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20 Abstract

21 Seasonal influenza virus undergoes rapid antigenic drift to escape pop-
2 ulation immunity. Computational methods can be used to organize viral
23 genetic diversity into antigenically similar variants and estimate variant-
2% specific growth rates. However, benchmarking these methods is challeng-
25 ing because it can be difficult to accurately quantify antigenicity and
26 growth rates in nature. Simulating viral evolution using defined selective
27 pressures can provide ground-truth data for benchmarking. But, existing
28 simulators do not link genetic sequences to antigenic phenotypes under
20 selection from host populations.

30 Here, we present a forward-time epidemic simulator called antigen-prime
31 that links these factors. We use it to simulate viral evolution over 30
32 years and validate the simulation recapitulates genetic and antigenic
33 patterns observed in natural influenza evolution.

3 We then use the simulated data to benchmark methods for assigning
35 variants and estimating their growth rates. We evaluated a sequence-
36 based and a phylogenetics-based method for variant assignment, finding
37 the former was slightly more effective at separating viruses into antigeni-
38 cally distinct groups. We also evaluated methods for estimating variant
39 growth rates in one-year sliding windows. Estimates were accurate in
40 most windows, but highly inaccurate in several others. Examining high-
a error windows revealed several examples of a previously unreported failure
2 mode. In all, antigen-prime provides a simulation framework to bench-
43 mark models of influenza evolution, and could be used to help guide fu-
4 ture development of these models. The source code is openly available at
45 https://github.com/matsengrp/antigen-prime.
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« 1 Introduction

« Influenza virus infects about one billion and kills hundreds of thousands of
s people globally each year (Krammer et al., 2018). Vaccination provides the pri-
2 mary method of prevention, but the virus undergoes rapid antigenic evolution,
so necessitating annual vaccine updates (Petrova and Russell, 2018). To track the
51 virus’s evolution, laboratories worldwide sequence tens of thousands of influenza
2 genomes each year, sharing data through public databases (Hadfield et al., 2018;
53 Shu and McCauley, 2017). Public health agencies also monitor influenza spread
s« through case counts and hospitalizations.

55 It is of interest to develop computational methods to use the above sources
ss of data to help guide vaccine updates (Morris et al., 2018). One goal of such
s methods is to partition observed viral sequences into groups (i.e. “variants”)
ss  with similar antigenic phenotypes. Another goal is to estimate variant-specific
so growth rates, helping to quantify variant fitness in the present and forecast
¢ future variant abundance.

61 For seasonal influenza virus, two main computational methods exist for
e variant assignment. One method involves building a phylogenetic tree of ob-
63 served sequences and then partitioning the tree into clades that correspond to
s« unique variants (Neher et al., 2025). This method can incorporate prior knowl-
s edge about which mutations are most likely to impact the virus’s antigenic-
e 1ity. Another method involves computing pairwise distances between observed
e sequences, and then using dimensionality reduction to embed sequences in a
e low-dimensional space. Clustering of sequences in this space can then be used
o0 to identify unique variants (Nanduri et al., 2024). Both methods have proven
70 useful for interpreting real-time influenza surveillance data (Huddleston et al.,
7 2024; Nanduri et al., 2024).

7 A variety of methods exist for estimating variant-specific growth advantages
7z from viral surveillance data. Some only consider variant-specific frequencies
7+ over time, such as the fitness model by Luksza and Lassig (Luksza and Lassig,
75 2014) or multinomial logistic regression approaches (Ito et al., 2021; Obermeyer
7 et al., 2022; Piantham et al., 2021). Others also consider observed numbers of
77 case counts over time, such as the fixed growth advantage (FGA) and growth
7z advantage random walk (GARW) models from the evofr framework (Figgins
7 and Bedford, 2025).

80 Although these methods are widely used, it is challenging to benchmark
a1 their accuracy. That is because natural populations lack known ground-truth
&2 variant assignments and growth advantages. Experiments such as neutralization
g3 assays or hemagglutination inhibition assays can be used to quantify antigenic
s phenotypes of influenza viruses in a laboratory setting. However, it can be
s difficult for experiments to fully capture antigenic selection in nature due to the
s high level of heterogeneity in human immune responses to influenza (Kikawa
a7 et al., 2025)

88 A complementary approach is to simulate viral evolution under defined se-
s lective pressures and then use the simulated data, and associated ground-truth
o quantities, to benchmark the above methods. Doing so would require a simulator
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o that models three key aspects of influenza evolution: (1) genetic sequence evo-
» lution through a biologically realistic mutation processes, (2) coupled antigenic
o3 evolution where mutations in epitope regions alter a virus’s antigenic pheno-
u type, allowing escape from host immunity, and (3) sustained viral transmission
s in a large host population, with case counts tracked over time. While numer-
s ous pathogen-evolution simulators exist (Bedford et al., 2012; Jariani et al.,
or 2019; Moshiri et al., 2019; Ochsner et al., 2025), none fully integrate all three
e of these components. SANTA-SIM (Jariani et al., 2019) models genetic sequence
o evolution, but not antigenic phenotypes or transmission dynamics. Conversely,
w antigen (Bedford et al., 2012) models transmission dynamics and antigenic
w1 evolution, but does not model genetic sequence evolution. FAVITES (Moshiri
02 et al.,, 2019) models contact network transmission without antigenic evolution,
13 while virolution (Ochsner et al., 2025) models within-host evolution without
s population-level antigenic drift.

105 Here, we develop a simulator called antigen-prime that models all three
ws components listed above. We use it to simulate 30 years of seasonal influenza
w7 evolution, verifying that the simulated data reproduce influenza-like dynamics
s across genealogical, antigenic, and epidemiological dimensions. We then use
o the simulated data to benchmark methods for assigning variants and predicting
uo  variant growth rates. While the methods perform well overall, we identify several
m  examples where they perform poorly, exposing previously unrecognized failure
12 modes that occur even with abundant data.

» 2 Results

e 2.1 Summary of antigen-prime

us  We sought to build a simulator that integrates all three components of influenza
us evolution listed above. We achieved this by extending the antigen simula-
w7 tor (Bedford et al., 2012), which already models transmission dynamics and
us antigenic evolution. We updated antigen to include explicit genetic sequences
us that evolve through mutation and drive antigenic change. We call this updated
o simulator antigen-prime.

121 The original antigen implements a deme-structured SIR model to simulate
12 viral transmission dynamics and antigenic evolution under selective pressure
123 from host immunity. Each infected host carries a single virus object that is as-
124 sociated with coordinates that represent the virus’s location in a d-dimensional
s antigenic space. Mutations to the virus move it in this space. Individual hosts
126 maintain immune memory as a collection of antigenic coordinates from previous
127 infections. When an infected host comes in contact with a susceptible host, the
s minimum Euclidean distance in antigenic space between the virus from the in-
120 fected host and viruses from the susceptible host’s immune memory determines
1o the infection risk, with smaller distances conferring greater protection. Selection
11 to escape immune memories in the host population drives viral antigenic evolu-
12 tion. However, viruses in antigen are not associated with genetic sequences as
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Figure 1: Schematic of how antigen-prime simulates coupled genetic and anti-
genic evolution of viruses. A: Each virus is represented by both a nucleotide
sequence and coordinates in a d-dimensional antigenic space. Mutation events
simultaneously change the nucleotide sequence and move the virus in antigenic
space. B: During mutation events, a nucleotide site is randomly selected and
mutated according to the K80 model, while antigenic coordinates are updated
based on a sampled step direction 6 and step size r that depends on whether
the mutation is synonymous or non-synonymous and whether it occurs in an
epitope or non-epitope site.

133 they exist only as points in antigenic space.

134 In antigen-prime, we updated the virus object to include not only the
135 virus’s coordinates in antigenic space, but also a nucleotide sequence of a
s protein-coding gene (Figure 1A). Simulations initialize with a single virus with
17 a defined sequence, and this sequence evolves as the virus replicates and spreads
s in the host population. The user must define a subset of amino-acid sites in
130 the protein to be “epitope sites”, where mutations have large antigenic effects
1w (all remaining sites are considered to be “non-epitope sites”). In this paper,
11 we used an influenza hemagglutinin (HA) nucleotide sequence that codes for
w2 a protein of length 566 amino acids. We classified 49 of these amino-acid
u3  sites to be epitope sites, using the set of epitope sites defined in Luksza and
s Léssig (Luksza and Léssig, 2014).

145 The nucleotide sequence of a virus object mutates at a user-defined mutation
us rate. Since there is only one virus object per infected host, this object’s sequence
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w7 is like a consensus sequence within the host, and the rate at which it mutates
us represents the rate at which mutations reach sufficient frequency within the host
ue  to transmit to new hosts upon contact events. Thus, we model this rate as a
10 function of both neutral mutation and within-host purifying selection. We model
51 the neutral mutation process using the K80 mutation model (Kimura, 1980),
12 parameterized by a transition/transversion ratio k = 5.0 (user-configurable pa-
153 rameter set to match empirical observations in influenza (Bloom and Glassman,
s 2009; Rabadan et al., 2006)). Specifically, mutation events randomly select a
155 nucleotide site and assign a new nucleotide by drawing from the K80-model
155 probability distribution. We model purifying selection by rejecting a subset of
157 mutations based on their properties. Mutations that introduce stop codons are
158 rejected. Nonsynonymous mutations are probabilistically either accepted or re-
10 jected according to a user-defined “acceptance rate”, with separate acceptance
1o rates for epitope and non-epitope sites. In this paper, we use acceptance rates
e of 0.75 and 0.2 at epitope and non-epitope sites, respectively, consistent with
2 greater purifying selection at non-epitope sites (Luksza and Lassig, 2014).

163 The antigenic effect of a nucleotide mutation depends on if and how it
6« changes the protein sequence (Figure 1B). Synonymous mutations do not alter
165 the virus’s antigenic coordinates. Nonsynonymous mutations at epitope sites
166 cause large movements in antigenic space with step sizes drawn from a gamma
167 distribution with mean 0.6 antigenic units (analogous to the original antigen).
s Nonsynonymous mutations at non-epitope sites cause very small movements
s with step sizes drawn from a gamma distribution with mean 1 x 10~° antigenic
wo units. The direction of movement (¢) is random for both types of mutations.
w1 Thus, in antigen-prime, antigenic evolution is mostly driven by nonsynony-
2 mous mutations at epitope sites, while other mutations accumulate with little-
173 to-no antigenic impact.

174 In summary, the main difference between antigen and antigen-prime is
s that virus objects in antigen-prime have sequences. In antigen, mutation
s events directly result in changes to the virus object’s location in antigenic space.
w7 In antigen-prime, mutation events first act on the virus’s sequence, which in
ws  turn can result in changes to the virus’s location in antigenic space. Other
o aspects of the simulator are the same, including antigenic selection on viruses
10 to escape immune memory in the host population.

181 Related to antigenic selection, we have also updated antigen-prime to
12 record population immunity over time. This feature enables benchmarking of
183 variant-assignment methods by providing explicit fitness values for viruses. Ev-
18s  ery t days, the simulator samples n hosts and records the centroid of the most
15 Trecent entry in each host’s immune history, representing the average antigenic
15 profile of recent infections. These immunity centroids enable fitness calcula-
17 tion for sampled viruses by computing infection risk based on the host centroid
188 values at that time.
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s 2.2 Simulating long-term influenza evolution using antigen
190 -prime

11 We used antigen-prime to simulate 30 years of H3N2 seasonal influenza
192 evolution. We initialized simulations with the full-length HA sequence from
s A/Beijing/32/1992. Each simulation comprised three geographical demes:
e the Northern hemisphere, Southern hemisphere, and tropics, each with 30
15 million hosts. We ran 30 parallel replicate simulations to quantify variability in
16 outcomes.

17 As with the original antigen, antigen-prime simulations reproduced
108 influenza-like phylogenetic structure and rates of antigenic evolution. In natu-
1o ral H3N2 evolution, the average time between two contemporaneous sequences
20 and their most recent common ancestor is expected to be ~3.22 years (Scotch
a1 et al., 2025), reflecting influenza’s spindly phylogenetic structure. The average
22 rate of antigenic change is expected to be ~1.6 antigenic units per year, as quan-
203 tified using experimental data from hemagglutination-inhibition assays (Hirst,
200 1943; Koel et al., 2013; Smith et al., 2004). Many antigen-prime simulations
205 resulted in values close to these numbers (Figure S1).

206 antigen-prime simulations also reproduced influenza-like mutational pat-
27 terns. As an empirical reference, we considered a phylogenetic tree that Hud-
28 dleston et al. made using seasonal H3N2 influenza HA sequences collected over
200 25 years (Huddleston et al., 2020). For this tree, and for each of our simulated
a0 trees, we counted the number of epitope and non-epitope mutations observed
an along the branches of the tree, separately doing so for trunk branches and side
22 branches, and using the set of epitope sites from Luksza and Léssig (Luksza and
a3 Liéssig, 2014). Many of the simulated trees had counts similar to the empirical
au tree (Figure S2). Table 1 shows counts for a single simulation that reproduced
x5 realistic influenza-like dynamics in terms of mutational patterns, phylogenetic
216 structure, and antigenic movement, and which we describe below in more detail.
217 On the trunk, the simulated and empirical trees have similar mutation counts,
28 and similar ratios in counts between epitope and non-epitope mutations. On
219 side branches, the mutation counts are substantially higher for the simulated
20 tree because this tree has substantially more sequences (this high sampling den-
a1 sity was useful for downstream benchmarking purposes). However, the ratio of
2 counts between epitope and non-epitope mutations, which is not sensitive to
23 sampling density, is similar between the simulated and empirical trees. Given
24 the complexity of natural influenza evolution and the simplifying assumptions in
25 our model, we expect approximate rather than precise agreement with empirical
26 values.

207 In the following sections, we use the simulation characterized in Table 1
28 to benchmark methods for analyzing influenza sequences. This simulation re-
220 produced various aspects of influenza evolution. A phylogenetic tree of viruses
20 sampled from this simulation exhibits a characteristic ladder-like structure (Fig-
a1 ure 2A). Case counts across the three demes display realistic seasonal patterns,
22 with Northern and Southern demes exhibiting opposite seasonal peaks and the
2 tropics showing more constant transmission (Figure 2B). The distribution of
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Mutation Characteristic Empirical Value Scaled Value Simulation Value

(25 years) (30 years) (30 years)
Trunk Mutations
Epitope mutations 50 60 66
Non-epitope mutations 32 38 49
Ratio (epitope:non-epitope) 1.56 1.56 1.35
Side Branch Mutations
Epitope mutations 485 582 1254
Non-epitope mutations 1177 1412 3294
Ratio (epitope:non-epitope) 0.41 0.41 0.38

Table 1: Comparison of mutation patterns between an empirical phylogeny and
the simulated phylogeny used for downstream analysis. The table shows counts
of mutations occurring in epitope and non-epitope regions along the trunk vs.
side branches. Empirical values are derived from 25 years of H3N2 HA sequences
from Huddleston et al. (Huddleston et al., 2020), with trunk and side branch
annotations following the methodology of Bedford et al. (Bedford et al., 2015).
Scaled values extrapolate empirical counts to 30 years (x1.2) for comparison
with simulation values. Simulation values are from a 30 year simulation.

2 sampled viruses in antigenic space reveals distinct antigenic clusters that show
25 sustained antigenic evolution over time (Figure 2C). Epitope mutations accumu-
2 late approximately linearly over time (Figure 2D) and global variant frequency
2 dynamics show sequential variant emergence-and-replacement patterns observed
23 in the original antigen (Bedford et al., 2012) (Figure 2E).

» 2.3 Benchmarking variant-assignment methods

20 We sought to use the above antigen-prime simulation to benchmark meth-
2 ods for grouping viral genetic sequences into variants with similar antigenicity,
a2 with the simulation providing ground-truth coordinates of each virus in anti-
23 genic space. We evaluated three methods. The first method uses k-means
a4 clustering of viruses by their ground-truth antigenic coordinates, providing a
25 baseline for comparison. The second method uses Neher’s clade suggestion al-
26 gorithm (Neher et al., 2025) to cluster viruses based on a phylogenetic tree
27 built from their sequences. This approach defines variants by considering tree
2s  topology, overall genetic divergence, and amino acid changes at epitope sites,
29 and has been applied in efforts to guide seasonal influenza vaccine composi-
50 tion (Huddleston et al., 2024). We parameterized this method using the same
s set of 49 epitope sites that we used in the simulation. The third method uses
2 pathogen-embed (Nanduri et al., 2024) to compute pairwise Hamming distances
3 between viral sequences, then use those data to project sequences into a low-
»4  dimensional space using t-SNE, and cluster sequences in that space using k-
s  means. We configured the antigenic and sequence-based methods to produce
»6 30 variants, and the phylogenetic method to produce approximately 30 variants
257 (resulting in 31) for comparison. When visualized in antigenic space, all three
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Figure 2: Genetic, antigenic, and epidemiological dynamics from a 30 year
antigen-prime simulation. A: Phylogenetic tree of 150,000 viruses sampled
from the simulation, with tips colored by antigenic variant assignment. B: Case
counts across three geographic demes (North, Tropics, South), demonstrating
realistic seasonal epidemic patterns with hemispheric differences. C: Antigenic
space of sampled viruses colored by variant, with variants assigned using k-
means clustering on antigenic coordinates. The data show distinct antigenic
clusters. D: Epitope mutations accumulate approximately linearly over time
(red dashed line shows 1 mutation/year reference), indicating consistent anti-
genic drift throughout the simulation. E: Global variant frequency dynamics
aggregated across all demes, showing sequential variant emergence and replace-
ment patterns. 9
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s methods create largely distinct clusters (Figure 3A-C), even though the latter
0 two approaches use only genetic data. As expected, the first approach results
0 in strictly non-overlapping clusters. The latter two approaches result in clus-
1 ters that are mostly separated, but have some overlap, reflecting the inherent
x%2 difficulty in cleanly resolving antigenic boundaries from genetic data alone.

263 We quantified method performance using the following three metrics. First,
% we quantified the number of circulating variants per year. We tuned each
x5 method to produce approximately three per year to reflect real-world influenza
266 dynamics (Huddleston et al., 2024). Each method resulted in similar traces of
27 this quantity over time (Figure 3D).

268 Second, we quantified the variance in antigenic fitness among viruses as-
0 signed to a given variant (Figure 3E). Specifically, for each year, we used the
a0 annual host population immunity centroid from that year to calculate the fit-
an ness of each sampled virus from the entire simulation, where fitness represents
o infection risk and is a function of the distance between a virus and the immunity
a3 centroid in antigenic space. For each variant, we then computed the variance in
aa these fitness values among viruses assigned to that variant, and then averaged
s these variances across all variants. The blue line from Figure 3E shows the per-
s formance of the first variant-assignment method, which clusters viruses by their
o7 ground-truth coordinates in antigenic space, and which we use as a baseline for
s evaluating the other two methods. The blue line is close to zero for all years,
a9 indicating low variance in fitness values and thus high performance. The other
20 two methods also result in low variance (see the orange and green lines), as
21 expected from their ability to effectively cluster viruses in antigenic space (Fig-
2 ure 3B/C). However, the variance of these methods is ~3-10-fold higher than
23 the blue baseline, reflecting the observation that there is some overlap between
s clusters. The sequence-based method shows consistently lower variance, and
2 thus higher performance, than the phylogenetic method.

286 Third, we quantified the extent that the sequence- and phylogenetics-based
27 assignments agreed with the ground-truth assignments from k-means clustering
23 in antigenic space (Figure 3F,G). We quantified agreement using the normal-
20 ized information distance (NID) (Li et al., 2004); a distance metric ranging
20 from 0 to 1 where lower values indicate more agreement between two variant
201 assignments and higher values indicate less agreement. Both the sequence-based
22 and phylogenetic-based methods resulted in assignments with high overlap with
203 ground-truth assignments, with the former method showing better overlap (NID
20 = 0.226) than the latter (NID = 0.322).

205 Overall, this benchmark indicates that both the sequence-based and
26 phylogenetic-based variant-assignment methods are effective at grouping
207 viruses into antigenically similar variants, with the former method showing
28 higher performance. The success of these approaches also helps validate that
29 antigen-prime successfully implements the fundamental coupling between
0 genetic sequences and antigenic phenotypes that drives influenza evolution.

10
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Figure 3: Benchmarking variant-assignment methods. (A-C) Variant assign-
ments visualized in simulated antigenic space. Each panel shows the same viral
sequences plotted by their antigenic coordinates, with colors representing dif-
ferent variants. (D) Number of variants circulating over time. The red dashed
line marks three variants per year, reflecting typical real-world dynamics. (E)
Average within-variant fitness variance over time. Lower values indicate better
grouping of viruses with similar fitness. (F) Variant-assignment agreement be-
tween the sequence-based method and ground-truth antigenic variants. Bubble
sizes represent the number of sequences shared between compared variants. The
overlap is high (NID = 0.226). (G) Same as panel F, but for the phylogenetics-

based method. The overlap is intermediate (NID = 0.322).
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o 2.4 Benchmarking methods for inferring variant-specific
302 growth rates

s Next, we sought to use the simulated data to benchmark the ability of models to
s infer variant-specific growth rates. Natural data on SARS-CoV-2 has been used
305 to benchmark the ability of MLR models to perform this task (Abousamra et al.,
ws  2024). But, previous studies have not benchmarked the more sophisticated FGA
7 and GARW models.

308 To derive ground-truth growth rates from the simulated data, we divided the
a0 30 years of data into overlapping one-year windows staggered every six months,
s capturing influenza seasons in both Northern and Southern demes. We further
su  divided the simulated data by North, South, and Tropics demes. Then, for each
sz window from each deme, we computed variant-specific frequencies and growth
a3 rates in weekly time bins, using variant assignments from k-means clustering of
s viruses in antigenic space. We omitted some variants at some time points due
a5 to insufficient case or sequence count data to accurately derive growth rates.
316 We then tested the ability of the FGA and GARW models from evofr to
a7 recover these growth rates. We separately fit each model to each window of
sis data from each deme. As input, the models take the total number of reported
a9 cases amongst the host population and the observed counts for each variant in
a0 the sampled viral population. They then use a Bayesian approach to estimate
;1 probability distributions of variant-specific growth rates and frequencies over
2 time. To analyze model predictions, we sampled 500 times from the inferred
323 posterior distributions for variant growth rates and report the median values and
2 95% highest posterior density (HPD) intervals. For each analysis window, we
»s  then calculated the mean absolute error (MAE) between predicted and ground-
w6 truth growth rates.

327 Below, we mostly focus on results from the GARW model as it allows growth
s advantages to vary smoothly over time, accommodating situations where the
»  fixed-advantage assumption made in the FGA model may break down: for in-
a0 stance, due to shifting population immunity or cross-immunity between vari-
a  ants (Figgins and Bedford, 2025). Results for the simpler FGA model show
s comparable performance and are available in the supplement (Figure S3, Fig-
333 Ure S4)

334 The performance of the GARW model varied across analysis windows. For
35 many windows, the MAE values are low near zero, indicating accurate growth-
16 rate predictions (Figure 4). Figure 4B provides a detailed view of one such
sww - window, which shows good agreement between variant-specific frequencies and
1s  growth rates inferred by the model (see the lines) and those directly derived
s from the simulated data (see the circles).

340 However, for several other windows, the MAE values are substantially higher,
sa  pointing to inaccurate growth-rate predictions. Examining these windows re-
sz vealed a failure mode that has not been documented in previous studies. Fig-
sz ure 4C-E provides three examples of this failure mode. In each case, there is
sa  one variant that initially predominates and then begins to decline in frequency
us as one or two low-frequency variants start increasing in frequency. The model
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Figure 4: GARW model performance on variant growth-rate inference. (A)
Distribution of log MAE values of inferred variant-specific growth rates across
geographic demes. The red dashed line indicates the screening threshold used
to identify analysis windows for detailed analysis. Each data point represents a
single variant from a specific training window. Variants selected for panels B-E
are circled. (B-E) Example analysis windows. Each panel shows case counts
per 100,000 hosts over time (top), variant frequencies (second), case counts by
variant (third), and inferred growth rates (bottom) for a given window. Points
show values derived directly from the simulated data. Not all variants are
shown at all time points due to data filtering on observed count thresholds
for a series of timepoints (see Methods). Solid lines show median of model
inferences and shaded regions indicate 95 % HPD intervals. Average log MAE
values for each variant are reported below the growth-rate plots. (B) Successful
inference of frequencies and growth rates (North, 2027-10-01). (C) Growth
rates underestimated near end of the analysis window (Tropics, 2048-10-01).
(D) Growth rates overestimated for multiple variants (Tropics, 2032-10-01).
(E) Growth rates inaccurately inferred for both variants 27 and 28 (South,
2052-10-01).
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us accurately predicts the frequency trajectory of each variant. However, in many
sr - weekly time bins, the model does not accurately predict variant-specific growth
us rates, especially in bins near the middle or end of the window when the ini-
s tial predominant variant begins to substantially decline in frequency. Often,
30 the prediction error is larger than the estimated model uncertainty (observed
1 growth rates fall outside the HPD interval). Strikingly, there are multiple exam-
2 ples where the predicted and observed growth rates have opposing signs, like in
13 Figure 4D where the pink variant is predicted to have a positive growth rate in
34 several time bins where it actually has a negative growth rate, or in Figure 4C
35 where the opposite is true for the purple and red variants. In general, in time
6 bins with enough data to quantify growth rates for multiple variants, when the
w7 predicted growth rate is inaccurate for one variant, it tends to be inaccurate
s for the other variants by roughly the same amount and in roughly the same
0 direction, indicating systematic bias. This bias may stem from an underlying
w0 assumption in both the GARW and FGA models that variant-specific growth
1 rates tend to change in a concerted manner.

362 In all, this benchmark indicates that the GARW and FGA models are largely
w3 effective at predicting variant-specific growth rates from the simulated data.
s« However, it also revealed potential problems with these models that motivate
s additional investigation.

w 3 Discussion

s7 We have presented antigen-prime, a simulator that jointly models the genetic
s and antigenic evolution of viruses under selection from host population immu-
30 nity. We showed that antigen-prime can be used to simulate H3N2 seasonal
s influenza-like dynamics over long timescales. The dynamics are influenza-like
sn in terms of their phylogenetic structure, antigenic evolution, and sequence-level
s mutation patterns, with mutations at epitope sites driving antigenic change.
sz We then used the simulated data to benchmark computational methods that
s are currently used to interpret influenza surveillance data, and have relevance
ss  for public-health decision-making.

376 Our work helps address a fundamental challenge in evaluating these com-
sz putational methods: the lack of ground-truth data in natural viral populations
ss makes it difficult to assess whether the methods accurately capture the bio-
s logical processes they aim to model. Simulated data with known ground-truth
s values can be used to benchmark methods. But, the field lacks simulators of
1 pathogen evolution that model both genetic and antigenic evolution under se-
sz lection from host population immunity. antigen-prime fills the gap, enabling
3 benchmarking of the methods we analyzed in this paper.

384 The benchmarking results update our understanding of the efficacy of these
s methods. The benchmark on variant assignment showed that both the sequence-
s based and phylogenetic-based methods were effective at grouping viruses with
s7  similar antigenic properties even without explicit access to fitness or antigenic
s information. Interestingly, the sequence-based approach performed better than
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s the phylogenetic one. The reason for this is not immediately evident to us,
s0 and could warrant future exploration. Future work could also benchmark vari-
s ant assignment over shorter evolutionary time scales relevant for interpreting
s real-time influenza evolution. We note that performance on this benchmark
303 is probably higher than expected for natural viral populations, since predict-
s ing phenotype from genotype is more challenging in nature due to factors not
s captured in antigen-prime, such epistasis between mutations and variable im-
s munity in the host population.

3907 The benchmark on growth-rate inference showed that the GARW and FGA
s methods performed well in most time windows, but also revealed windows where
39 model predictions dramatically differed from ground-truth. While the GARW
w0 method is conceptually more flexible, this additional flexibility did not pro-
a1 vide substantial advantages over the simpler FGA method in our benchmark.
w2 Investigating low-performance windows identified a previously undocumented
w03 failure mode. Thus, these results helped identify limitations to these methods,
s and could be used to help guide future method development. In the future,
ws antigen-prime simulated data could also be used to benchmark the ability of
ws  methods to forecast influenza evolution, which is also highly relevant to devel-
w7 oping effective vaccines.

408 Despite capturing many features of viral evolution under immune selection,
w0 antigen-prime makes several simplifying assumptions that limit its biological
a0 realism. The fitness of simulated viruses is determined solely by their antigenic
a1 phenotype. However, other models of influenza evolution also model potential
a2 fitness costs of mutations at non-epitope sites (Luksza and Lissig, 2014), where
a3 mutations can disrupt HA’s ability to mediate viral entry. Additionally, the
ae  model maintains static epitope sites throughout the simulation, and employs a
a5 simple mutation model without epistatic interactions.

416 In all, antigen-prime provides a powerful framework for simulating sea-
a7 sonal influenza evolution, enabling researchers to benchmark and guide devel-
s opment of methods for interpreting influenza surveillance data. In the future,
a0 antigen-prime could be tuned to simulate evolutionary dynamics of other
a0 viruses, helping to benchmark methods for a variety of pathogens related to
21 human health.

» 4 Methods

» 4.1 Data and code availability

22 The antigen-prime simulator source code is available at https://github.com/
w»s matsengrp/antigen-prime. Analysis scripts, simulation outputs, and code to
w6 generate all figures are available at https://github.com/matsengrp/antigen-
427 forecasting.
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»s 4.2 Implementation of antigen-prime

w29 antigen-prime is implemented as a Java program forked from the original
10 antigen simulator (Bedford et al., 2012). The software is compiled using Maven
a1 and requires Java 11 or higher, with dependencies specified in the project’s
.2 pom.xml file. The complete source code is available at https://github.com/
s3 matsengrp/antigen-prime.

43 Two major extensions distinguish antigen-prime from the original simula-
a5 tor: (1) explicit genetic sequence evolution with site-specific mutation effects on
w6 antigenic movement, and (2) periodic sampling of host population immunity to
.7 enable fitness calculations for downstream analysis.

438 The core simulation algorithm follows the discrete-event SIR (Susceptible-
10 Infected-Recovered) framework described in Bedford et al. (Bedford et al., 2012),
wo  with key extensions to couple genetic and antigenic evolution. The simula-
a1 tion proceeds through discrete time steps, modeling viral transmission dynam-
w2 ics across structured host populations (demes) while tracking both genetic se-
w3 quences and antigenic coordinates for each virus. At each time step, the algo-
as  rithm processes infection events based on host susceptibility and viral fitness,
as  applies stochastic mutations to viral genomes according to the K80 model, up-
wus dates antigenic coordinates based on mutation type and location, and samples
w7 host immunity profiles periodically to calculate population-level immunity cen-
ag  troids.

449 In this paper, we use an overall viral mutation rate of ; = 10~3 mutations
w0 per virus per day. Epitope sites comprise ~9% of the sequence (49/566 sites)
1 and have an acceptance rate of 0.75, resulting in an effective mutation rate
2 of pux 0.065 mutations per virus per day at epitope sites. Non-epitope sites
w3 comprise the remaining ~91% of the sequence and have a lower acceptance rate
s of 0.2, reflecting greater purifying selection at these sites (Luksza and Lassig,
w5 2014), resulting in an effective rate of p x 0.183 mutations per virus per day.
6 We tuned these acceptance rates to reproduce mutational patterns observed in
57 seasonal influenza in nature (Figure S2).

s 4.3 Simulation parameterization and host population im-
450 munity sampling

w0 We simulated 40 years of influenza evolution across three demes, and discarded
w1 the first 10 years as burn-in. We parameterized mutation step-size distributions
w2 to reflect the differential antigenic impact of epitope versus non-epitope muta-
w3 tions. Non-epitope sites used 7, ~ Gamma(a = 1,5 = 0.0001) while epitope
ws  sites used r. ~ Gamma(a = 2.25,8 = 0.267). All mutations received a step
a5 direction § ~ Uniform(0, 27).

466 We sampled 150,000 viruses over the course of the simulation, proportionally
w7 by prevalence across demes and time, yielding approximately 4,400 unique nu-
w8 cleotide sequences to provide adequate count data for downstream growth-rate
w0 inference. To track population-immunity dynamics, we calculated and saved the
a0 antigenic centroid from the most recent infection stored in the immune memories

16


https://github.com/matsengrp/antigen-prime
https://github.com/matsengrp/antigen-prime
https://github.com/matsengrp/antigen-prime
https://doi.org/10.64898/2026.01.23.701420
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.64898/2026.01.23.701420; this version posted January 25, 2026. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

anof 10,000 hosts from each deme every 365 days. The host population immunity
a2 centroid at time t is calculated as:

1 * *
Hy = ﬁ Z (agi, ag3)n (1)
heH

a3 where H is the set of all sampled hosts across demes, |H| is the total num-
a2 ber of hosts sampled, and (ag}, ags); represents the two-dimensional antigenic
a5 coordinates of the most recent infection for host h. This centroid represents
a6 the average antigenic position of the host population’s immunity at time ¢ and
ar is used to calculate virus fitness values in the downstream variant assignment
as  benchmark.

m 4.4 Simulation selection for benchmarking applications

w0 We applied three criteria for selecting simulations suitable for benchmarking: (1)
a1 realistic epidemiological dynamics with seasonal epidemic patterns in the tem-
w2 perate demes and year-round transmission in the tropics, (2) summary statistics
3 matching empirical A/H3N2 HA genetic and antigenic evolution, and (3) suffi-
s clent viral diversity for robust benchmarking of methods for variant assignment
a5 and growth-rate inference.

486 To achieve the first criterion, we maintained the same antigenic and epi-
«7  demiological parameter values from the original antigen paper by Bedford et
ws al. (Bedford et al., 2012). We also set the overall mutation rate to pu = 1073
w0 mutation events per individual per day. For the second criterion, we ran 120
w0 total simulations with four different parameter configurations for epitope and
w1 non-epitope mutation acceptance rates (epitope: 0.75 or 1.0; non-epitope: 0.1
w2 or 0.2), using 30 replicates for each configuration. All 120 simulations ran to
w3 completion without viral population extinction (Figure S1, Figure S2).

204 We define the mean pairwise genealogical diversity mg as the average total
w5 branch length between randomly sampled virus pairs:

1 n
T = Z [(tv; — tyroat) + (tg, — tvreoat) (2)
i=1
a6  where n is the number of sampled pairs, t, is the birth time of virus v, and
w7 tyvRrca 1S the birth time of the most recent common ancestor for each pair. We
w8 then applied a filtering criterion to focus on “flu-like” simulations: 7¢ < 9.0
a0 years. This filtering reduced the dataset from 120 to 83 qualifying simulations.
so  For downstream variant assignment and growth rate inference benchmarking,
s we selected a single simulation with epitope acceptance rate of 0.75 and non-
sz epitope acceptance rate of 0.2. This simulation had a simulated 7¢ of 3.6 years
s3. and TMRCA of 3.4 years, and average antigenic movement of 1.6 units per year,
s closely matching empirical observations. The mutation summary statistics re-
ss ported in Table 1 represent this selected simulation. Final selection involved
sos confirming that phylogenetic trees and antigenic space distributions exhibited
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sor  realistic influenza-like dynamics by visual inspection. Phylogenetic trees were
ss inspected to ensure they displayed ladder-like structures, and case count dynam-
so0 ics were examined to confirm seasonal epidemic patterns in temperate demes
s and year-round transmission in the tropics.

su 4.5 Variant assignment for antigen-prime simulations

sz Three variant-assignment methods were applied to the 5,900 unique sequences:
si3  antigenic clustering (ground truth), sequence-based clustering, and phyloge-
su netic variant assignment. Antigenic variants were defined by k-means clustering
sis (kK = 30) on two-dimensional antigenic coordinates. Sequence-based variants
sis were assigned using pathogen-embed (Nanduri et al., 2024): (1) sequence align-
sz ment with MAFFT via augur align, (2) pairwise Hamming distance calculation,
sis (3) t-SNE embedding in 2D space, and (4) k-means clustering (k = 30) on em-
sio. beddings. The k = 30 parameter for both methods reflects empirical influenza
s dynamics of approximately three variants per year over the 30 year simulation.
521 Phylogenetic variants were assigned using the Neher clade assignment
s2 algorithm (Neher et al., 2025) following phylogeny reconstruction and ances-
s23 tral inference. The algorithm was configured to use the same epitope sites
s« defined by Luksza and Léssig (Luksza and Lissig, 2014) that are used in
s»s  the antigen-prime simulation. Phylogeny inference used IQ-TREE via augur
s tree with augur refine refinement. Ancestral reconstruction applied augur
s7  ancestral and augur translate with default parameters. Clade assignment
ss  used parameters: bushiness branch scale 1.0, divergence scale 2.0, branch length
s20  scale 2.0, minimum clade size 22 sequences, targeting approximately 30 variants
s (resulting in 31). All variant assignments were re-labeled chronologically by
sn average birth date of constituent viruses.

532 Within-variant fitness variance was calculated to evaluate how well each
s13. method grouped viruses with similar fitness. We computed fitness for all viruses
s annually using the host population immunity centroid (Figure 1), then calcu-
s lated average within-variant fitness variance for each assignment method.

WSS(t) = ﬁ S Var(wr.) (3)
veV

s3 where V' is the set of all variants assigned by a method, |V] is the total number
ss7 - of variants, and wy, represents the fitness values of all viruses in variant v at
s  time .
539 Agreement between variant assignments was quantified using the normalized
so0 information distance (NID) (Li et al., 2004):

I(X,Y)

NID(X,Y)=1-— XY (4)

s« where I(X,Y) is the mutual information between assignments X and Y, and
s H(X,Y) is their joint entropy. NID ranges from 0 (identical assignments) to 1
ses  (completely independent assignments).
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s 4.6 Inferring variant growth rates with evofr forecasting
545 models

s.6  We implemented two forecasting models from the evofr (Figgins and Bedford,
se - 2025) framework to infer variant growth rates from simulated surveillance data.
ss The Fixed Growth Advantage (FGA) model implements a renewal equation
ss0  approach where each variant has a fixed multiplicative growth factor, while
s0 the Growth Advantage Random Walk (GARW) model allows variant growth
ss1  advantages to vary smoothly over time using a random walk prior.

552 Data preparation involved extracting weekly variant-specific sequence counts
553 and case counts from simulation outputs for each analysis timepoint. Data were
s« separated by deme with analysis dates representing both in-season and out-of-
sss  season periods across different epidemic contexts. The retrospective observation
56 window was limited to 365 days from each analysis date.

557 Model fitting used the evofr software package for both FGA and GARW
sss models.  Model-specific hyperparameters were initialized with spline basis
sso  functions of order 4 with 10 knots to model time-varying parameters. Gen-
s0 eration time and reporting delay distributions were defined for the renewal
ss1  equation models, with generation times parameterized as gamma distribu-
s tions: ¢(7) ~ Gamma(mean = 3.0,std = 1.2). Sequence count data used
s6s  Dirichlet-Multinomial likelihood with concentration parameter 100, while case
s« count data used Negative Binomial likelihood with dispersion parameter 0.05.
sss  Variational inference approximated posterior distributions of model parameters
sso  using full-rank variational inference with 50,000 iterations and learning rate of
ss7 0.01, generating 500 posterior samples per model. We focused on the inferred
ss  variant growth rates in this work.

« 4.7 Benchmarking growth rate inference performance

s Empirical growth rates (rqata,n) were calculated from simulated surveillance
sn - data using spline-based smoothing to reduce noise. For each variant v and
s location d, sequence data processing used univariate spline interpolation by
sz log-transforming sequence counts to handle data skew and stabilize variance,
sw  applying a cubic univariate spline (degree k = 3) with smoothing factor s = 1.0
sis to the log-transformed data, then transforming the smoothed values back to the
st original scale.

577 After obtaining smoothed sequence counts, we calculated variant-specific
s incidence by multiplying total case counts by variant frequencies, then computed
so  empirical growth rates as the change in log-transformed variant incidence over
s time:

T'data,v (tz) = ln(od(ti) : fv,d(ti)) 71Ant(cd(ti—1) i fv,d(ti—l)) (5)

s where Cy(t;) represents the total case counts in location d at time ¢;, f, q(t;)
se2  represents the smoothed frequency of variant v in location d at time t;, and At is
ss3 the time difference between observations. This approach scales the total disease
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ssa  burden by variant-specific frequencies, providing a representation of variant-
s specific growth rates.

586 Data filtering ensured reliable growth-rate estimates by excluding time
se7  points with smoothed sequence counts below 10 sequences (due to high sam-
ses  pling variance), variant frequencies below 1% of the total population (to avoid
se0  stochastic effects in rare variants), and variant incidence below 50 cases on
s0 any given day (to ensure sufficient case data). We required a minimum of 3
s consecutive valid time points for a variant to be included in the growth-rate
s2  benchmarking analysis.

503 Performance on growth-rate inference was evaluated using mean absolute er-
s ror (MAE) between the medians of the inferred growth rate posteriors (rmodel,v)
sos and empirical (Tqata,w) growth rates for each variant:

1 n
MAE’U = ﬁ Zl |Tdata,v (tz) — Tmodel,v (tz)| (6)

so6 where n is the number of time points for variant v. We report log(MAE) for
sv each variant to facilitate comparison across the small error ranges typically
ses observed. The identification of analysis windows with unforeseen pathologies
so  was done by tediously looking at many analysis windows with exceptionally
0 high errors. Complete results, including detailed performance metrics for all
o0 analysis windows, are available at https://github.com/matsengrp/antigen-
s02 forecasting/notebooks/.
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Figure S1: Genealogical and antigenic summary statistics for 120 simulations of
30 years of H3N2-like evolution. Each point represents a single simulation. Red
dashed horizontal lines represent empirical values reported in previous studies.
The 9.0 diversity cutoff was used in Bedford et al. (Bedford et al., 2012), and
the antigenic movement per year metric was chosen to reflect results observed
in Smith et al. (Smith et al., 2004) and Koel et al. (Koel et al., 2013). A: Ge-
nealogical diversity (mg). B: Time to most recent common ancestor (TMRCA),
red dashed line used as a target value based on data from nature (Scotch et al.,
2025). C: Antigenic movement per year, red dashed line used as a target value
based on data from nature.
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Figure S2: Summary of antigen-prime mutation statistics for 120 simulations
of 30 years across various epitope/non-epitope acceptance rate configurations.
Each point represents results from a single simulation. Red dashed horizontal
lines represent empirical values reported in Table 1. A: Total number of epitope
mutations observed on the trunk of the phylogeny. B: Total number of non-
epitope mutations observed on the trunk of the phylogeny. C: Ratio of epitope to
non-epitope mutations observed on the trunk of the phylogeny. D: Total number
of epitope mutations observed on side branches of the phylogeny. E: Total
number of non-epitope mutations observed on side branches of the phylogeny.
F': Ratio of epitope to non-epitope mutations observed on side branches of the

phylogeny.
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Figure S3: Distribution of variant-specific growth rate inference errors compar-
ing FGA and GARW models across geographic demes. Log-mean absolute error
(logMAE) distributions show the performance of both model types in inferring
exponential growth rates (rmoqel) compared to empirical growth rates (rgata)
calculated from variant frequency dynamics. The red dashed line indicates the
screening threshold used to identify analysis windows for detailed analysis. Each
data point represents a single variant within a training window, with boxplots
showing the distribution of errors and individual points overlaid. Both FGA
and GARW models demonstrate comparable performance with similar median
errors and error variance across all geographic demes.
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Figure S4: FGA model performance for variant growth-rate inference. (A)
Distribution of log MAE values of inferred variant-specific growth rates across
geographic demes. The red dashed line indicates the screening threshold used
to identify analysis windows for detailed analysis. Each data point represents
a single variant from a specific training window. Variants selected for panels
B-E are circled. (B-E) Examples of FGA model performance across different
training windows. Average log MAE values for each variant are reported below
the growth-rate plots. (B) Successful inference of frequencies and growth rates
(North, 2027-10-01). (C) Growth rates underestimated near end of the analysis
window (Tropics, 2048-10-01). (D) Growth rates overestimated for multiple
variants (Tropics, 2032-10-01). (E) Growth rates inaccurately inferred for both
variants 27 and 28 (South, 2052-10-01).
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