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Abstract  
 
Pathogen genome analysis helps characterize transmission between population groups. The 
information carried by pathogen sequences comes from the accumulation of mutations within 
their genomes; thus, that the pace at which mutations accumulate should determine the 
granularity of transmission processes that pathogen sequences can characterize. Here, we 
investigate how the complex interplay between mutation, transmission, population mixing and 
sampling impacts the power of phylogeographic studies. First, we develop a conceptual 
probabilistic framework to quantify the ability of pairs of sequences in capturing migration 
history. This allows us to comprehensively explore the space of possible phylogeographic 
analyses by explicitly considering the pace at which mutations accumulate and the pace at 
which migration events occur. Using this framework, we identify a pathogen-intrinsic limit in 
the mixing scale at which their sequence data remains informative, with faster mutating 
pathogens enabling finer spatial characterization. Secondly, we perform a simulation study 
exploring a range of assumptions regarding sequencing intensity. We find that sample size 
further imposes a limit on the characterization of mixing processes. This work highlights 
inherent horizons of observability for population mixing processes that depend on the 
interaction between evolution, transmission, mixing and sampling. Such considerations are 
important for the design of phylogeographic studies.  
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Introduction 
 
Pathogen sequencing is an invaluable tool for studying disease transmission patterns1. 
Analyzing pathogen genomes alongside metadata describing characteristics of infected hosts 
from which pathogens were isolated has helped characterize the transmission of pathogens 
between population groups of varying sizes. For example, hemagglutinin phylogenies have 
shed light on the inter-continental spread of seasonal influenza viruses1, and patterns of 
occurrence of identical sequences have illuminated SARS-CoV-2 transmission between age 
groups2. 
 
It is generally acknowledged that the fundamental power of genomic epidemiological studies 
arises from the fast pace at which genetic variation is generated within pathogen genomes3, 
relative to the pace at which pathogens transmit between hosts. When transmission and 
mutation events occur over similar timescales, pathogen genomes isolated from infected hosts 
indeed contain information about underlying epidemiological processes4. Thus, analysing 
such genomic data can help reconstruct transmission chains5 or characterize population-level 
patterns of pathogen spread1,2. Prior work has explored the ability of pathogen genomes to 
reconstruct transmission chains3,5, with overall resolution depending on evolutionary rate, 
generation time, transmission intensity and sampling effort. However, we still lack clear 
methods to evaluate both the power and limits of pathogen genome sequences in quantifying 
transmission at the population level (phylogeographic inference).  
 
To study such population level processes, we expect the relative timescale at which mutation 
and migration events occur to be critical6. If mutations accumulate at a much slower pace than 
migration events occur (high migration / low mutation rate in Figure 1), genome sequences 
will be insufficient to infer migration patterns, as highlighted by the presence of large well-
mixed polytomies in the phylogeny. Analyzing sequences from a faster mutating pathogen 
might enable characterization of such a migration process: although population mixing occurs 
rapidly, genome sequences will be sufficiently divergent to capture migration patterns (high 
migration / high mutation rate). Though insufficient to characterize rapid mixing processes, 
sequences from slow mutating pathogens still have the potential to decipher slow migration 
processes (low migration / low mutation rate).  
 
Here, we develop a conceptual framework formalizing this intuition. Our model describes the 
ability of pathogen genome sequences to characterize pathogen spread between population 
groups. We apply this framework to a range of pathogens, characterized by distinct 
evolutionary characteristics and natural history parameters, and mixing processes (between 
age groups and various geographic scales). This approach enables us to identify fundamental 
limits in the ability of pathogen genome sequencing to capture transmission dynamics at the 
group level. Finally, we conduct a simulation study to characterize how factors such as 
sampling intensity impact phylogeographic signal across pathogens and mixing processes.  
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Figure 1: The ability of pathogen sequence data to characterize transmission between 
groups is impacted by the speed at which both migration and mutation events occur. 
To generate these illustrative figures, we simulate sequence data under an SEIR epidemic 
spreading between two population groups of size 1000 (yellow and blue). We assume a basic 
reproduction number of 1.5, that the mean time spent in the exposed compartment is 3 days, 
and that the mean time spent in the infectious compartment is also 3 days. 10% of infections 
are sequenced. We model the spread of a pathogen with a genome length of 3,000 bp. We 
simulate the evolutionary process for a low mutation rate scenario (2·10-5 mutations per bp 
per day) and a high mutation rate scenario (8·10-5 mutations per bp per day). For the migration 
process, we assume that infected individuals have a 98% probability of transmitting to 
someone within their group in the low migration scenario and a 50% probability in the high 
migration scenario. For each scenario, we include on the top left a toy figure to illustrate the 
frequency of migration events (number of arrows) and mutation events (number of stars). 
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Methods 
 
Problem framing 
 
We are interested in understanding the extent to which pathogen genome sequencing is 
informative about transmission processes at the group level. To do so, we define genomic 
linkage criteria between groups and evaluate how well they capture (true) transmission links. 
Specifically, we assume that two groups are genomically linked through an observed pair of 
sequences if the genetic distance between the elements of this pair of sequences lies below 
a defined genetic distance threshold Δ. We want to determine what is the sensitivity 𝜂!, 
specificity 𝜒! and positive predicted value 𝜙! of this group linkage criterion. 
 
Probabilistic framework 
 
Notation. Let 𝐽 denote the number of jumps between population groups (or migration events) 
separating two infected individuals. We assume that jumps occur under a Poisson process of 
rate 𝜆, where 𝜆 is the migration rate. Let 𝑀 denote the number of mutations between the 
infecting pathogens of these two infected individuals. We assume that mutation events occur 
under a Poisson process of rate 𝜇, where 𝜇 is the per genome mutation rate. Let 𝐺 be a random 
variable denoting the number of generations separating these two individuals. We assume 
that the generation time follows a Gamma distribution of shape 𝛼 and scale 𝛽. 
 
Distribution of the number of mutations conditional on the number of generations. Under these 
assumptions, we show that the number of mutations 𝑀 conditional on the number of 
generations 𝐺 = 𝑔 follows a negative binomial distribution of parameters2: 

𝑟"|$ = 𝛼𝑔

𝑝"|$ =	
𝛽

𝛽 + 𝜇
 

The full derivation is available in Supplementary Information. 
 
Distribution of the number of jumps conditional on the number of generations. Similarly, the 
number of jumps 𝐽 conditional on the number of generations 𝐺 = 𝑔 follows a negative binomial 
distribution of parameters: 

𝑟%|$ = 𝛼𝑔

𝑝%|$ =	
𝛽

𝛽 + 𝜆
 

The full derivation is available in Supplementary Information. 
 
Distribution of the number of jumps conditional on the number of mutations. In practice, we 
don't observe the number of generations separating two infected individuals and are instead 
interested in the distribution of the number of jumps conditional on the number of mutations. 
Let ℎ(𝑘; 𝑟, 𝑝) denote the probability mass function evaluated in 𝑘 of a negative binomial 
distribution of parameters 𝑟 and 𝑝. We introduce 𝜋$ the probability for two sequenced 
individuals of being 𝑔 generations apart. By integrating over the possible number of 
generations separating two infections, we can show that: 
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𝑃[ 𝐽 = 𝑗 ∣∣ 𝑀 = 𝑚 ] = 	
∑ ℎ(𝑗; 	𝛼𝑔, 𝛽

𝛽 + 𝜆) ⋅ ℎ A𝑚; 𝛼𝑔,
𝛽

𝛽 + 𝜇B ⋅ 𝜋$$&'

∑ ℎ A𝑚; 𝛼𝑔, 𝛽
𝛽 + 𝜇B ⋅ 𝜋$$&'

 

The full derivation is available in Supplementary Information. 
 
The distribution 𝜋$ of the number of generations between infected individuals is impacted by 
several factors, including the dynamics of the epidemic and the sampling scheme7. Wohl et 
al. used a simulation-based approach to approximate this probability distribution across a 
range of epidemiological scenarios, characterised by their reproduction number7. Their 
empirical estimates were obtained by simulating a branching process for 𝑑 = ln(1000) /ln	(𝑅) 
generations, (where 𝑅 is the reproduction number). This corresponds to the number of 
generations required to reach an expected epidemic size of 1000. From this, they derive the 
empirical distribution of the number of generations separating two infections (which we denote 
𝜋J$). By design, the maximum number of generations separating two infected individuals in 
their simulations is therefore 𝑔()* = 2𝑑 which depends on the reproduction number.  
 
Here, we reuse the empirical probability distribution 𝜋J$ they estimated to fully approximate the 
probability 𝑃[ 𝐽 = 𝑗 ∣∣ 𝑀 = 𝑚 ] as: 

𝑃[ 𝐽 = 𝑗 ∣∣ 𝑀 = 𝑚 ] =
∑ ℎ(𝑗; 	𝛼𝑔, 𝛽

𝛽 + 𝜆) ⋅ ℎ A𝑚; 𝛼𝑔,
𝛽

𝛽 + 𝜇B ⋅ 𝜋J$
$!"#
$+' 	

∑ ℎ A𝑚; 𝛼𝑔, 𝛽
𝛽 + 𝜇B ⋅ 𝜋J$

$!"#
$+'

 

This also enables us to approximate the probability of two infected individuals being separated 
by 𝑗 jumps and 𝑚 mutations: 

𝑃[𝐽 = 𝑗] = L ℎA𝑗; 𝛼𝑔,
𝛽

𝛽 + 𝜆B
⋅ 𝜋J$

$!"#

$+'

 

𝑃[𝑀 = 𝑚] = L ℎA𝑚;𝛼𝑔,
𝛽

𝛽 + 𝜇B
⋅ 𝜋J$

$!"#

$+'

 

 
Confusion matrix approach 
 
Definition. To quantify the ability of a genetic linkage criterion to characterize transmission 
between population groups, we use a confusion matrix approach. We classify pairs of 
sequences depending on our ability to accurately capture migration history from their genetic 
sequences. Figure 2 illustrates how we define the true migration history between two 
sequenced individuals and the inferred migration history from sequence data. For example, 
on the top left, the sequences of our two sampled infections define a linked pair (the number 
of mutations separating their genomes is below a predefined threshold). The true migration 
history between these samples is red →	blue. From our linked pairs, we infer that migration 
occurred between these two groups (red ↔	 blue). The inferred migration history from 
sequence data therefore accurately captures the true underlying migration history, 
corresponding to a True Positive (TP). A False Positive (FP) corresponds to a situation where 
the inferred migration history doesn’t match the actual migration one. Likewise, if a migration 
event to another group occurred between the sampled individuals defining the pair and the 
pair is not linked, that is a True Negative (TN), and if no other migration event occurred 
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between the two sampled individual and the pair is not linked, that is a False Negative (FN). 
Using our probabilistic framework, we can easily define the coefficients of the confusion matrix 
(Table 1).  
 

 
Figure 2: Illustration of the confusion matrix used to describe the ability of a genetic 
linkage criterion to capture the pathogen’s migration history. These schematics illustrate 
a transmission chain propagating across three different groups of the population, each 
depicted by a colored oval shape. Each point (circle, triangle or diamond) corresponds to an 
infected individual, with white filled points indicating sequenced infections, and black filled 
points indicating infections that are not sequenced. The white filled points define a pair, that 
can be classified as True Positive, False Positive, False Negative or True Negative. For each 
diagram, we indicate the corresponding “true” migration history between the two sequenced 
individuals and the history inferred from the genomic linkage criterion.  
 
Table 1: Coefficients of the confusion matrix for a linkage criterion based on a genetic 
distance threshold 𝚫. 
 𝐽 ≤ 1 𝐽 > 1 
𝑀 ≤ Δ True Positive (TP) False Positive (FP) 
𝑀 > Δ False Negative (FN) True Negative (TN) 

 
Sensitivity. The sensitivity 𝜂! is the true positive rate. It measures how well our linkage criterion 
captures pairs of sequences that reflect the true migration history. From Table 1, we derive it 
as: 

𝜂! = 𝑃[𝑀 ≤ Δ ∣ 𝐽 ≤ 1] 
We show that we can compute it as: 

𝜂! =	L 𝜂,′
!

,+-

 

where 𝜂,′ is defined as: 

𝜂,. =	
(𝑃[ 𝐽 = 0 ∣∣ 𝑀 = 𝑑 ] + 𝑃[𝐽 = 1 ∣ 𝑀 = 𝑑]) ⋅ 𝑃[𝑀 = 𝑑]

𝑃[𝐽 = 0] + 𝑃[𝐽 = 1]
 

The full derivation is available in Supplementary Information. 
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Specificity. The specificity 𝜒! is the true negative rate. It measures the fraction of pairs not 
reflecting the true migration history that are not captured by the linkage criterion Δ. From Table 
1, we can derive it as: 

𝜒! = 𝑃[𝑀 > Δ ∣ 𝐽 > 1] 
We show that we can compute it as: 

𝜒! = 1 −	L 𝜒,′
!

,+-

 

where 𝜒,′ is defined as: 

𝜒,. =
(1	 − 	𝑃[ 𝐽 = 0 ∣∣ 𝑀 = 𝑑 ] − 𝑃[𝐽 = 1 ∣ 𝑀 = 𝑑]) ⋅ 𝑃[𝑀 = 𝑑]

1 − 𝑃[𝐽 = 0] − 𝑃[𝐽 = 1]
 

The full derivation is available in Supplementary information. 
 
Positive predictive value. The positive predictive value (PPV) 𝜙! is defined as: 

𝜙! = 𝑃[ 𝐽 ≤ 1 ∣∣ 𝑀 ≤ Δ ] =
𝑃[𝑀 ≤ Δ ∣∣ 𝐽 ≤ 1 ] ⋅ 𝑃[𝐽 ≤ 1]

𝑃[𝑀 ≤ Δ]
= 	𝜂! ⋅

𝑃[𝐽 ≤ 1]
𝑃[𝑀 ≤ Δ]

 

It measures the proportion of linked pairs that correctly capture the migration history.  
 
Characteristics of spatial and age-based transmission processes.  
 
We apply our confusion matrix framework to a combination of pathogens and mixing 
processes to understand how analyzing the pathogen genome sequences of these different 
pathogens can provide insights on these population processes. We focus on transmission 
processes between geographies and age groups. To characterize these mixing processes, 
we use empirical data to estimate the probability that a jump (or migration event) occurs before 
a mutation one. 
 
Age mixing from social contact data. We explore the probability for transmission to occur within 
the same age group using synthetic social contact data for Washington state from Mistry et 
al8. The latter study provides estimates of the mean daily number of contacts 𝑀/,1 that 
individuals of age 𝑖 have with individuals of age 𝑗 (with one-year age bins). Let 𝑛/ denote the 
number of individuals of age 𝑖. Age groups can be defined by specifying an aggregation rule. 
This enables us to define the total number of contacts Γ2,3 that occur within one day between 
two population groups 𝐴 and 𝐵: 

Γ2,3 =LL𝑀/,1 ⋅ 𝑛/
1∈3/∈2

 

We can also define 𝑐2,3 the average daily number of contacts that individuals within age group 
A have with individuals in age group B as: 

𝑐2,3 =
Γ2,3

∑ 𝑛//∈2
 

We compute the proportion 𝑝5/67/8	)$: of contacts occurring within the same age groups 
across all contacts occurring within one day as: 

𝑝5/67/8	)$: =
∑ Γ2,22

1
2∑ (∑ Γ2,3) + ∑ Γ2,223;22

 

The normalizing factor ½ is used to ensure each contact is only counted once. This metric is 
a summary statistic of assortativity at the population level for a specified level of age 
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aggregation. In practice, the probability for a contact of occurring within the same age group 
is not constant across age groups (Figure S1).  
 
We compute values of 𝑝5/67/8	)$: for different binning window size: 1-year, 2-year, 5-year, 10-
year and 20-year age bins (Figure S2). For each binning scenario, aggregation starts from 
age 0 and stops at age 79. We systematically include an age group corresponding to 
individuals aged 80 and older.  
 
Spatial mixing from mobility data. We estimate the probability for transmission of occurring 
within the same geographical region using mobile device location data from SafeGraph 
(https://safegraph.com/), a data company that aggregated anonymized location data from 40 
million devices, or approximately 10% of the US population, to over 6 million physical places 
(points of interest, POIs). To do so, we estimate the probability for a movement of occurring 
within the same geographical unit, while exploring different scales in the US: states, counties, 
Public Use Microdata Areas (PUMAs), census tracts, and census block groups (CBGs).  
 
At the state and county level, we use data processed in Pullano et al.9 and made publicly 
available in the associated GitHub repository10. The authors report the proportion 𝑝/,1 of 
movements of people leaving in county 𝑖 that travel to county 𝑗, across different states and for 
a range of time windows. We focus here on data from January 2020. To estimate the 
proportion of movements that occur within the same county, we compute a population-
weighted average of the proportion of movements occurring within the same county as follows: 

𝑝5/67/8	<=>86? =
∑ 𝑝/,/ ⋅ 𝑁//
∑ 𝑁//

 

where 𝑁/ is the population size of county 𝑖, derived from US Census data and made available 
in the R covidcast package11. Using a similar definition, we estimate the proportion 𝑝5/67/8	@6)6: 
of movements that occur within the same state. 
 
To compute this quantity for smaller geographical units (PUMAs, census tracts and CBGs), 
we rely on a Washington state (WA) focused dataset12. We use SafeGraph’s Weekly Patterns 
dataset to estimate movements within and between WA geographies between January 2019 
and June 2022. This dataset provides weekly counts of the total number of unique devices 
visiting a POI from a particular home location. We restrict our analysis to POIs that are 
consistently recorded in SafeGraph’s panel throughout the study period.  
 
To measure movement within and between CBGs, we extract the home CBG of devices 
visiting POIs and limited the dataset to devices with home locations in the CBG of a given POI 
(within-CBG movement) or with home locations in CBGs outside of a given POI’s CBG 
(between-CBG movement). This methodology was also applied to census tracts and PUMAs 
to measure movement within and between these larger geographic units. 
 
To adjust for variation in the size of SafeGraph device panel over time, we multiply raw weekly 
visits to POIs by a scaling factor, corresponding to the monthly ratio of each CBG, census tract 
or PUMA’s respective county census population size to the number of devices in SafeGraph’s 
panel with home locations within that county. We then compute the total number of visits 
between geographies by summing adjusted weekly counts across POIs, over the entire study 
period. We use these adjusted counts to compute the proportion of movements occurring 
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within the same county, PUMA, census tract andCBG in WA. Estimated values for the 
proportion of movements within each geographical unit are detailed in Table S1.  
 
Relationship between the probability for the infectee to be in the same subgroup as the infector 
and the jump rate 𝜆. Mixing between population subgroups is typically quantified from 
empirical data sources such as mobility data sources or social contact surveys. From these, 
we can derive the probability 𝜔 that a contact occurs within the same population subgroup. 
We can relate this probability to the jump rate 𝜆 using: 

𝜔 = 𝑃[ 𝐽 = 0 ∣∣ 𝐺 = 1 ] = 	 A
𝛽

𝛽 + 𝜆B
A

 

Therefore, for a known value of 𝜔, the corresponding migration rate is equal to: 

𝜆 = 𝛽(𝜔B'A − 1) 
We use 𝜔 values estimated from mobility and social contact data (detailed in the Age mixing 
from social contact data and Spatial mixing from mobility data sections above) to compare the 
ability of pathogen sequencing to characterize population mixing processes across pathogens. 
 
Case study across a range of pathogens. 
 
Evolutionary and transmission characteristics. We apply our confusion matrix approach to the 
following pathogens: Ebola virus, seasonal influenza virus A/H1N1pdm and A/H3N2, measles 
virus, MERS-CoV, mpox virus, mumps virus, RSV-A, SARS-CoV, SARS-CoV-2 (both pre and 
post-Omicron) and Zika virus. We assume that sequencing provides whole-genome 
sequences for all these pathogens. We use previously estimated values of the probability 𝑝 
that a transmission event occurs before a mutation one for these pathogens13. To include a 
slow-mutating pathogen in our analysis, we explore an additional scenario wherein only the 
hemagglutinin (HA) segment of the influenza A/H3N2 virus is analysed (corresponding to a 
0.92 probability that a transmission event occurs before a mutation).  
 
Epidemiological scenarios. In the derivations above, we showed that sensitivity, specificity and 
PPV depend on the distribution of the number of generations separating two individuals picked 
at random in the population. We use the empirical distributions generated by Wohl et al.7 for 
reproduction numbers 𝑅 of 1.3, 1.5 and 1.8, with results for 𝑅 of 1.3 described in the main text 
and for 𝑅 of 1.5 and 1.8 presented in Supplementary information (Figures S3 and S4). 
 
Characterisation of the parameter space across pathogens. 
 
To comprehensively explore trends across different pathogens and mixing processes, we 
apply our confusion matrix approach across a range of evolutionary and mixing parameters. 
We consider a pathogen with a generation time of mean 4.9 days and standard deviation 4.8 
days. This corresponds to the values we used for SARS-CoV-2 (Omicron variant). Assuming 
a Gamma distributed generation time, this corresponds to a shape of 1.04 and scale of 0.21 
days. This parametrization is arbitrary and simply provides a direct way to map evolutionary 
rates 𝜇 to values of the probability that transmission occurs before mutation 𝑝 and mixing rates 
𝜆 to values of within-group assortativity 𝜔. We then compute sensitivity, specificity and PPV 
by varying 𝑝 and 𝜔 between 0.01 and 0.99 with an increment of 0.01. 
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Simulation study to explore the relationship between power and sample size 
 
To evaluate how sample size influences the ability to characterize transmission patterns 
between population groups from sequence data, we perform a simulation study using the 
ReMASTER BEAST package14.  
 
Parametrization of the simulations 
 
We modelled SEIR epidemics characterized by a basic reproduction number of 2, with a rate 
out of the exposed (E) compartment of 0.33/day and a rate out of the infected (I) compartment 
of 0.33/day. This corresponds to a Gamma distributed generation time with shape 𝛼 = 2 and 
scale 𝛽 = 1/0.33 day. We consider the spread of a pathogen characterized by a probability 𝑝 
that transmission occurs before mutation (exploring values ranging between 0.1 and 0.9 with 
an increment of 0.1) between 4 population groups each of size 50,000. This probability 𝑝 and 
the parametrization of the generation time as a Gamma distribution enables us to define the 
per genome mutation rate as: 

𝜇C:D	$:8=(: = 𝛽(𝑝B
'
A − 1) 

by using similar arguments to those in subsection Relationship between the probability for the 
infectee to be in the same subgroup as the infector and the jump rate 𝜆. Assuming a Jukes-
Cantor model of evolution, we derive the per site mutation rate (which is used in the 
simulations) as: 

𝜇C:D	@/6: =
1
𝑙
⋅ 𝜇C:D	$:8=(: 

where 𝑙 is the genome length. We run simulations assuming a genome length of 3,000 bp.  
 
We consider group mixing processes characterized by assortativity parameters 𝜔 ranging 
between 0.1 and 0.9 with an increment of 0.1. We assume a symmetric mixing matrix between 
groups (detailed parametrization in Table S2).  
 
We assume that a fraction 𝑝@:E of all infections are sequenced (exploring values of 0.001, 
0.005, 0.01 and 0.05).  
 
Relative risk metric performance 
 
To assess the ability of sequences below a given genetic distance threshold to capture mixing 
patterns, we compute a relative risk (RR) metric which was introduced in prior work and that 
was shown to capture SARS-CoV-2 transmission patterns between age groups and 
geographies2.  
 
Let 𝐻/,1 denote the Hamming distance separating two sequences indexed 𝑖 and 𝑗, let 𝑆/ denote 
the population subgroup to which sequence 𝑖 belongs. Let 𝑛 denote the number of sequences 
in the dataset. We define the relative risk 𝑅𝑅2,3!  of observing two sequences less than Δ 
mutations away in population groups 𝐴 and 𝐵 as: 

𝑅𝑅2,3! =
𝑛2,3! ⋅ 𝑛•,•	!

𝑛2,•	! ⋅ 𝑛3,•	!  

where (using 𝟏 to denote the indicator function): 
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𝑛2,3! =LL	𝟏{G$,&H!} ⋅
8

1+'

8

/+'

𝟏{/;1} ⋅ 𝟏{J$+2} ⋅ 𝟏{J&+3} 

𝑛2,•! =L 𝑛2,3!
3

	 

𝑛•,•! =L L 𝑛2,3!
32

 

In situations where there aren’t any pairs of sequences observed in either subgroup 𝐴 or 
subgroup 𝐵 (𝑛2,•	! or 𝑛3,•	!  is equal to 0), 𝑅𝑅2,3!  is not defined. To be able to compute RRs even 
in situations of low pair counts, we rely on a modified RR, defined as: 

𝑅𝑅̀2,3! =
(𝑛2,3! + 1) ⋅ (𝑛•,•	! + 1)
(𝑛2,•	! + 1) ⋅ (𝑛3,•	! + 1)

 

 
For each combination of 𝑝@:E, 𝜔 and 𝑝, we simulate 50 outbreaks with associated sequence 
data and compute modified relative risks (𝑅𝑅̀) for thresholds Δ ranging between 0 and 15. We 
then compute the Spearman correlation coefficient between RRs and the daily migration 
probability between groups. In simulations where the standard deviation of the modified RRs 
is equal to 0, we set the correlation coefficient to 0 (RRs are not informative about migration 
probabilities). For each combination of 𝑝@:E, 𝜔, 𝑝 and Δ, we compute the median correlation 
across the 50 replicate simulations 𝜌K-(𝑝@:E , 𝜔, 𝑝, Δ). To characterize the best inference 
performance for a given sequencing effort 𝑝@:E, we compute the maximum median correlation 
across Δ ranging between 0 and 15: 

𝜌K-,()*b𝑝@:E , 𝜔, 𝑝c = max
-H!H'K

𝜌K-(𝑝@:E , 𝜔, 𝑝, Δ) 

 
We then characterize the minimum level of sequencing effort required to be able to reach a 
correlation threshold 𝜏 (50% and 90%) for each combination of 𝜔 and 𝑝 as: 

𝑝@:E
D:E>/D:,	L(𝜔, 𝑝) = min

C'()	∈{-.--',-.--K,-.-',-.-K}
{𝑝@:E ∣ 𝜌K-,()*b𝑝@:E , 𝜔, 𝑝c ≥ 𝜏} 	 

 
Results 
 
Factors impacting the ability of a genetic linkage criterion of capturing transmission 
between population groups 
 
We find that the performance of the linkage criterion between population groups varies across 
pathogens and is determined by the relative timescale at which mutation and transmission 
events occur (Figure 3A-C). For example, the sensitivity increases as the probability 𝑝 that 
transmission occurs before mutation increases (corresponding to slower mutating pathogens, 
when scaling the mutation rate with the time it takes for each transmission generation to 
occur), while the specificity and the positive predictive value (PPV) decrease with 𝑝.  
 
To further explore how other parameters impact linkage performance, we focus on a subset 
of the pathogens depicted in Figure 3A-C. We select this subset to ensure coverage of the full 
range of 𝑝: SARS-CoV (low 𝑝), SARS-CoV-2 (Omicron period – intermediate 𝑝) and Influenza 
A/H3N2 (HA only – high 𝑝). Figure 3D-F depict how varying the genetic distance threshold 
used to define the linkage criterion impacts overall performance across these three pathogens. 
We find that specificity and PPV are always maximised at low thresholds while sensitivity 
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increases as the threshold is relaxed. This is expected as a lower threshold will capture 
infections that are more epidemiologically linked and therefore less likely to misrepresent 
migration history. These lower thresholds however come at a sensitivity cost, as some relevant 
pairs will not be captured by a more conservative criterion.  
 

 
Figure 3: Impact of characteristics of the mutation and migration processes as well as 
the genetic distance threshold on the sensitivity, specificity and PPV. A. Sensitivity, B. 
specificity and C. PPV of a linkage criterion defined by Δ = 0 assuming an assortativity 
parameter 𝜔 of 0.7 across pathogens and depicted as a function of the probability that a 
transmission event occurs before a mutation one across pathogens. D. Sensitivity, E. 
specificity and F. PPV as a function of the genetic distance threshold used to define the linkage 
criterion and assuming an assortativity parameter 𝜔 of 0.7. G. Sensitivity, H. specificity and I. 
PPV of a linkage criterion defined by Δ = 0 as a function of the assortativity parameter 𝜔. 
 
As we are looking at the ability of a linkage criterion to characterize transmission between 
population groups, we expect the speed at which migration events (or mixing) occur to impact 
linkage performance. In Figure 3G-I, we explore the impact of the probability for an individual 
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to transmit within their group (measured by the assortativity parameter 𝜔) on linkage 
performance. We find that faster mixing processes (characterized by lower assortativity 
values) are associated with higher sensitivities and lower specificities and PPVs than slower 
mixing processes, for a specified threshold Δ used to define linkage. This is expected because 
the probability for a pathogen to have moved several times between groups for a linked pair 
will increase as the assortativity parameter decreases (faster mixing processes), thereby 
leading to capturing pairs that are less representative of the migration history. 
 
The computation of those coefficients is impacted by assumptions regarding the distribution 
of the number of generations separating two infected individuals in the population, and 
therefore the reproduction number. However, a sensitivity analysis varying the value of the 
reproduction number shows that overall trends are maintained (Figure S4).  
 
Overall, these findings demonstrate that the ability for pathogen genome sequence data to 
characterize transmission between population groups depends on the interplay between 
evolutionary, transmission and migration processes.  
 
Limits of genetic sequence data in their ability to characterize population processes 
 
The PPV describes how often a pair of sequences separated by a Hamming distance less 
than Δ accurately captures migration history. For a given pathogen (characterized by its 
probability 𝑝 that transmission occurs before mutation) and a transmission process of interest 
(characterized by its probability 𝜔 that transmission occurs within the same group), this PPV 
is highest for a genetic distance threshold Δ of 0 (Figure 3F). To explore the ability of 
consensus genome sequences in characterizing population processes, we computed the PPV 
for a threshold Δ of 0 as a function of both 𝑝 and 𝜔 (Figure 4). To facilitate interpretability, we 
indicate on the left of the figure how different mixing processes map to the assortativity scale 
(𝜔) and on the top how different pathogens map to values of 𝑝. 
 
The PPV for a genetic distance threshold Δ of 0 varies considerably across the 
phylogeographic parameter space. In our baseline epidemiological scenario, for a pathogen 
characterized by a 𝑝 of 0.2, we estimate a PPV of 0.28 for a fast-mixing transmission process 
(𝜔 = 0.2) and a PPV of 0.93 for a slower mixing process (𝜔 = 0.8). By contrast, these PPVs 
drop to 0.02 (𝜔 = 0.2) and 0.44 (𝜔 = 0.8) for a pathogen characterized by a 𝑝 of 0.8. We 
identify a region of low PPV in the phylogeographic parameter space, primarily in the region 
wherein values of 𝑝 are higher than values of 𝜔 (lighter red colours in Figure 4). This 
corresponds to combinations of pathogens and mixing processes for which analysing 
consensus sequence data will not provide sufficient resolution to characterize the 
corresponding mixing process. Each pathogen is therefore associated with a horizon of 
observability regarding population mixing processes, that depends on the pace at which 
mutations accumulate within its genome. 
 
Trade-off between sample size and positive predictive value 
 
A high PPV ensures the signal from linked sequence pairs is as specific as possible and 
captures the true migration history. This PPV is maximized at low genetic distance thresholds 
Δ, but this comes at a cost of reducing the number of pairs used in the analysis, as lower 
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thresholds result in decreasing linkage probability (Figure 5). This underlines that the 
performance of our group linkage criterion cannot be considered in isolation from the 
composition and size of the dataset being studied. A low linkage probability and a high PPV 
may be preferred in a large dataset but may not be useful when analysing a smaller set of 
sequences, wherein only a few pairs of sequences ultimately meet the linkage criterion. The 
PPV therefore quantifies the informativeness of genome sequences about population mixing 
processes in situations where the sample size is large enough for low thresholds not to yield 
a critically low number of linked pairs.  
 

 
Figure 4: The relative timescale at which mutation and migration events occur 
determines the extent to which pathogen sequences are informative about migration 
processes. The heatmap depicts the positive predictive value associated with a threshold Δ 
of 0 as a function of the probability that a transmission event occurs before a mutation one 𝑝 
and the probability that a transmission event occurs before a migration one 𝜔 (assortativity 
parameters). For context, we indicate on the top values for 𝑝 across a range of pathogens and 
on the right values for 𝜔 across a range of mixing process. Values are computed considering 
a pathogen with a generation time of mean 4.9 days and standard deviation 4.8 days and a 
reproduction number of 1.3 (baseline epidemiological scenario).  
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Figure 5: Sample size impacts the genetic distance threshold 𝚫 that maximizes 
phylogeographic power. Impact of the genetic distance threshold Δ on the PPV (solid line) 
and the linkage probability 𝑃[𝑀 ≤ Δ] (dashed line) assuming an assortativity parameter 𝜔 of 
0.7 across pathogens. 
 
To investigate how sample size impacts our ability to characterize mixing processes from 
pathogen sequence data, we simulate synthetic outbreaks and vary the sampling and 
sequencing of a fraction of all infected individuals. We then compute the correlation between 
the RR of observing pairs of sequences separated by less than Δ mutations and the migration 
probability between these population subgroups2. This RR metric quantifies the extent to 
which pairs of sequences lying below a distance threshold Δ are enriched in sequences 
coming from subgroups of interest. Prior work demonstrates that this metric could serve as an 
alternative to traditional tree-based phylogeographic methods2 and the median correlation 
reported in Figure 6 corresponds to a measure of method accuracy. 
 
We find that sample size is another important factor influencing the power of phylogeographic 
studies, with low sequencing fractions being associated with a lower accuracy (Figure 6). 
Despite the PPV being highest for a genetic distance threshold Δ = 0, we find that relying on 
this threshold is not sufficient to characterize mixing processes at low sequencing rates (top 
left facets in Figure 6). Considering less restrictive distance thresholds can increase 
phylogeographic power (bottom left facets in Figure 6), by increasing the number of sequence 
pairs analysed (Figure S5). However, the number of sequences available and analysed 
imposes an upper bound on inference accuracy, regardless of the distance thresholds (Figure 
7A). Figure 4 highlights a fundamental limit for phylogeographic inference, determined by the 
relative pace at which mutation and migration events occurred. Here, we show that study 
design imposes an additional constraint. While it is theoretically possible to characterize a 
transmission process characterized by an assortativity value 𝜔	~	0.5 from a pathogen 
characterized by 𝑝	~	0.7 (which is similar to assessing transmission between age groups 
defined in decade increments from SARS-CoV-2 sequences) (Figure 4), our simulations 
highlight that this requires a sufficiently high level of sequencing. For example, in our four-
group transmission simulations, we find that sequencing 1% of the infected population would 
not yield an inference accuracy greater than 90%, and one would need to rely on at least 5% 
of infections being sequenced to be able to draw such inferences (Figure 7B). 
 
Overall, this shows that the ability of pathogen genome datasets to decipher transmission 
between population groups is influenced by the complex interplay between sampling intensity 
and the relative timescale at which mutation and migration events occur. 
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Figure 6: Impact of sample size and genetic distance threshold on phylogeographic 
inference accuracy. Median Spearman correlation coefficient (across 50 replicate 
simulations) between the RR of observing sequences less than Δ mutations away (rows) and 
migration probabilities between groups, across different sequencing fractions 𝑝@:E (columns). 
Results are displayed as a function of the probability 𝑝 that transmission occurs before 
mutation and assortativity 𝜔. When the median correlation is lower than 0, we display it as 
black (corresponding to 0) to improve visualization of positive median correlation values.  
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Figure 7: Minimal sampling effort necessary to reach a given phylogeographic 
inference accuracy. A. Maximum median correlation between the the RR of observing 
sequences less than Δ mutations away and migration probabilities as a function of of 𝑝 and 𝜔, 
across different sequencing fractions 𝑝@:E. This maximum correlation is computed across 
genetic distance thresholds Δ ranging between 0 and 15. B. Minimal sequencing fraction 𝑝@:E 
required to reach a maximum median correlation of 50% or 90%, as a function of of 𝑝 and 𝜔. 
 
Discussion 
 
In this work, we explore how the complex interplay between transmission, population mixing, 
mutation and sampling impacts the informativeness of pathogen sequence datasets for 
understanding population-level epidemic processes. First, we introduce a conceptual 
framework that uses a confusion matrix approach to quantify whether pairs of sequences are 
consistent or inconsistent with the underlying migration history. This simple description does 
not capture richer information contained by genomic data (such as derived sequences or tree 
branching patterns) but provides a succinct formulation enabling us to comprehensively 
explore the space of possible phylogeographic analyses by explicitly incorporating the speed 
at which mutations accumulate within pathogens genome (measured by the probability 𝑝 that 
transmission occurs before mutation) and the speed at which pathogens move between 
population groups (measured by the probability 𝜔 that transmission occurs within the same 
group). Our analyses reveal an inherent limit to the resolution genomic data can provide, 
particularly when transmission events between population groups occur faster than the 
accumulation of mutations within pathogen genomes. Second, we complement this theoretical 
framework with a simulation exercise to investigate how sampling effort and study design 
impact the accuracy and power of phylogeographic studies based on clusters of genetically 
proximal sequences. These simulations reveal a second fundamental constraint, with sparser 
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sampling decreasing the ability of pathogen sequences in deciphering transmission between 
groups. 
 
Although we focused on approaches that rely on clusters of proximal sequences, the 
constraints we identified should generalize to methods leveraging genomic data differently. 
For example, discrete trait analyses (DTAs) rely on richer information encoded in the tree 
structure but still require branch lengths to be informative about the mixing process. 
Sequences from a very densely sampled setting where the outbreak is sampled every 
mutation would thus enable us to characterize mixing processes occurring roughly at the same 
pace at which mutations accumulate but not faster ones, consistent with the patterns we 
identified in Figure 4. Furthermore, while we expect sample size requirements to vary between 
DTAs and methods based on clusters of proximal sequences, sampling can still impact the 
performance of DTA by increasing branch lengths. Taking the example of a pathogen that 
would require being sampled every mutation for DTA to shed light on a transmission process 
of interest, if sampling resulted in branch lengths lying well above this threshold, the final 
dataset would be insufficient to characterize transmission. Further work directly quantifying 
such trade-offs for other phylogeographic approaches would be particularly interesting. 
Overall, while more sophisticated ways of leveraging genomic data may refine inference about 
transmission processes, some inherent limitations will persist. Awareness of such constraints 
during study design and analysis is critical to avoid false confidence in the resulting inferences.  
 
While future work should aim at providing robust guidance on power and sample size 
requirements to characterize population transmission processes, our conceptual framework 
identifies actionable levers for modulating the power of phylogeographic studies. Sample size 
and sequencing density in general are major determinants of the power of phylogeographic 
analyses (Figure 6). However, genomic datasets used to perform such analyses are often 
repurposed from surveillance efforts or studies not initially aimed at quantifying transmission 
between groups. Increasing sample size to a desirable level might thus be feasible, particularly 
for retrospective studies. One alternative is to modify the value of key parameters (assortativity 
parameter 𝜔 and probability that transmission occurs before mutation 𝑝) through study design 
choices. For example, aggregating individuals into broader population groups both increases 
𝜔 (Figure 4) and decreases the number of between-group mixing rates to estimate. Using WA 
contact data, we find that analysing age groups in 10-year age bins instead of 5-year ones 
increases the assortativity parameter 𝜔 from 0.35 to 0.48 (Figure 4, Figure S2). Considering 
spatial spread, we find that aggregating individuals at the PUMA level (around 125,000 
inhabitants per PUMA) instead of at the census block group level (around 1,400 inhabitants) 
increases 𝜔 from 0.05 to 0.52 (Figure 4, Table S1). The temporal resolution contained in 
pathogen sequences is also impacted by the length of the genome analysed, as emphasized 
by prior work characterizing the value of whole-genome trees relative to gene-specific trees in 
resolving outbreaks in space and time6. In our framework, this would be similar to considering 
a pathogen characterized by a lower 𝑝. For example, influenza A/H3N2 is characterized by a 
𝑝 of 0.82 when concatenating all segments13 whereas 𝑝 increases to 0.92 when analysing 
hemagglutinin segments only. This is congruent with one mutation occurring on average every 
19 days across the whole genome versus every 48 days for hemagglutinin segments only. 
 
The inherent limit we identified in analyzing consensus sequences to characterize 
transmission between population groups underscores the value of developing methods 
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leveraging identical or nearly identical sequences, particularly in settings characterized by 
rapid mixing between population groups. Such methods can enable us to get as close as 
possible to that limit, and prior work has shown promising results to characterize spatial and 
social mixing from identical SARS-CoV-2 pairs2. However, we showed that, even identical 
sequences may carry insufficient information to reliably estimate population transmission 
patterns (Figure 4), particularly when mixing occurs rapidly with respect to mutations. 
Approaches explicitly leveraging within-host diversity and deep-sequencing (thus capturing 
faster-occurring evolutionary events) could effectively decrease the value of 𝑝 and have the 
potential to overcome this limitation. 
 
Overall, our work reveals inherent horizons of observability associated with phylogeographic 
inference that depend on the complex interplay between study design and the relative 
timescale at which mutation and migration events occur.  
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Supplementary information  
 
Supplementary methods 
 
All notations are defined in the main text. To facilitate navigation, a summary of these notations 
is available in the following table 
 
Parameter Description 
Random variables 

𝐽 Number of jumps separating two infections 
𝑀 Number of mutations separating two infections 
𝐺 Number of generations separating two infections 

Parametrization of the random variables’ distribution 
𝜋$ Probability for two individuals of being separated by 𝑔 generations 
𝜆 Migration rate 
𝜇 Mutation rate 
𝛼 Shape parameter for the Gamma distributed generation time 
𝛽 Scale parameter for the Gamma distributed generation time 
𝑝 Probability that a transmission event occurs before a mutation one. 
𝜔 Probability that a migration event occurs before a mutation one (assortativity 

parameter) 
Parameters associated with the confusion matrix 

Δ Genetic distance threshold used to define the linkage criterion 
𝜂! Sensitivity of a linkage criterion defined by a Δ threshold 
𝜒! Specificity of a linkage criterion defined by a Δ threshold 
𝜙! Positive predictive value of a linkage criterion defined by a Δ threshold 

 
 
Probabilistic framework detailed derivation 
 
Distribution of the number of jumps conditional on the number of generations. 
 
This is similar to the derivations made in Tran-Kiem et al2 to calculate the distribution of the 
number of mutations conditional on the number of generations. Let 𝑇:N= denote the 
evolutionary time separating the two individuals we are considering. As the number of jumps 
follows a Poisson process of rate 𝜆, we have: 

𝐽 ∼ 𝒫(𝜆𝑇:N=) 
 
Assuming independence of successive transmission events and because we assumed that 
the generation time follows a Gamma distribution of parameter (𝛼, 𝛽), the time between 𝑔 
successive generations follows a Gamma distribution of shape 𝛼𝑔 and scale 𝛽. Let 𝑓*,?(⋅) 
denote the probability density function of a Gamma distribution of shape 𝑥 and scale 𝑦. We 
can derive the distribution of the number of jumps conditional on the number of generations 
as: 

𝑃[ 𝐽 = 𝑗 ∣∣ 𝐺 = 𝑔 ] = v 𝑃[[𝐽	 = 	𝑗 ∣ 	𝐺	 = 	𝑔, 𝑇:N= = 𝑡] ⋅ 𝑝( 𝑡 ∣∣ 𝐺 = 𝑔 )	𝑑𝑡
O

6+-
	

= v
(𝜆𝑡)1 ⋅ 𝑒P6

𝑗!
⋅ 𝑓A$,Q(𝑡)𝑑𝑡

O

6+-
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= v
(𝜆𝑡)1 ⋅ 𝑒P6

𝑗!
⋅
𝛽A$ ⋅ 𝑡A$B' ⋅ 𝑒BQ6	

Γ(𝛼𝑔)
𝑑𝑡

O

6+-
	

=
𝜆1𝛽A$

𝑗! Γ(𝛼𝑔)
v

Γ(𝑗 + 𝛼𝑔)
(𝜆 + 𝛽)1RA$

⋅ 𝑓1RA$,PRQ(𝑡)	𝑑𝑡
O

6+-
	

=
Γ(𝑗 + 𝛼𝑔)
𝑗! Γ(𝛼𝑔)

⋅ A
𝛽

𝛽 + 𝜆B
A$

⋅ A
𝜆

𝛽 + 𝜆B
1

 

which is the probability mass function of a negative binomial distribution of parameters 𝑟%|$ =

𝛼𝑔 and 𝑝%|$ =	
Q

QRP
. 

 
Therefore: 

𝐽∣T+$ ∼ 𝑁𝐵 A𝛼𝑔,
𝛽

𝛽 + 𝜆B
 

 
Distribution of the number of mutations conditional on the number of generations. 
 
By adapting the above demonstration to 𝑀, that follows a Poisson process of rate 𝜇, we have: 

𝑀∣T+$ ∼ 𝑁𝐵 A𝛼𝑔,
𝛽

𝛽 + 𝜇B
 

 
Distribution of the number of jumps conditional on the number of mutations 
 
We introduce ℎ(𝑘; 𝑟, 𝑝) as the probability mass function, evaluated in 𝑘 of a negative binomial 
distribution of parameters 𝑟 and 𝑝. Then, we have: 

𝑃[ 𝐽 = 𝑗 ∣∣ 𝑀 = 𝑚 ] = 	L𝑃[ 𝐽 = 𝑗 ∣∣ 𝐺 = 𝑔,𝑀 = 𝑚 ] ⋅ 𝑃[𝐺 = 𝑔 ∣∣ 𝑀 = 𝑚 ]
$&'

	

= 	L[ 𝐽 = 𝑗 ∣∣ 𝐺 = 𝑔 ] ⋅ 𝑃[𝑀 = 𝑚 ∣∣ 𝐺 = 𝑔 ] ⋅
𝑃[𝐺 = 𝑔]
𝑃[𝑀 = 𝑚]

$&'

	

= 	
∑ 𝑃[ 𝐽 = 𝑗 ∣∣ 𝐺 = 𝑔 ] ⋅ 𝑃[𝑀 = 𝑚 ∣∣ 𝐺 = 𝑔 ] ⋅ 𝑃[𝐺 = 𝑔]$&'

∑ 𝑃[𝑀 = 𝑚 ∣∣ 𝐺 = 𝑔 ] ⋅ 𝑃[𝐺 = 𝑔]$&'
	

=
∑ ℎ A𝑗; 𝛼𝑔, 𝛽

𝛽 + 𝜆B ⋅ ℎ A𝑚; 𝛼𝑔,
𝛽

𝛽 + 𝜇B ⋅ 𝜋$$&'

∑ ℎ A𝑚; 𝛼𝑔, 𝛽
𝛽 + 𝜇B ⋅ 𝜋$$&'

 

 
Confusion matrix parameters derivation 
 
Sensitivity 
 
For Δ ≥ 1, we have: 

𝜂! = 𝑃[𝑀 ≤ Δ ∣∣ 𝐽 ≥ 1 ]	
= 𝑃[𝑀 ≥ Δ − 1 ∣∣ 𝐽 ≥ 1 ] + 𝑃[𝑀 = Δ ∣∣ 𝐽 ≥ 1 ]	

= 𝜂!B' +
𝑃[ 𝐽 ≥ 1 ∣∣ 𝑀 = Δ ] ⋅ 𝑃[𝑀 = Δ]

𝑃[𝐽 ≥ 1]
 

We introduce 𝜂!′ as: 

𝜂!. =
(𝑃[ 𝐽 = 0 ∣∣ 𝑀 = Δ ] + 𝑃[ 𝐽 = 1 ∣∣ 𝑀 = Δ ]) ⋅ 𝑃[𝑀 = Δ]

𝑃[𝐽 ≥ 1]
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Therefore: 

𝜂! = 𝜂!B' + 𝜂!.  
 
We note that 𝜂- =	𝜂-. . Therefore, for all Δ ≥ 0, we have: 

𝜂! = L𝜂,′
!

,+-

 

Specificity 
 
For Δ ≥ 1, we have: 

𝜒! = 𝑃[𝑀 > Δ ∣∣ 𝐽 > 1 ]	
= 𝑃[𝑀 > Δ − 1 ∣∣ 𝐽 > 1 ] − 𝑃[𝑀 = Δ ∣∣ 𝐽 > 1 ]	

= 	𝜒!B' −	
𝑃[ 𝐽 > 1 ∣∣ 𝑀 = Δ ] ⋅ 𝑃[𝑀 = Δ]

𝑃[𝐽 > 1]
	

= 	𝜒!B' −
(1 − 𝑃[𝐽 = 0 ∣ 𝑀 = Δ] − 𝑃[𝐽 = 1 ∣ 𝑀 = Δ]) ⋅ 𝑃[𝑀 = Δ]

1 − 𝑃[𝐽 = 0] − 𝑃[𝐽 = 1]
 

For Δ ≥ 0, we introduce: 

𝜒!. =
(1 − 𝑃[𝐽 = 0 ∣ 𝑀 = Δ] − 𝑃[𝐽 = 1 ∣ 𝑀 = Δ]) ⋅ 𝑃[𝑀 = Δ]

1 − 𝑃[𝐽 = 0] − 𝑃[𝐽 = 1]
 

Therefore: 
𝜒! = 𝜒!B' −	𝜒!.  

 
We note that 𝜒- = 1 −	𝜒-′. Therefore, for all Δ ≥ 0, we have: 

𝜒! = 1 −	L 𝜒,′
!

,+-

 

 
Supplementary tables 
 

Table S1: Estimates of the probability for a movement of occurring within the same 
geographical unit in the US. 

Geographical unit Data source Proportion 
Census block groups SafeGraph in Washington state 0.05 

Census tracts SafeGraph in Washington state 0.10 
Public Use Microdata Areas 

(PUMAs) 
SafeGraph in Washington state 0.52 

Counties SafeGraph in Washington state 0.81 
Counties Safegraph data from Pullano et al. 0.76 
States Safegraph data from Pullano et al. 0.90 

 
Table S2: Mixing matrix used in the ReMASTER simulations as a function of the 
assortativity parameter 𝝎 used in the parametrization. Each coefficient corresponds to the 
probability that an infection coming from someone belonging to group 𝑖 (rows) is in someone 
in group 𝑗 (columns). 

𝜔 (1 − 𝜔) ⋅ 1/12 (1 − 𝜔) ⋅ 4/12 (1 − 𝜔) ⋅ 7/12 
(1 − 𝜔) ⋅ 1/12 𝜔 (1 − 𝜔) ⋅ 7/12 (1 − 𝜔) ⋅ 4/12 
(1 − 𝜔) ⋅ 4/12 (1 − 𝜔) ⋅ 7/12 𝜔 (1 − 𝜔) ⋅ 1/12 
(1 − 𝜔) ⋅ 7/12 (1 − 𝜔) ⋅ 4/12 (1 − 𝜔) ⋅ 1/12 𝜔 
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Supplementary figures 
 

 
Figure S1: Proportion of contacts occurring within the same age group across age 
groups, where age group are defined in decades. Estimates were obtained using synthetic 
social contact data from Washington state8.  
 

 
Figure S2: Estimates of the probability for a contact of occurring within the same age 
group as a function of the binning window width used to define age groups. Estimates 
were obtained using synthetic social contact data from Washington state8.  
 

 
Figure S3: Distribution of the number of generations separating two infected 
individuals used in the computations. These probabilities are directly extracted from the 
phylosamp R package15 as estimated by Wohl et al7.  
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Figure S4: Sensitivity analysis exploring sensitivity, specificity and PPV for different 
values for the reproduction number R. A. Sensitivity, B. specificity and C. PPV as a function 
of the genetic distance threshold used to define the linkage criterion and assuming an 
assortativity parameter 𝜔 of 0.7. D. Sensitivity, E. specificity and F. PPV of a linkage criterion 
defined by Δ = 0 as a function of the assortativity parameter 𝜔. 
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Figure S5: Median number of pairs of sequences less than 𝚫 mutations away across 50 
replicate simulations as a function exploring different sequencing fractions 𝑝@:E and genetic 
distance thresholds Δ. Results are displayed as a function of 𝑝 and 𝜔. Black tiles correspond 
to a median value of 0.  
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