical sequence 
clusters tend to percolate from WWA to EWA more so than the reverse, 
indicating that transmission generally flows from WWA to EWA. This 
trend is similar to the one reported in phylogeographical analyses of 
the first COVID-19 wave in WA that concluded that more introductions 
occurred from WWA to EWA than from EWA to WWA21.

Relationship with human mobility
We next examined the extent to which spatial transmission patterns 
inferred from identical sequences can be explained by human mobil-
ity indicators. To compute the RR of movement between two counties 
or regions, we used aggregated mobile phone location data obtained 
from the SafeGraph ‘Weekly Patterns’ dataset and pre-pandemic 
commuting data from the US Census Bureau22 (Methods). Despite 
commuting data being collected before the pandemic and mobile 
phone location data being collected during our study period, we 
found that these two mobility data sources are highly correlated (Sup-
plementary Fig. 6). We assessed how the RR of observing identical 
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sequences in two counties relates to the RR of movement (Fig. 3a, 
Extended Data Fig. 4 and Extended Data Table 1) by implementing a 
generalized additive model (GAM) that includes a single predictor 
of smoothed RR of movement between two counties as a covari-
ate. We used a GAM rather than linear regression as we expect the 
functional form of the relationship to be nonlinear (Supplementary 
Fig. 7). This nonlinearity can be explained by the indirect mapping 
between transmission events and identical sequences that encompass 

both direct transmission pairs and pairs of individuals a couple  
generations apart.

When comparing RRs at the county level, we found that 60% of the 
variance in identical sequence data is explained by between-county 
flows derived from the mobile phone data (Fig. 3a and Extended 
Data Table 1). For a subset of counties, the number of pairs of identi-
cal sequences or the number of trips reported in the mobility data-
set is low. For these low counts, we expect RRs to be more noisy. 
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Fig. 2 | Identical sequences reveal patterns of spread between WA counties. 
a, Illustration of the pairwise RR of observing identical sequences between 
counties, using sequences shared between Stevens County (red point) and 
other counties in WA as an example. Similar maps for the other counties are 
depicted in Supplementary Fig. 3. b, RR of observing pairs of identical 
sequences by counties’ adjacency status. c, RR of observing pairs of identical 
sequences as a function of the geographical distance between counties’ 
centroids. d, Similarity between WA counties obtained from MDS based on the 
RR of observing pairs of identical sequences in two counties. Counties are 
coloured by east–west region membership. e, RR of observing pairs of identical 
sequences by counties’ adjacency status stratified by counties east–west region 
membership. f, RR of observing pairs of identical sequences as a function of the 
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from the US Census Bureau44.
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To remove potential noise associated with these lower counts, we 
repeated this analysis at a larger spatial scale. Aggregating pairs at 
the regional level (9 regions in WA for 39 counties; Supplementary 
Fig. 8) increases the variance explained to 81% (Supplementary Fig. 9). 
We also find that pre-pandemic workflow data are highly informative 
of the spatial distribution of pairs of identical sequences with a similar 
strength of relationship to that observed for mobile phone mobility 
data (Extended Data Fig. 4, Supplementary Fig. 9 and Extended Data  
Table 1).

Non-pharmaceutical interventions along with behavioural changes 
have impacted human mobility patterns throughout the COVID-19 
pandemic. We find that mobility data explain a high percentage of vari-
ance in the RR of observing identical sequences between WA regions 
across individual epidemic waves (Supplementary Fig. 10) but not to 
a greater extent than over the entire study period. This can probably 
be explained by the high stability of the structure of the mobility net-
work between WA counties across epidemic waves (Supplementary 
Fig. 11). This suggests that analysing COVID-19 waves separately tends 
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to introduce noise rather than increase the spatial resolution, consist-
ent with a former analysis that concluded that there was a high stabil-
ity of between-county mobility patterns during the beginning of the 
pandemic in the United States23.

Among counties located across the EWA–WWA border, the risk of 
movement across the border is lower than the risk of movement within 
the same region (Supplementary Fig. 12). This shows that human mobil-
ity is highly predictive of the location of pairs of identical sequences 
and explains some of the spatial patterns reported in Fig. 2.

Association between outliers and male prisons
We identified unexpected patterns of transmission between counties 
from outliers in the relationship between mobility and genetic data 
(Fig. 3a). We define outliers as pairs of counties for which the abso-
lute value of the scaled Pearson residual from the GAM is greater than 
3. As we expect RRs computed from a low number of pairs of identi-
cal sequences to be noisier, we focused on pairs of counties between 
which at least 100 pairs of identical sequences are observed. We found 
unexpected patterns of SARS-CoV-2 spread between two non-adjacent 
pairs of counties, Franklin–Mason and Walla Walla–Mason counties, 
with more pairs of identical sequences observed than expected from 
mobility data (Fig. 3b). The association between Franklin and Mason 
(RR of 13.4, 95% CI = 11.4–16.4) and Walla Walla and Mason (RR of 5.9, 95% 
CI = 4.0–8.3) is particularly surprising given that they are non-adjacent 
counties located on different sides of the Cascades. As no demographic 
or geographical factors provide a straightforward explanation for such 
an association, we hypothesized that such a pattern might arise from 
SARS-CoV-2 spread on a dissemination network that differs from the 
general community. We identified that these three counties are the 
home of male state correction centres (Fig. 3c). We also found that 
identical sequences have a higher risk of being observed within Lin-
coln County and a lower risk of being observed within Pacific County 
than expected from cellphone mobility data, without identifying any 
demographic factor explaining these associations.

To investigate whether the unexpected pattern of association 
between Franklin and Mason, and Walla Walla and Mason counties 
can be explained by transmission within the prison network, we 
looked at patterns of association between Franklin and Mason and 
Walla Walla and Mason postcodes (Fig. 3d,e). For most of these pairs of 
postcodes, we do not observe any pair of identical sequences through-
out the study period. Notably, for each pair of counties, the genetic 
signal can be explained by a high RR of observing identical sequences 
between two postcodes, which correspond to the postcodes that are 
the home to the male correction centres that we identified. The greater 
number of pairs of identical sequences observed between Mason and 
Franklin and Mason and Walla Walla counties than expected from 
mobile-phone-derived mobility data can therefore be explained by 
a large number of pairs of identical sequences in specific postcodes 
with male correction centres.

We also investigated patterns of occurrence of pairs of identical 
sequences between the two counties (Mason and Pierce) that are the 
home to female prisons. At the county level, identical sequences do not 
have an increased risk of occurring between Mason and Pierce counties 
(RR of 0.59, 95% CI = 0.49–0.67). However, at the postcode level, we 
found that the RR of observing identical sequences is highest between 
the two postcodes with female prisons (Supplementary Fig. 13). This 
shows how our framework enables exploration of patterns of spread 
at different spatial scales: we do not find any signal at the county level, 
probably because Mason and Pierce are adjacent counties, but we can 
identify association at the postcode level.

It is interesting that the pairs of outliers that we identified systemati-
cally involved Mason County (Fig. 3b), which is the home of only the 
sixth (out of ten) most populated male prison in the state (Fig. 3c). 
The prison in Mason County (Washington Corrections Center) has a 

particular role in the WA prison network as it serves both as a reception 
centre for anyone entering the WA prison system and as a transfer hub24. 
To understand whether the prison network structure can explain pat-
terns of SARS-CoV-2 transmission, we conducted a centrality analysis. 
To do so, we analysed the network of postcodes with WA male prisons 
and we defined the weight of each edge by the RR of observing identi-
cal sequences between these two postcodes. We found that the two 
nodes with the highest eigenvector centrality scores are the postcodes 
that are the home of Washington Corrections Center (Fig. 3f) and of 
the Franklin County prison (most populated prison). This shows that 
patterns of occurrence of identical sequences in WA are imprinted by 
the structure of the prison network.

Finally, we investigated whether large clusters of identical sequences 
are shared between postcodes with male state prisons, which we define 
as clusters with more than 15 sequences in male state prisons postcodes. 
Figure 3g depicts the timing of the large clusters that we identified. 
Notably, the largest cluster (cluster A) includes 71 sequences collected 
between 18 July and 31 July 2022, 67 of which came from postcodes with 
male state prisons. The second largest cluster (cluster B) is composed 
of 58 sequences collected between 21 February and 29 March 2023, 
among which 51 came from 7 different prison postcodes. Notably, the 
postcode of Washington Corrections Center is the only one in which 
all of these eight clusters were observed.

Populations who are incarcerated have been particularly affected 
by the COVID-19 pandemic25,26. To mitigate the impact of the pandemic 
in these congregate settings, various interventions have been imple-
mented. In WA, for example, testing followed by quarantine protocols 
were carried out in Washington Corrections Center after admission and 
before any transfer. Active screening of staff was also implemented 
throughout the pandemic. However, individuals incarcerated who 
were diagnosed with COVID-19 at times had to be transferred from 
Washington Corrections Center to other WA prisons due to the finite 
capacity of the reception centre. With vaccine mandates, staff also 
had to be relocated to cope with the departure of other employees. 
Our results reveal multiple SARS-CoV-2 introductions between WA 
prisons, that could be explained by the movements of both individuals 
incarcerated and staff.

This analysis showcases how identical sequences can help to iden-
tify under-recognised viral dissemination networks that differ from 
transmission pathways in the general community. The counties that we 
identified as outliers in the relationship between genetic and mobility 
data have a particularly high ratio between the prison population size 
and the county population size (between around 2% and 4%; Supple-
mentary Table 3). This probably explains why we were able to detect 
this signal at the county level but had to investigate transmission at the 
postcode level to study transmission between other prisons.

Age transmission patterns vary across spatial scales
Spatial and social factors (such as age) are key determinants of the 
spread of respiratory infections such as SARS-CoV-2 and influenza27–30. 
We expect movement patterns to differ between age groups (such as 
children, adults and older people), which can impact patterns of disease 
transmission31–33. However, there has been limited empirical evidence 
of this phenomenon and data sources that can be leveraged to charac-
terize this interaction are critically needed. Here, we show that we can 
combine pathogen sequence information with detailed metadata to 
investigate how age mixing patterns vary across spatial scales.

We first examined whether we could recover the expected age-mixing 
signature from the sequence data before delving into the interaction 
between age and space. We found that the age groups in which identical 
sequences are observed are consistent with assortative mixing patterns 
and mixing between generations (Extended Data Fig. 5). Comparing 
this with expectations from synthetic social contact data for WA34, 
we found that the signal obtained from identical sequences is highly 
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correlated with that expected from age-mixing matrices (Fig. 4a; GAM: 
90% of variance explained; Spearman ρ = 0.86, P < 10−16). The signal for 
SARS-CoV-2 transmission between generations (such as between the 
0–9 year and 30–39 year age groups) fades out when considering pairs 
of sequences separated by a greater genetic distance (Extended Data 
Fig. 6). As sequences at a greater genetic distance come from individuals 
who are further apart within a transmission chain (Fig. 1a), fine-scale 

patterns of spread might indeed not be apparent from sequences at 
more than a couple of mutations away. This emphasizes the value of 
analysing identical pathogen sequences to characterize subtle patterns 
of pathogen spread and population mixing, especially when population 
subgroups are very mixed.

Next, we compared the RR of observing identical sequences between 
two age groups by looking at either all pairs of sequences or only pairs 
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of sequences from individuals living in different counties or postcodes. 
We found that the spatial scale modulates patterns of disease transmis-
sion between age groups (Fig. 4b,c and Extended Data Fig. 7). We found 
that pairs of identical sequences coming from the same county and 
postcode are enriched in same-age pairs. This enrichment is particularly 
important in older groups. For example, the RR of observing identical 
sequences in individuals aged 80 years and older drops from 1.80 (95% 
CI = 1.65–2.01) when considering all pairs to 0.79 (95% CI = 0.71–0.85) 
when considering pairs coming from individuals living in different 
counties (Extended Data Fig. 7). This shows that transmission to and 
from older age groups tends to occur close to their home location and 
suggests that older individuals’ typical radius of movement is smaller 
than that of other age groups. Only considering pairs of sequences in 
0–9 year olds coming from different spatial units largely decreases 
the signal for SARS-CoV-2 transmission between children and adults 
aged 30–49 years (Fig. 4c). This is expected given that we anticipate 
that most of these contacts occur within the household35. Overall, we 
find that looking at patterns of occurrence of identical sequences at a 
greater geographical scale largely distorts the contact structure. For 
example, the location of identical sequences suggests that transmission 
to and from older individuals outside of their home counties tends to 
occur with younger age groups, including younger children (such as 
grandchildren).

Mixing patterns between age groups have been extensively stud-
ied36,37. A social contact survey performed in southern China reported 
that older individuals’ contacts occurred closer to their homes com-
pared with younger individuals’ contacts38. However, overall, there has 
been limited evidence to quantify the spatial distribution of these con-
tacts. Spatial mixing is generally measured from aggregated mobility 
data sources that generally do not provide demographic information 
such as age. As spatial and age mixing are reconstructed from different 
data sources, understanding their interplay has been difficult. Here 
we show that we can directly leverage pathogen genome data with 
linked age and spatial information to understand where age-specific 
transmission is occurring. This suggests that the wider availability of 
sequencing data might provide an opportunity to directly infer how 
population groups interact in a way that is relevant for pathogen spread, 
without the need to implement laborious contact surveys or collect 
mobility data.

Timing of identical sequence collection
Finally, we used the timing of identical sequence collection to investi-
gate the age groups driving SARS-CoV-2 transmission over the course 
of the pandemic in WA. Within pairs of identical sequences, we indeed 
expect age groups acting as sources to be consistently detected before 
groups acting as sinks (Supplementary Fig. 14). In Fig. 4d, we display for 
every age group combination and across epidemic waves the propor-
tion of pairs of identical sequences first collected in a given age group. 
During the fourth and fifth pandemic wave in WA (mainly caused by 
the Alpha and Delta SARS-CoV-2 variants of concern, respectively), we 
found that pairs of identical sequences are consistently observed later 
in older groups even though the RR of observing identical sequences 
in older groups and younger groups is low (Extended Data Fig. 5). 
This could be consistent with younger age groups acting as source 
of infections for older individuals. During the fourth pandemic wave, 
sequences from individuals aged 20–29 years and 40–59 years are sys-
tematically observed before any other groups within pairs of identical 
sequences and likewise during the fifth pandemic wave, sequences from 
individuals aged 20–29 years and 40–69 years are observed earlier than 
other age groups. This could be consistent with these groups acting as 
sources of infection for the other age groups. During the sixth wave, 
sequences from individuals aged 10–19 years tend to be observed first 
within pairs of identical sequences, which suggests their role as sources 
for other ages groups and corresponds to the Omicron wave during 

a time when schools had recently returned to in-person instruction. 
From March 2022, the contribution to transmission is more evenly 
distributed across age groups.

The role played by young children during the COVID-19 pandemic has 
been highly debated30,39. Here we find that, during the Alpha and Delta 
epidemics (waves 4 and 5), children aged 0–9 years could have acted 
as a source of SARS-CoV-2 infections for older individuals but not for 
younger adults. This pattern disappears during the Omicron epidemic 
(wave 6) in which pairs of identical sequences tend to be observed first 
in other age groups before being collected in young children aged 0–9 
years. This could be explained by behavioural changes or by different 
immune profiles across age groups, resulting in different relative suscep-
tibility to Omicron relative to Delta40. Overall, we do not find an indica-
tion that young school-age children act as major sources of SARS-CoV-2 
transmission in the population, even after schools reopened.

Overall, our results highlight the porosity of SARS-CoV-2 transmis-
sion across age groups and suggest a role played by lower-risk groups 
in seeding infections in higher-risk groups. We come to similar con-
clusions when looking at the timing of symptom onset dates (Sup-
plementary Fig. 15), which suggests that our conclusions are robust to 
differences in testing behaviours across age groups. Our conclusions 
are consistent with existing literature emphasizing the important role 
played by young adults and teenagers and the limited contribution of 
children and older individuals in driving SARS-CoV-2 spread30,41. Ana-
lysing the timing of identical sequence collection provides immediate 
insights into pathogen flow between population subgroups.

Here, we focus on understanding patterns of SARS-CoV-2 spread 
between age groups, but this approach can be applied to investigate 
the spread of fast-evolving pathogens between various demographic 
groups, such as occupational and ethnic groups, behavioural and risk 
groups. For example, we find that identical sequences collected within 
an age group tend to be enriched with same-vaccine status pairs during 
the Alpha, Delta and Omicron BA.2/BA.5 waves in WA (Supplemen-
tary Fig. 16). Social clustering of unvaccinated individuals or generally 
individuals with a different immune background can have important 
implications regarding the size and likelihood of infectious disease 
outbreaks42,43. This suggests that our approach has the potential to shed 
light on such a phenomenon and more generally on broad determinants 
of disease transmission.

Caveats
Although our RR metric explicitly accounts for sampling intensity in 
locations in which pairs of identical sequences are collected, it cannot 
describe patterns of spread from non-sampled locations. In theory, 
unsampled locations could impact our assessment of local transmis-
sion patterns if two individuals with an identical sequence are both 
infected by someone outside the study area. However, in practice, we 
find that non-sampled locations have little impact on our RR computa-
tion (Extended Data Fig. 8). This suggests that background sequences 
are not required to evaluate SARS-CoV-2 transmission at the state level. 
Other epidemiological settings might nonetheless require more careful 
considerations, for example, in the hypothetical scenario in which a 
non-sampled location is responsible for the majority of the infections 
within the study area.

Compared with existing phylogeographical methods, our approach 
does not require including background sequences from outside loca-
tions, as non-sampled locations have little impact on the RR computa-
tion (Extended Data Fig. 8). Our approach could also overestimate RRs 
associated with transmission events that are over-represented in the 
sequencing data. For example, applying this analysis to sequences pre-
dominantly collected through household studies could overestimate 
the contribution of contacts within the household to the overall infec-
tion burden. In our case, patterns of occurrence of identical sequences 
in WA are potentially affected by intensive testing performed during 
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outbreaks within WA prisons during the pandemic. Part of the signal 
that we have detected might therefore come from a higher sequencing 
rate in prisons compared with in the general community. However, the 
very large clusters of identical sequences shared between multiple 
prison postcodes confirm that SARS-CoV-2 extensively spread within 
the prison network.

Our results suggest that the timing of sequence collection within 
clusters of identical sequences provides valuable information to under-
stand transmission direction. Here, we report a simple quantity based 
on the proportion of pairs first observed in a group that summarizes 
the earliness of a group compared with another within pairs of identi-
cal sequences. Such an earliness metric might incompletely capture 
the transmission process as clusters can for example span more than 
two groups. We performed a sensitivity analysis in which we relied 
only on clusters of identical sequences observed in two groups, pro-
viding similar results (Supplementary Fig. 17). Overall, more work is 
warranted to robustly quantify transmission rates from the timing of 
identical sequences.

Finally, the magnitude of RRs is impacted by transmission intensity 
(Extended Data Fig. 1), so that values computed between two regions 
across different time periods cannot be directly compared. However, 
within a time period, the ranking of RRs is informative about patterns of 
transmission between groups. Overall, further work exploring how pat-
terns of occurrence of identical sequences can be used to directly infer 
mixing rates between groups, while incorporating temporal changes 
in transmissibility would be particularly interesting.

Applicability beyond SARS-CoV-2
Here we studied patterns of SARS-CoV-2 transmission between geo-
graphies and age groups in WA using a particularly rich sequence 
dataset, both given the amount of sequences available and the quality 
of the associated metadata. However, this work can readily be applied 
to other densely sampled pathogens.

The power of our method is determined by the number of pairs of 
identical sequences available, which will be impacted by transmission 
intensity (higher reproduction numbers will tend to result in larger 
clusters of identical sequences13) and the relative timescale at which 
substitution and transmission events occur13. Overall, this approach 
is well tailored to study densely sampled outbreaks. Compared with 
phylogeny-based methods of which the power comes from the number 
of unique haplotypes, our ability to characterize spread from identi-
cal sequences depends on the number of haplotypes with multiple 
observations. Whereas we expect diminishing returns when sequenc-
ing a greater proportion of cases using phylogeny-based methods, 
with a decreasing number of new haplotypes per additional sequence, 
the number of haplotypes with multiple occurrences will increase for 
each additional sequence included in the dataset (Supplementary 
Fig. 18). The number of population groups included in the analysis will 
also impact the amount of sequencing data required. In situations in 
which the sample size results in a lower number of pairs of identical 
sequences, aggregating groups can be a valuable strategy to reduce 
uncertainty. Within our WA sequencing dataset, we find that assessing 
spread between two age groups requires around 102–103 sequences, 
whereas nine age groups increases the number of sequences required 
to 104–105 (Supplementary Fig. 19).

Extending the analysis to pairs of sequences separated by a greater 
Hamming distance could also increase the statistical power by increas-
ing the amount of data available, in particular for pathogens charac-
terized by a higher mutation rate (Extended Data Fig. 9). However, 
increasing the threshold comes at the cost of diluting the signal by 
including pairs that are less epidemiologically linked in the analysis, 
therefore introducing more noise (Extended Data Fig. 9). Other factors, 
such as the rate of mixing between groups or the natural history of the 
infection, can impact the optimal threshold.

Perspectives
Large-scale pathogen genome sequencing provides an incredible 
opportunity to understand where and how transmission is occurring. 
The computational cost of existing methods that rely on inferring the 
phylogenetic tree has limited their ability to elucidate fine-scale trans-
mission patterns. Analysing datasets that are orders of magnitude 
larger than those enabled by existing tree-based methods could provide 
insights into disease spread at finer granularity, such as among more 
numerous and smaller population groups. Here we show that a simple 
count-based metric based on pairs of identical pathogen sequences 
with detailed linked metadata can provide unique insights into the 
determinants of SARS-CoV-2 transmission. Future work investigating 
how to better describe asymmetry in transmission between groups 
and how to infer group-level contributions to epidemic growth from 
such data are a promising research direction. This shows that relying 
on pairs of identical or nearly identical pathogen sequences along with 
fine-grained metadata is valuable to understand how and where trans-
mission is happening. By providing scalable new tools to understand 
detailed pathogen spread patterns, we believe that this work represents 
an important development to guide future epidemic control efforts.
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Methods

Data sources and preprocessing
Sequence data and metadata. We analysed 116,791 SARS-CoV-2  
sequences from Washington state genomic sentinel surveillance sys-
tem45 sampled between 1 March 2021 and 31 December 2022. Sequence 
metadata are collated by the Washington State Department of Health 
and include sample collection date, symptom onset date, de-identified 
patient ID, county of home location, postcode of home location, age 
group (0–9 years, 10–19 years, 20–29 years, 30–39 years, 40–49 years, 
50–59 years, 60–69 years, 70–79 years and 80 years and above) and vac-
cination status upon positive test. For patients with multiple sequences 
in the database (2,309 out of 114,306 patients), we restricted our analysis 
to the earliest sequence collected. Among these 114,306 sequences, 
the age information is missing for 1 sequence, the county information 
for 659 sequences and the postcode information for 1,011 sequences.

Consensus sequences are extracted from the GISAID EpiCoV data-
base46,47 and curated using the Nextstrain nCoV ingest pipeline48. We 
discard sequences with undefined Nexstrain clade assignments (8 
sequences out of 114,306). This leaves us with 114,298 sequences, with 
114,297 sequences gathered from patients with known age, 113,639 
sequences gathered from patients with known county of home location 
and 113,287 sequences gathered from patients with known postcode of 
home location. In total, 96% of sequences have coverage in greater than 
90% of the genome. We match postcodes to zip code tabulation areas 
(ZCTAs). For postcodes that do not have a ZCTA with the same name, 
we manually match them by looking at ZCTA boundaries. All analyses 
at the postcode level use ZCTA metadata information. We extracted 
the postcodes of WA prison facilities online49.

Pairwise genetic distances. We compute pairwise genetic distances 
between Washington state sequences with the ape R package50 using 
Hamming distances. To avoid unnecessary computational costs, we 
compare only sequences belonging to the same Nextstrain clade51 and 
generate one distance matrix per clade. We do not expect the clade 
definition to impact the pairs of identical sequences that we identified 
as pairs of identical sequences should always belong to the same clade.

Generating pairs of identical sequences from a sequence data file is 
the most computationally expensive step in this analysis. To provide 
context, generating a distance matrix from 1,000 sequences takes 
33 s, while 10,000 sequences takes 1 h 37 min, on 1 core of an Apple M2 
chip. Generating the full distance matrix for the analysis set of 113,287 
sequences took around 96 hours of compute time readily parallelized 
across a compute cluster. More efficient software tools can significantly 
bring that compute time down (for example, 1.14 h with pairsnp52).

Workflow data. We use data describing the daily number of commut-
ers between each WA county from the American Community Survey 
(2016–2020)22. This dataset provides the number of directed com-
muting flows between residence and workplace counties. We use the 
number of commuting flows between counties to compute the RR of 
commute between two regions (see below).

Mobile phone location data. We obtain mobile device location 
data from SafeGraph (https://safegraph.com/), a data company that  
aggregates anonymized location data from 40 million devices, or 
approximately 10% of the US population, to measure foot traffic to 
over 6 million physical places (points of interest (POIs)) in the United 
States. Following a previous study53, we estimate movement within and 
between counties in Washington from January 2020 to June 2022, using 
SafeGraph’s Weekly Patterns dataset, which provides weekly counts 
of the total number of unique devices visiting a point of interest (POI) 
from a particular home census block group (CBG). POIs are fixed loca-
tions, such as businesses or attractions. A visit indicates that a device 
entered the building or spatial perimeter designated as a POI. The home 

location of a device is defined as its common nighttime (18:00–07:00) 
CBG for the past 6 consecutive weeks. We restrict our dataset to POIs 
that have been tracked by SafeGraph since December 2019. To measure 
movement within and between counties, we extract the home CBG 
of devices visiting POIs in each week and limit the dataset to devices 
with home CBGs in the county of a given POI (within-county move-
ment) or with home CBGs in counties outside of a given POI’s county 
(between-county movement). To adjust for variation in SafeGraph’s 
device panel size over time, we divide each county’s census population 
size by the number of devices in SafeGraph’s panel with home locations 
in that county each month and multiply the number of weekly visitors 
by that value. For each mobility indicator, we sum adjusted weekly 
visits across POIs from March 2021 to June 2022. We use the number of 
visits between counties to compute the RR of movement from mobile 
phone data between two regions (see below).

To explore potential geographical biases in the mobility data, we 
divided the weekly number of devices residing in each county by the 
weekly number of devices residing in WA state (observed proportions) 
and compared these values to expected proportions based on county and 
state census population sizes during 2020–2022. SafeGraph’s panel con-
sistently captured 2–5% of each county’s population, with strong correla-
tions between device counts and census population sizes (Spearman’s 
ρ = 0.99; Supplementary Fig. 20). We estimated county-level bias as the 
observed proportion of devices tracked by SafeGraph in individual coun-
ties relative to WA state minus the expected proportion based on census 
population sizes. Annual bias estimates for individual counties ranged 
from −2.2% to 1.7%, with no clear trend of over- or under-representation 
by population size or urban–rural classification (Supplementary 
Fig. 21). Although the most populous counties in WA state tend to have 
greater absolute bias, large counties are both under-represented and 
over-represented in the SafeGraph dataset (Supplementary Fig. 21). For 
example, the most populous county in WA, King County, was slightly 
under-represented each year (−2.2% to −1.6% bias; green negative outlier 
in Supplementary Fig. 21), while three of the other top five largest coun-
ties (Clark, Pierce and Spokane) were slightly over-represented (1.1% to 
1.7% bias; pink, blue and goldenrod positive outliers in Supplementary 
Fig. 21). Our method for estimating geographical bias is based on Saf-
eGraph’s Google Co-Lab Notebook on Quantifying Bias54.

Social-contact data. We use synthetic social contact data for WA gen-
erated previously34 based on reconstructing synthetic populations 
of interacting individuals using WA population demographics. They 
describe the per-capita probability for an individual of age i of interact-
ing with someone of age j during a day.

Quantifying connectivity between groups
From genetic data. To quantify connectivity from genetic data, we 
compute the RR for sequences separated by a given genetic distance 
of being in given subgroups of the population. Let n denote the number 
of sequences included in the study and Hi, j the Hamming distance  
between sequences indexed by i and j. Let Si denote the subgroup of 
sequence i. We introduce nA B

d
,  the number of Hamming distance matrix 

elements (excluding the diagonal) equal to d where sequence i belongs 
to group A and sequence j belongs to group B.

∑ ∑n = 1 1 1 1A B
d

i

n

j

n

i j H d S A S B,
=1 =1

{ ≠ } { = } { = } { = }i j i j,

where X → 1X is the indicator function which is equal to 1 if X is true and 
0 otherwise.

Let ∙ ∑n n=A
d

B A B
d

, ,  and ∑ ∑n n=d
A B A B

d
, ,∙ ∙ .

We derive the RR RRA B
d

,  for sequences separated by a genetic dis-
tance d of being observed in subgroups A and B compared to what is 
expected from the sequencing effort in the different subgroups of 
the population as:
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The numerator ∙n n/A B
d

A
d

, ,  corresponds to the proportion of the pairs 
where the subgroup of sequence i is A that are occurring with the  
B group.

The denominator ∙ ∙ ∙n n/B
d d

, ,  is a normalization factor quantifying the 
contribution of group B to the total number of pairs separated by a 
Hamming distance of d. The ratio between these two quantities there-
fore quantifies the extent to which pairs of sequences observed in 
groups A and B are enriched compared with the number of sequences 
observed in these groups.

We used a subsampling strategy to compute CIs around these RRs. 
Bootstrapping (random sampling with replacement) would result in 
comparing sequences with themselves and therefore lead to biased 
upwards RRs of observing identical sequences in the same group. To 
avoid this, we used a subsampling strategy (random sampling without 
replacement) with a 80% subsampling rate (1,000 replicate subsamples).

We provide the tools to compute this RR metric from user-provided 
sequence and metadata files in the GitHub repository associated with 
this Article55,56.

From mobility data. To quantify connectivity from mobility data, we 
compute the RR of movement between two geographical locations. 
Both the mobile phone and commuting mobility data provide directed 
flows between WA counties. Let wA→B denote the number of commuters 
reported in the commuting data (respectively the number of visits for 
the mobile phone mobility data) whose home residence is in county A 
and who work in county B (respectively for which a visit in county B is 
reported). We compute the total movement flow between counties A 
and B as:

w w w= +A B A B B A, → →

We then calculate the RR RRA B,
mobility of movement between counties A 

and B as:
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w w
w w
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,
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∙ ∙

where wX,• = ∑YwX,Y and w•,• = ∑X,YwX,Y.
We compute a similar statistic by aggregating counties at the regional 

level (Supplementary Fig. 8).

From social contact data. To quantify connectivity from social contact 
data, we compute the RR of contact between two age groups. Mistry 
et al.34 estimated the average daily number of contacts Mi, j that indi-
viduals of age i have with individuals of age j (considering one-year age 
bins). As we are interested in the age groups available in the sequence 
metadata, we reconstruct the average daily number of contacts cA,B that 
individuals within age group A have with individuals in age group B as:

∑ ∑
∑

c
M n

n
=

×
A B

i A j B i j i

i A i
,

∈ ∈ ,

∈

where ni is the number of individuals of age i. We can then derive the 
total daily number of contacts between age groups A and B as 
ΓA,B = cA,B × NA where NA is the number of individuals in age group A. We 
then compute the RR RRA B,

contacts for a contact of occurring between age 
groups A and B compared to what we expect if contacts were occurring 
at random in the population as:

RR =
Γ × Γ
Γ × ΓA B

A B

A B
,

contacts , ,

, ,

∙ ∙

∙ ∙

where ΓA,• is the total daily number of contacts involving individuals 
within age group A and Γ•,• is the total daily number of contacts in the 
population.

Studying directionality in transmission
We use the timing of sequence collection to understand directionality 
in transmission.

From sequence collection dates. We introduce tx as the time at which 
the sequence x was collected. Let IA,B denote the ensemble of pairs of 
identical sequences observed in groups A and B.

a b t tI = {( , ) ∈ I − > 0}A B A B a b, , ∣∣ ∣

therefore denotes the subset of these pairs with different sequence 
collection dates. We compute the proportion pA→B of pairs consistent 
with the transmission direction A → B as:

∣
p

a b I t t
I

=
#({( , ) ∈ < })

#( )A B
A B a b

A B
→

,

,

where #(X) is the cardinal of X.
We also report 95% binomial CIs around these proportions.

From symptom onset dates. The delay between infection and seq-
uence collection can be impacted by healthcare-seeking behaviours 
and access to testing, which might vary across age groups, geographical 
locations and time periods. If the distribution of the delay until test-
ing differs between two subgroups A and B, the proportion of pairs of 
identical sequences pA→B that are first collected in group A will both 
reflect the timing of infections and healthcare-seeking behaviours. 
When available, symptom onset dates should be less impacted by 
healthcare-seeking behaviours.

Among the 113,638 SARS-CoV-2 sequences with associated age group 
and county of home location information, symptom onset dates are 
available for 34,167 of them (30%). The availability of symptom onset 
information is susceptible to be impacted by individual demographic 
profiles (such as age), which could result in sequences with symptom 
onset information not being representative of all the sequences avail-
able. To avoid this, we impute missing symptom onset dates based on 
the empirical delay distribution between symptom onset and sequence 
collection (computed from individuals with known symptom onset 
dates) stratified by age group, time period and EWA/WWA region (Sup-
plementary Fig. 22). Out of the sequences with known symptom onset 
dates, the absolute value of the delay between sequence collection and 
reported symptom onset is strictly greater than 30 days for 192 of them 
(<0.6%). We discarded these sequences in the computation of the symp-
tom onset to sequence collection delay and considered that they were 
equivalent to sequences with missing symptom onset information 
(and therefore imputed their symptom onset dates). We generate 1,000 
imputed datasets. For each of these imputed datasets, we compute the 
proportion pA B→

sympto of pairs with symptom onset dates occurring first 
in group A among pairs of identical sequences in groups A and B with 
distinct symptom onset dates. We then report the median across these 
1,000 imputed datasets. We also generate a measure of uncertainty by 
computing on each of the imputed datasets 95% binomial CIs around 
the proportion pA B→

sympto. We then report an uncertainty range around 
these proportion by using the minimum lower bound of the 95% CI and 
the maximum upper bound of the 95% CI across the imputed datasets.

Spatial analyses
Spatial extent of clusters. We reconstruct clusters of identical seq-
uences from the pairwise genetic distance matrices13. Supplementary 
Fig. 23 depicts the typical size and duration of these clusters of identi-
cal sequences throughout the study period. To assess the spatial and 



temporal signal in clusters of identical sequences, we evaluate how the 
spatial extent of a cluster (summarized by its radius) evolves over time. 
For each cluster, we define primary sequences as the cluster’s earliest 
collected sequence. We then define the cluster’s primary ZCTAs as the 
ZCTAs of its primary sequences. We exclude clusters with ambiguous 
primary ZCTA (several primary ZCTAs) from this analysis. We define the 
radius of a cluster at a given time as the maximum distance between 
the primary ZCTA and the ZCTAs of the sequences collected by that 
time. We also compute the time required for sequences to be collected 
outside the primary ZCTA and primary county (using a similar defini-
tion as for the primary ZCTA). We report the mean cluster radius and 
the proportion of clusters remaining within the same geographical 
unit (ZCTA and county) as a function of the time since collection of the 
first sequence within a cluster. We generate 95% CI using a bootstrap 
approach with 1,000 replicates.

We compare the observed cluster radius and the observed propor-
tion of clusters remaining within the same geographical unit to those 
expected from a null distribution assuming no spatial dependency 
between sequences within a cluster of identical sequences. We simulate 
a null distribution by randomly permuting the geographical locations 
of the WA sequences and recomputing our statistics of interest (cluster 
radius, proportion of clusters within the same county and proportion 
of clusters within the same ZCTA).

Impact of counties’ adjacency status. We compare the RRs of observ-
ing identical sequences between two counties depending on counties’ 
adjacency status (within the same county, between adjacent counties 
and between non-adjacent counties) using Wilcoxon signed-rank tests.

Impact of distance between counties. We examine how the RRs of 
observing identical sequences in two distinct counties compare with 
the geographical distance between counties’ centroids. We summarize 
this trend by reporting the LOESS curves with 95% CIs between the log 
RRs and the distance in kilometres.

Mapping using MDS. We evaluate the extent to which patterns of  
association obtained when looking at the location of pairs of identi-
cal sequences are consistent with global spatial structure. To do so, 
we performed non-metric MDS (NMDS) based on the matrix of RR of  
observing pairs of identical sequences between two counties. We res-
trict our analysis to the subset of counties for which there was always 
at least five pairs of identical sequences observed with the other coun-
ties in the subset. This is done to remove potential noise associated 
with low number of pairs observed. As the NMDS algorithm requires 
a measure of similarity between counties, we define the similarity sA,B 
between counties A and B as:

s = eA B
RR

,
− A B,

0

We perform two-dimensional NMDS using the vegan R package57.

Transmission direction: EWA and WWA. We evaluate whether the 
timing of identical sequence collection is consistent with transmission 
rather occurring from WWA to EWA or EWA to WWA. We define four 
time periods corresponding the four epidemic waves experienced by 
WA during our study period (Supplementary Fig. 24): wave 4, March 
2021–June 2021; wave 5, July 2021–November 2021; wave 6, December 
2021–February 2022; and wave 7, March 2022–August 2022. For each 
of these time periods, we compute the proportion of pairs of identical 
sequences first collected in EWA among pairs of identical sequences 
observed in both EWA and WWA that were not collected on the same 
day. We report 95% binomial proportion CI around these proportions.

To examine whether our conclusions could be explained by differ-
ences in testing behaviours between EWA and WWA, we conduct a 
sensitivity analysis by imputing the date of symptom onset.

Mobility analyses
Relationship with mobility data. We compute the Spearman cor-
relation coefficient between the RR of observing identical sequences 
between two counties and the RR of movement between two counties 
(both from mobile phone derived and commuting mobility data) as 
well as the geographical distance between counties’ centroids. We 
determine the percentage of variance in the genetic data explained by 
the mobility data by fitting GAMs predicting the RR of observing iden-
tical sequences based on the RR of movement between two counties, 
both on a logarithmic scale, using a thin-plate smoothing spline with 
5 knots. For the GAM analyses, we remove pairs of counties for which 
the number of pairs of identical sequences or the total mobility flow 
is equal to 0, which ensures that both the RR of observing identical 
sequences and the RR of movement are strictly positive. We also fit a 
GAM between the RR of observing identical sequences between two 
counties (on a logarithmic scale) and the distance between counties 
centroids. We repeat these analyses at the regional level, instead of at 
the county level.

Outliers from that relationship. We define outliers in the relationship 
between genetic and mobility data as pairs of counties for which the 
absolute value of the scaled Pearson residuals of the GAM is greater than 
3. As we expect RRs computed from a low number of pairs of identical 
sequences to be more noisy, we focus on pairs of counties for which 
at least 100 pairs of identical sequences are observed throughout the 
study period.

Spread between male prison postcodes
Centrality analysis. We characterize transmission between the ten 
postcodes with male state prisons by performing a network central-
ity analysis. We consider a network with ten nodes corresponding to 
these different postcodes. We define the weight of each edge as the 
RR of observing identical sequences between the two postcodes that 
define the nodes connected by this edge. This results in a fully con-
nected network. For each node (postcode with a male state prison), 
we compute eigenvector centrality scores using the R igraph package. 
This centrality score measures a node’s influence in the network: nodes 
have higher scores when they are connected to other influential nodes.

Shared big clusters between postcodes. We define large clusters 
of identical sequences in the prison networks as clusters of identical 
SARS-CoV-2 sequences (1) that are observed in at least two postcodes 
with male prisons and (2) with at least 15 sequences in prison postcodes.

Age analyses
Relationship with social contact data. We quantify the association 
between the RR RRA B,

0  of observing identical sequences between  
two age groups A and B and the RR of contacts RRA B,

contacts  between  
these two groups using a GAM on a logarithmic scale. We report the 
percentage of variance in the RR of identical sequences explained  
by the RR of contact from the GAM. We also report the Spearman 
correlation coefficient between RRA B,

0  and RRA B,
contacts.

Age-specific transmission across scales. To understand how age- 
specific transmission patterns vary across spatial scales, we compare 
the RR of observing identical sequences between age groups using all 
pairs of identical sequences, using only pairs of identical sequences 
in different postcodes and using only pairs of identical sequences in 
different counties.

Typical direction of spread between ages. We use sequence col-
lection dates to explore transmission direction between age groups 
across four periods (March 2021–June 2021, July 2021–November 
2021, December 2021–February 2022 and March 2022–August 2022).  



Article
To facilitate the interpretation of these results, we introduce an ear-
liness score that measures the contribution of a given age group to 
transmission to other age groups. For an age group A, this score is equal 
to the proportion of pairs of identical sequences first observed in age 
group A among all pairs of identical sequences observed in age groups 
A. We also report the 95% binomial CI around this score.

To explore whether our conclusions could be explained by differ-
ences in testing behaviours between age group, we conduct a sensitivity 
analysis by imputing the dates of symptom onset and using symp-
tom onset dates instead of sequence collection ones (Supplementary 
Fig. 15). We also compute earliness scores on each of the 1,000 datasets 
with imputed symptom onset dates using the same definition as that 
based on sequence collection dates. We then report the median earli-
ness score across all 1,000 datasets as well as an uncertainty range 
defined as the minimum lower bound and the maximum upper bound of 
the 95% binomial CI around this score for each of the imputed dataset.

RR between vaccination groups. Available matched patient informa-
tion include details regarding the individuals’ vaccination statuses upon 
positive test: No valid vaccination record (denoted unvaccinated); 
completed primary series (denoted vaccinated); and completed pri-
mary series with an additional dose (denoted boosted).

Here, we use this information to quantify mixing between groups 
characterized by their vaccination status. We focus on the mixing 
between vaccination groups within age groups to avoid biases com-
ing from age group and vaccination status being correlated. Among 
sequences collected within each period (4 waves) and age groups in 
decade, we compute the RR of observing identical sequences between 
vaccination groups. We included the boosted vaccination group for 
wave 6 (Omicron BA.1 wave) only for age groups older than 10 years, 
and included the boosted vaccination group for wave 7 for the 0–9 
year age group. We included the 0–9 year age group in our analysis 
only from wave 6 (Omicron BA.1 wave) and the 10–19 year age group 
from wave 5 (Delta wave).

To quantify the tendency of individuals of transmitting to individu-
als with the same vaccination status, we compute for each vaccination 
groups (V1, V2) the ratio RR RR/V V V V, ,1 2 1 1

. Values lower than 1 indicate that 
the enrichment of pairs of identical sequences is greater within the 
same vaccination group than between different vaccination groups. 
Such values suggest assortativity in mixing patterns between vaccina-
tion groups.

Sensitivity analysis: direction analysis
In the former paragraphs, we describe an approach based on the timing of 
pairs of identical sequences to better understand the typical transmission 
direction between groups. The interpretation of this pair-based analysis 
is complicated by several factors. First, clusters of identical sequences 
can span more than two groups. Second, even in instances where clusters 
only span two groups, counting pairs could improperly capture transmis-
sion direction, for example if local transmission of the cluster is occurring 
within the two groups. We implemented this pair-based approach as 
an intuitive exploration of whether the timing of sampling of identical 
sequences might provide some signal about transmission direction. This 
pair-based approach is crude but yet interesting as we do expect groups 
that tend to be the source to more often be observed first within clusters 
or pairs of identical sequences. As a sanity check, we perform a sensitiv-
ity analysis relying on clusters of identical sequences that are observed 
only within two groups. We define the source group as the group of the 
earliest collected sequence within the cluster of identical sequences. We 
remove ambiguous clusters, meaning clusters with two potential source 
groups, from the analysis. For clusters observed in groups A and B, we 
compute the proportion of clusters with source group A. We refer to 
this proportion as ‘proportion from clusters’ to distinguish it from the 
‘proportion from pairs’ that we use in our main analysis. We compute 
the 95% CI around the proportion from clusters. This proportion from 

clusters should be more robust that the proportion from pairs but tends 
to be noisier as we are computing the proportion from less observations. 
We then compare the proportion obtained from pairs and from clusters. 
We compute the Spearman correlation coefficient between these two 
proportions using all pairs of groups or only pairs of groups for which 
the CIs do not contain 50% for the two proportions.

Link between mutations and generations
In this section, we derive the probability distribution of the number 
of mutations MAB separating the consensus genomes of two infected 
individuals A and B conditional on the number of transmission genera-
tions GAB separating them.

Generation time distribution. We assume that the generation time 
(that is, the average duration between the infection time of an infector 
and an infectee) follows a Gamma distribution of shape α and scale β. 
The time between g generations then follows a Gamma distribution 
of shape g × α and scale β assuming independence of successive trans-
mission events. Let fα,β(⋅) denote the probability density function of a 
Gamma distribution of shape α and scale β.

Mutations events. Let MAB denote the number of mutations separating 
their infecting viruses. Let μ denote the mutation rate of the virus (in 
mutations per day). Let TAB

evo denote the evolutionary time separating 
A and B (in days).

Assuming a Poisson process for the occurrence of mutations, we 
have:

M μ T~ ( × )AB AB
evoP

Probability distribution. Let GAB denote the number of generations 
separating two infected individuals A and B belonging to the same 
transmission chain.
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which is the probability mass function of a negative binomial distribu-
tion of parameters:

r αg

p
β

β μ

=
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+

Application to SARS-CoV-2. We compute these probabilities for 
SARS-CoV-2 considering a mutation rate μ = 8.98 × 10−2 substitutions per 
day (32.76 substitutions per year)58. We assume that the generation time 
is Gamma distributed with a mean 5.9 days and s.d. of 4.8 days (ref. 59).

Performance of the RR framework
We conduct a simulation study to evaluate how our RR framework 
performs under different sequencing scenarios. We also compare the 
results obtained from a phylogeographical analysis.



Simulating synthetic sequence data. We use ReMASTER60 to simu-
late an SEIR epidemic in a structured population with 5 demes, each 
populated with 100,000 inhabitants. We simulate an epidemic char-
acterized by a basic reproduction number R0 of 2 with a daily time-step. 
We initiate the simulations by introducing a single infected individual 
(compartment I) in the population (group of index 0). We consider a 
pathogen with a 3,000 kb genome evolving following a Jukes–Cantor 
evolution model with a substitution rate of 3 × 10−5 substitutions per 
site per day. After infection, infected individuals enter an exposed (E) 
compartment during which they are not infectious yet and that they 
exit at a rate of 0.33 per day. They then enter an infectious (I) compart-
ment where they are infectious that they exit at a rate of 0.33 per day. 
Sequencing occurs after exit of the I compartment. Given that our 
RR does not account for directionality in transmission, we consid-
ered a scenario with symmetric migration rates. We draw migration 
rates between demes from a log-uniform distribution of parameters  
(10−3, 10−1).

We then explore two sequencing scenarios. In an unbiased scenario, 
we assume that each individual has the same probability of being 
sequenced in each deme. In a biased scenario, we assume that the 
sequencing probability varies between demes. We draw deme-specific 
relative sequencing probabilities from a log-uniform distribution of 
parameters (10−3, 10−1). In the unbiased scenario, we fix sequencing 
probability to the mean of the sequencing probabilities across demes 
in the biased scenario. We explore different sequencing intensities by 
scaling these probabilities by different multiplicative factor (Supple-
mentary Table 1): a scaling factor of 0.1 resulting in a mean sequencing 
probability of 0.43% and a dataset of around 1,700 sequences (used for 
the DTA analyses); a scaling factor of 0.5 resulting in a mean sequencing 
probability of 2.16% and a dataset of around 8,600 sequences (used 
for the RR and the DTA analyses); and a scaling factor of 2 resulting in a 
mean sequencing probability of 8.66% and a dataset of around 34,500 
sequences (used for the RR analyses).

DTA. We conduct phylogeographical inference using symmetric DTA14 
using the Bayesian stochastic search variable selection (BSSVS) model 
implemented in BEAST (v.1.10.4)61 applied to the synthetic data simulated 
in our two sequencing scenarios. To isolate the accuracy and precision of 
the phylogeographical reconstruction, we run our DTA using an empiri-
cal tree that is generated directly from ReMASTER simulations. Directly 
inputting such a tree is not possible in real-world scenarios in which the 
genealogical tree must be (noisily) estimated from empirical sequence 
data. In this case, it serves a demonstration of the power of DTA when 
provided perfect genealogical signal. The empirical tree approach also 
requires substantially less computation and therefore enabled us to ana-
lyse datasets of thousands of sequences using DTA in acceptable time.

Two independent Markov chain Monte Carlo (MCMC) procedures 
are run for 2.5 × 108 iterations and sampled every 1,000 iterations. 
The resulting posterior distributions are combined after discarding 
initial 10% of sampled trees as burn-in from each of them. We used 
Tracer (v.1.7)62 to assess convergence and to estimate the effective 
sampling size (ESS), ensuring ESS values greater than 200 for each 
migration rate estimate. We adjust the estimated migration rates by the 
estimated rate scalar to calculate the per-day rates of transition between  
demes.

To evaluate how estimating the genealogical tree from empirical 
sequence data impacts both results and computing times, we perform 
an additional phylogeographical analysis based on simulated but this 
time jointly inferring the genealogical tree and migration rates. We run 
this model for 24 days (corresponding to 475,733,000 MCMC steps), 
until each migration rate parameter has an ESS greater than 200.

RR analysis. We compute the RR of observing identical sequences 
between two demes i and j and compare these RR to the daily prob-
ability pi, j of migration between these two demes which is computed as:

∑

p m j i

p p
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k i

i k
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where mi, j is the migration rate between demes i and j. We generate 
95% subsampling CIs around the RRs using an 80% subsampling rate.

Expected relationship with RR of contact
We perform a simulation study to characterize the expected relation-
ship between the RR of observing identical sequences between groups 
and the RR of contacts between these groups. We illustrate this by 
looking at transmission between age groups but we expect a similar 
relationship between the RR of observing identical sequences between 
regions and the RR of movement between these regions.

To do so, we generate clusters of identical sequences including 
the age group of the corresponding infected individuals assuming 
a probability that an infector and an infectee have the same consen-
sus sequences p of 0.7 (close to the value we previously estimated for 
SARS-CoV-213), a reproduction number R of 1.2 and a sequencing frac-
tion pseq of 0.1.

We use a contact matrix estimated previously34 to characterize dis-
ease transmission between age groups. We assume that the probability 
pA,B for a contact from an infected individual in age group A to occur 
with a susceptible individual in age group B is equal to:

∑
p

c

c
=A B

A B

B A B
,

,

′ , ′

where cA,B is the mean daily number of contacts that an individual 
in age group A has with individuals in age group B. We introduce an 
age-specific reproduction number (RA) describing the average number 
of secondary cases infected by a single primary case within age group 
A. As different age groups have different average daily total number of 
contacts, the age-specific reproduction number varies between age 
groups. It can be derived as:

∑
R

c

ρ C
R=

( )
×A

B A B′ , ′

where ρ(C) is the maximum eigenvalue of the matrix C = (cA,B)63. We then 
simulate individual clusters of identical sequences using the following 
steps. First, we initialize clusters by drawing the age of the primary 
case Aprimary from a uniform distribution. Second, we simulate clusters 
as successive infections with identical genomes. At each generation, 
for each individual infected at the previous generation, let A denote 
the age of this infectious individual. We use the following procedure:
1. Draw the number of infections with the same genotype: PI p R(( × ) )A

−1
  

(Poisson distribution).
2. Draw the age of these individuals: MA A I n p( , . . . , ) ( , ,( , . . . ,I A1 age ,1

p ))A n, age
 where M n k p p( , , ( , . . . , ))k1  is a multinomial distribution  

with n trials, k possible events with probabilities (p1, ..., pk).
3. Draw the sequencing status of each new cluster member from a  

Bernoulli distribution of parameter pseq.

We end simulations after ten generations to minimize computational 
costs.

Dataset size required to compute RRs
We implement a downsampling strategy to understand the amount 
of sequencing data required to compute RR estimates. We con-
sider genome datasets of the following sizes: {1 × 102, 2 × 102, 3 × 102, 
4 × 102, 5 × 102, 6 × 102, 7 × 102, 8 × 102, 9 × 102, 1 × 103, 2 × 103, 3 × 103, 
4 × 103, 5 × 103, 6 × 103, 7 × 103, 8 × 103, 9 × 103, 1 × 104, 2 × 104, 3 × 104, 
4 × 104, 5 × 104, 6 × 104, 7 × 104, 8 × 104, 9 × 104, 1 × 105}. For each of 
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these dataset sizes, we generated 100 downsampled datasets from 
our WA sequencing data. For each of these downsampled datasets, 
we compute the RR of observing identical sequences between age 
groups (Supplementary Fig. 25). To understand how the number of 
groups studied impacts the amount of data required, we also com-
pute RR of observing identical sequences between aggregated age  
groups:
• 0–39 years and over 40 years for 2 age groups;
• 0–29 years, 30–59 years and over 60 years for 3 age groups;
• 0–19 years, 20–39 years, 40–59 years and over 60 years for 4 age 

groups;
• 0–9 years, 10–19 years, 20–29 years, 30–39 years, 40–49 years, 50–59 

years, 60–69 years, 70–79 years and over 80 (standard definition used 
throughout the paper) for 9 age groups.

We compute the error between the RR obtained from a subsampled 
dataset RRd and the RR from the full dataset RRf as:

ϵ
RR RR

RR
=

−d f

f

For each pair of age groups, we then compute the number of pairs of 
identical sequences required for the error to be below 10%.

Extending the Hamming distance threshold
In this work, we assess how pairs of infected individuals whose 
infected genome is separated by 0 mutations can help to character-
ize population-level transmission patterns. We apply this method to 
SARS-CoV-2 sequences from WA but our approach should be broadly 
applicable for epidemics caused by pathogens where the timescale of 
mutation events is similar to that of transmission events. In this section, 
we describe a simulation approach to understand how a pathogen’s 
mutation rate could impact the optimal Hamming distance threshold 
to apply our RR framework.

We implement the same simulation framework as the one described 
in the section ‘Performance of the RR framework’. We consider that 
each infection has the same probability of being sequenced (equal to 
4.33%, corresponding to a sequencing probability scaling factor of 1).  
We explore a range of scenarios for the pathogen’s mutation rate. To 
do so, we introduce a multiplicative scaling factor for the baseline 
pathogen’s mutation rate (3 × 10−5 substitutions per site per day) with 
values ranging between 0.1 and 10. For each multiplicative scaling  
factor, we perform 100 replicate simulations.

For each simulated epidemic, we count the number of pairs separated 
by less than d mutations between two regions (for d varying between 
0 and 10). In certain scenarios (for example, those characterized by 
a high mutation rate and a low Hamming distance threshold d), we 
sometimes do not observe any pairs less than d mutations away in a 
specific group. To be able to compute the RR even in those scenarios, we 
report a modified version of the RR of observing sequences separated 
by less than d mutations between two regions:

RR
n n

n n
=
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d A B

d d
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d

B
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, ,

, ,

 ∙ ∙

∙ ∙

with the same notations as the ones used in the definition of the 
RR of observing sequences less than d mutations away in groups A  
and B.

We then compute the Spearman correlation coefficient between 
the RR for pairs of sequences less than d mutations apart of being 
in two regions and the daily migration probability between these 
regions. In simulations in which the s.d. of the RR is equal to 0 (all 
modified RRs have the same value), we assume that the Spearman 
correlation coefficient is equal to 0 (RRs are not informative about 
migration rates).
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Data availability
All 114,552 SARS-CoV-2 genome sequences referenced in this Article are 
shared in the GISAID EpiCoV database and are available with standard 
metadata (generally consisting of date of sample collection, state of 
sample collection and sometimes county of sample collection)46,47. 
GISAID accessions and a sequence-level acknowledgements table are 
provided in the GitHub repository associated with this manuscript55,56. 
In total, 102,528 of these sequences are available publicly in NCBI Gen-
Bank and GenBank accessions are referenced in the acknowledgment 
table. More detailed metadata curated by Washington State Depart-
ment of Health (WA DOH) of county, postcode, age group and vaccina-
tion status were shared with the Fred Hutchinson Cancer Center under 
a Data Sharing Agreement for Confidential Data with an associated IRB 
exempt determination as determined by the Washington State Institu-
tional Review Board. As WA DOH remains the owner of these data, the 
authors cannot share any portion of this granular metadata directly. 
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in reusing these data for their own analyses will need their own data 
sharing agreements and human subjects review. To initiate a collabo-
ration, interested parties can contact A.B. (alli.black@doh.wa.gov). 
RR computations in the Article derive entirely from counts of pairs of 
identical sequences shared between groups. To reproduce analyses, 
we share counts of pairs of identical sequences between population 
groups (counties and age groups) obtained from processing these 
sequence data alongside granular metadata at GitHub (https://github.
com/blab/phylo-kernel-public)55,56. We also provide a detailed expla-
nation on how to reproduce the analyses using only the data publicly 
available on NCBI GenBank.

Code availability
Code to reproduce our analyses is available at GitHub (https://github.
com/blab/phylo-kernel-public)55 and Zenodo (https://doi.org/10.5281/
zenodo.14829446)56. A step-by-step tutorial describing how to imple-
ment our RR approach is available at GitHub (https://github.com/
CecileTK/tutorial-rr-identical-sequences)64.
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Extended Data Fig. 1 | The magnitude of the relative risk of observing 
sequences at a given genetic distance within the same county is impacted 
by transmission intensity. A. Relative risk of observing sequences at a given 
genetic distance within the same county across multiple epidemic waves. We 
defined waves as: March 2021-June 2021 (Wave 4), July 2021-November 2021 
(Wave 5), December 2021-February 2022 (Wave 6) and March 2022-August 2022 
(Wave 7). In A, circular points correspond to individuals counties and triangles 
correspond to the median across counties. B. Median relative risk of observing 
pairs sequences within the same county (with IQR) as a function of genetic 

distance stratified by variant during Wave 6. C. A higher transmission intensity 
results in larger clusters of identical sequences that tend to be more mixed 
across groups. In C, the two clusters are simulated using a branching process 
with mutation13 by assuming the probability for an infector and an infectee  
to have the same consensus sequence equal to 0.69 and a probability for  
an infectee of being in the same groups as its infector of 0.7. We consider a 
reproduction number of 1.2 for the lower transmission intensity scenario  
and of 2.0 in the higher transmission intensity scenario.



Extended Data Fig. 2 | Our measure of relative risk corrects for uneven 
sequencing between regions. A. Proportion of pairs of identical sequences 
shared between counties A and B among pairs observed in county A as a 
function of the proportion of pairs of identical sequences observed in county B.  
B. Relative risk for pairs of identical sequences of being observed in counties  

A and B as a function of the proportion of pairs of identical sequences observed 
in county B. C. Proportion of pairs of identical sequences shared between 
counties A and B as a function of the number of sequences available in county B. 
D. Relative risk for pairs of identical sequences of being observed in counties A 
and B as a function of the number of sequences available in county B.
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Extended Data Fig. 3 | Simulation study exploring the impact of sequencing 
bias on results from a discrete trait analysis and from our RR framework.  
A. Comparison between migration rates estimated from a discrete trait 
analysis and the true migration rates used to simulate the sequence data.  
B. Comparison between the relative risk of observing identical sequences 
between two demes and the weekly migration probability between demes.  
C. Comparison between migration rates inferred from a sequence dataset 

generated in a biased sampling and an unbiased sampling scenario. D. Comparison 
between the relative risk of observing identical sequences in two groups from  
a sequence dataset generated in a biased sampling and an unbiased sampling 
scenario. For the RR, segments indicate 95% subsampling confidence intervals. 
For the migration rates, segments indicate 95% highest posterior density 
intervals. For each plot, we indicate the Spearman correlation coefficient (and 
the associated p-value).



Extended Data Fig. 4 | Comparison between the relative risk of observing 
identical sequences and the relative risk of movement at the county level. 
A. Relationship between the relative risk of observing identical sequences in 
two counties and the relative risk of movement between these counties as 
obtained from mobile phone mobility data. B. Scaled Pearson residuals of the 
GAM plotted in A as a function of the number of pairs of identical sequences 
observed in pairs of counties. C. Relationship between the relative risk of 
observing identical sequences in two counties and the relative risk of movement 
between these counties as obtained from workflow mobility data. D. Scaled 
Pearson residuals of the GAM plotted in C as a function of the number of pairs  

of identical sequences observed in pairs of counties. E. Relationship between 
the relative risk of observing identical sequences in two counties and the 
Euclidean distance between counties centroids. F. Scaled Pearson residuals of 
the GAM plotted in E as a function of the number of pairs of identical sequences 
observed in pairs of counties. In B, D and F, we label pairs of non-adjacent 
counties sharing at least 100 pairs of identical sequences and for which the 
absolute value of the Scaled Pearson residual is greater than 3. The trend lines 
correspond to predicted relative risk of observing identical sequences in two 
regions from each GAM. R2 indicate the variance explained by each GAM.
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Extended Data Fig. 5 | Relative risk for pairs of identical sequences of being observed between two age groups. Vertical segments correspond to 95% confidence 
intervals obtained through subsampling.



Extended Data Fig. 6 | Relative risk for pairs sequences of being observed between two age groups depending on their genetic distance. Vertical segments 
correspond to 95% confidence intervals obtained through subsampling.
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Extended Data Fig. 7 | Impact of the spatial scale on the relative risk for pairs sequences of being observed between two age groups. Vertical segments 
correspond to 95% confidence intervals obtained through subsampling.



Extended Data Fig. 8 | Impact of non-sampled locations on the computation 
of the RR. A. Comparison between the relative risk of observing identical 
sequences between Western WA counties using only sequence in Western WA 

counties or the entire sequence dataset. B. Comparison between the relative 
risk of observing identical sequences between Eastern WA counties using only 
sequence in Eastern WA counties or the entire sequence dataset.
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Extended Data Fig. 9 | Impact of the pathogen’s mutation rate on the 
optimal Hamming distance threshold to apply our RR framework. Boxplots 
indicate Spearman correlation coefficients between the relative risk of pairs of 
sequences below the genomic distance threshold of being observed in two 

regions and the daily migration probability between these two regions. 
Boxplots indicate the 2.5%, 25%, 50%, 75% and 97.5% percentiles. See Methods 
for a description of the simulation approach.



Extended Data Table 1 | Comparison between the relative risk of observing identical sequences between two geographic 
regions and the risk of movement between different geographies

We consider three data sources to inform the relative risk of movement between geographies: the relative risk for a visit to occur between two geographies (from mobile phone data), the rela-
tive risk for a work commute to occur between two geographies (from workflow data) and the geographic distance between geographies’ centroids.
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