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Abstract20

Seasonal influenza virus undergoes rapid antigenic drift to escape pop-21

ulation immunity. Computational methods can be used to organize viral22

genetic diversity into antigenically similar variants and estimate variant-23

specific growth rates. However, benchmarking these methods is challeng-24

ing because it can be difficult to accurately quantify antigenicity and25

growth rates in nature. Simulating viral evolution using defined selective26

pressures can provide ground-truth data for benchmarking. But, existing27

simulators do not link genetic sequences to antigenic phenotypes under28

selection from host populations.29

Here, we present a forward-time epidemic simulator called antigen-prime30

that links these factors. We use it to simulate viral evolution over 3031

years and validate the simulation recapitulates genetic and antigenic32

patterns observed in natural influenza evolution.33

We then use the simulated data to benchmark methods for assigning34

variants and estimating their growth rates. We evaluated a sequence-35

based and a phylogenetics-based method for variant assignment, finding36

the former was slightly more effective at separating viruses into antigeni-37

cally distinct groups. We also evaluated methods for estimating variant38

growth rates in one-year sliding windows. Estimates were accurate in39

most windows, but highly inaccurate in several others. Examining high-40

error windows revealed several examples of a previously unreported failure41

mode. In all, antigen-prime provides a simulation framework to bench-42

mark models of influenza evolution, and could be used to help guide fu-43

ture development of these models. The source code is openly available at44

https://github.com/matsengrp/antigen-prime.45
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1 Introduction46

Influenza virus infects about one billion and kills hundreds of thousands of47

people globally each year (Krammer et al., 2018). Vaccination provides the pri-48

mary method of prevention, but the virus undergoes rapid antigenic evolution,49

necessitating annual vaccine updates (Petrova and Russell, 2018). To track the50

virus’s evolution, laboratories worldwide sequence tens of thousands of influenza51

genomes each year, sharing data through public databases (Hadfield et al., 2018;52

Shu and McCauley, 2017). Public health agencies also monitor influenza spread53

through case counts and hospitalizations.54

It is of interest to develop computational methods to use the above sources55

of data to help guide vaccine updates (Morris et al., 2018). One goal of such56

methods is to partition observed viral sequences into groups (i.e. “variants”)57

with similar antigenic phenotypes. Another goal is to estimate variant-specific58

growth rates, helping to quantify variant fitness in the present and forecast59

future variant abundance.60

For seasonal influenza virus, two main computational methods exist for61

variant assignment. One method involves building a phylogenetic tree of ob-62

served sequences and then partitioning the tree into clades that correspond to63

unique variants (Neher et al., 2025). This method can incorporate prior knowl-64

edge about which mutations are most likely to impact the virus’s antigenic-65

ity. Another method involves computing pairwise distances between observed66

sequences, and then using dimensionality reduction to embed sequences in a67

low-dimensional space. Clustering of sequences in this space can then be used68

to identify unique variants (Nanduri et al., 2024). Both methods have proven69

useful for interpreting real-time influenza surveillance data (Huddleston et al.,70

2024; Nanduri et al., 2024).71

A variety of methods exist for estimating variant-specific growth advantages72

from viral surveillance data. Some only consider variant-specific frequencies73

over time, such as the fitness model by  Luksza and Lässig (Luksza and Lässig,74

2014) or multinomial logistic regression approaches (Ito et al., 2021; Obermeyer75

et al., 2022; Piantham et al., 2021). Others also consider observed numbers of76

case counts over time, such as the fixed growth advantage (FGA) and growth77

advantage random walk (GARW) models from the evofr framework (Figgins78

and Bedford, 2025).79

Although these methods are widely used, it is challenging to benchmark80

their accuracy. That is because natural populations lack known ground-truth81

variant assignments and growth advantages. Experiments such as neutralization82

assays or hemagglutination inhibition assays can be used to quantify antigenic83

phenotypes of influenza viruses in a laboratory setting. However, it can be84

difficult for experiments to fully capture antigenic selection in nature due to the85

high level of heterogeneity in human immune responses to influenza (Kikawa86

et al., 2025).87

A complementary approach is to simulate viral evolution under defined se-88

lective pressures and then use the simulated data, and associated ground-truth89

quantities, to benchmark the above methods. Doing so would require a simulator90
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that models three key aspects of influenza evolution: (1) genetic sequence evo-91

lution through a biologically realistic mutation processes, (2) coupled antigenic92

evolution where mutations in epitope regions alter a virus’s antigenic pheno-93

type, allowing escape from host immunity, and (3) sustained viral transmission94

in a large host population, with case counts tracked over time. While numer-95

ous pathogen-evolution simulators exist (Bedford et al., 2012; Jariani et al.,96

2019; Moshiri et al., 2019; Ochsner et al., 2025), none fully integrate all three97

of these components. SANTA-SIM (Jariani et al., 2019) models genetic sequence98

evolution, but not antigenic phenotypes or transmission dynamics. Conversely,99

antigen (Bedford et al., 2012) models transmission dynamics and antigenic100

evolution, but does not model genetic sequence evolution. FAVITES (Moshiri101

et al., 2019) models contact network transmission without antigenic evolution,102

while virolution (Ochsner et al., 2025) models within-host evolution without103

population-level antigenic drift.104

Here, we develop a simulator called antigen-prime that models all three105

components listed above. We use it to simulate 30 years of seasonal influenza106

evolution, verifying that the simulated data reproduce influenza-like dynamics107

across genealogical, antigenic, and epidemiological dimensions. We then use108

the simulated data to benchmark methods for assigning variants and predicting109

variant growth rates. While the methods perform well overall, we identify several110

examples where they perform poorly, exposing previously unrecognized failure111

modes that occur even with abundant data.112

2 Results113

2.1 Summary of antigen-prime114

We sought to build a simulator that integrates all three components of influenza115

evolution listed above. We achieved this by extending the antigen simula-116

tor (Bedford et al., 2012), which already models transmission dynamics and117

antigenic evolution. We updated antigen to include explicit genetic sequences118

that evolve through mutation and drive antigenic change. We call this updated119

simulator antigen-prime.120

The original antigen implements a deme-structured SIR model to simulate121

viral transmission dynamics and antigenic evolution under selective pressure122

from host immunity. Each infected host carries a single virus object that is as-123

sociated with coordinates that represent the virus’s location in a d-dimensional124

antigenic space. Mutations to the virus move it in this space. Individual hosts125

maintain immune memory as a collection of antigenic coordinates from previous126

infections. When an infected host comes in contact with a susceptible host, the127

minimum Euclidean distance in antigenic space between the virus from the in-128

fected host and viruses from the susceptible host’s immune memory determines129

the infection risk, with smaller distances conferring greater protection. Selection130

to escape immune memories in the host population drives viral antigenic evolu-131

tion. However, viruses in antigen are not associated with genetic sequences as132
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Figure 1: Schematic of how antigen-prime simulates coupled genetic and anti-
genic evolution of viruses. A: Each virus is represented by both a nucleotide
sequence and coordinates in a d-dimensional antigenic space. Mutation events
simultaneously change the nucleotide sequence and move the virus in antigenic
space. B: During mutation events, a nucleotide site is randomly selected and
mutated according to the K80 model, while antigenic coordinates are updated
based on a sampled step direction θ and step size r that depends on whether
the mutation is synonymous or non-synonymous and whether it occurs in an
epitope or non-epitope site.

they exist only as points in antigenic space.133

In antigen-prime, we updated the virus object to include not only the134

virus’s coordinates in antigenic space, but also a nucleotide sequence of a135

protein-coding gene (Figure 1A). Simulations initialize with a single virus with136

a defined sequence, and this sequence evolves as the virus replicates and spreads137

in the host population. The user must define a subset of amino-acid sites in138

the protein to be “epitope sites”, where mutations have large antigenic effects139

(all remaining sites are considered to be “non-epitope sites”). In this paper,140

we used an influenza hemagglutinin (HA) nucleotide sequence that codes for141

a protein of length 566 amino acids. We classified 49 of these amino-acid142

sites to be epitope sites, using the set of epitope sites defined in  Luksza and143

Lässig (Luksza and Lässig, 2014).144

The nucleotide sequence of a virus object mutates at a user-defined mutation145

rate. Since there is only one virus object per infected host, this object’s sequence146
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is like a consensus sequence within the host, and the rate at which it mutates147

represents the rate at which mutations reach sufficient frequency within the host148

to transmit to new hosts upon contact events. Thus, we model this rate as a149

function of both neutral mutation and within-host purifying selection. We model150

the neutral mutation process using the K80 mutation model (Kimura, 1980),151

parameterized by a transition/transversion ratio κ = 5.0 (user-configurable pa-152

rameter set to match empirical observations in influenza (Bloom and Glassman,153

2009; Rabadan et al., 2006)). Specifically, mutation events randomly select a154

nucleotide site and assign a new nucleotide by drawing from the K80-model155

probability distribution. We model purifying selection by rejecting a subset of156

mutations based on their properties. Mutations that introduce stop codons are157

rejected. Nonsynonymous mutations are probabilistically either accepted or re-158

jected according to a user-defined “acceptance rate”, with separate acceptance159

rates for epitope and non-epitope sites. In this paper, we use acceptance rates160

of 0.75 and 0.2 at epitope and non-epitope sites, respectively, consistent with161

greater purifying selection at non-epitope sites (Luksza and Lässig, 2014).162

The antigenic effect of a nucleotide mutation depends on if and how it163

changes the protein sequence (Figure 1B). Synonymous mutations do not alter164

the virus’s antigenic coordinates. Nonsynonymous mutations at epitope sites165

cause large movements in antigenic space with step sizes drawn from a gamma166

distribution with mean 0.6 antigenic units (analogous to the original antigen).167

Nonsynonymous mutations at non-epitope sites cause very small movements168

with step sizes drawn from a gamma distribution with mean 1× 10−5 antigenic169

units. The direction of movement (θ) is random for both types of mutations.170

Thus, in antigen-prime, antigenic evolution is mostly driven by nonsynony-171

mous mutations at epitope sites, while other mutations accumulate with little-172

to-no antigenic impact.173

In summary, the main difference between antigen and antigen-prime is174

that virus objects in antigen-prime have sequences. In antigen, mutation175

events directly result in changes to the virus object’s location in antigenic space.176

In antigen-prime, mutation events first act on the virus’s sequence, which in177

turn can result in changes to the virus’s location in antigenic space. Other178

aspects of the simulator are the same, including antigenic selection on viruses179

to escape immune memory in the host population.180

Related to antigenic selection, we have also updated antigen-prime to181

record population immunity over time. This feature enables benchmarking of182

variant-assignment methods by providing explicit fitness values for viruses. Ev-183

ery t days, the simulator samples n hosts and records the centroid of the most184

recent entry in each host’s immune history, representing the average antigenic185

profile of recent infections. These immunity centroids enable fitness calcula-186

tion for sampled viruses by computing infection risk based on the host centroid187

values at that time.188
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2.2 Simulating long-term influenza evolution using antigen189

-prime190

We used antigen-prime to simulate 30 years of H3N2 seasonal influenza191

evolution. We initialized simulations with the full-length HA sequence from192

A/Beijing/32/1992. Each simulation comprised three geographical demes:193

the Northern hemisphere, Southern hemisphere, and tropics, each with 30194

million hosts. We ran 30 parallel replicate simulations to quantify variability in195

outcomes.196

As with the original antigen, antigen-prime simulations reproduced197

influenza-like phylogenetic structure and rates of antigenic evolution. In natu-198

ral H3N2 evolution, the average time between two contemporaneous sequences199

and their most recent common ancestor is expected to be ∼3.22 years (Scotch200

et al., 2025), reflecting influenza’s spindly phylogenetic structure. The average201

rate of antigenic change is expected to be ∼1.6 antigenic units per year, as quan-202

tified using experimental data from hemagglutination-inhibition assays (Hirst,203

1943; Koel et al., 2013; Smith et al., 2004). Many antigen-prime simulations204

resulted in values close to these numbers (Figure S1).205

antigen-prime simulations also reproduced influenza-like mutational pat-206

terns. As an empirical reference, we considered a phylogenetic tree that Hud-207

dleston et al. made using seasonal H3N2 influenza HA sequences collected over208

25 years (Huddleston et al., 2020). For this tree, and for each of our simulated209

trees, we counted the number of epitope and non-epitope mutations observed210

along the branches of the tree, separately doing so for trunk branches and side211

branches, and using the set of epitope sites from  Luksza and Lässig (Luksza and212

Lässig, 2014). Many of the simulated trees had counts similar to the empirical213

tree (Figure S2). Table 1 shows counts for a single simulation that reproduced214

realistic influenza-like dynamics in terms of mutational patterns, phylogenetic215

structure, and antigenic movement, and which we describe below in more detail.216

On the trunk, the simulated and empirical trees have similar mutation counts,217

and similar ratios in counts between epitope and non-epitope mutations. On218

side branches, the mutation counts are substantially higher for the simulated219

tree because this tree has substantially more sequences (this high sampling den-220

sity was useful for downstream benchmarking purposes). However, the ratio of221

counts between epitope and non-epitope mutations, which is not sensitive to222

sampling density, is similar between the simulated and empirical trees. Given223

the complexity of natural influenza evolution and the simplifying assumptions in224

our model, we expect approximate rather than precise agreement with empirical225

values.226

In the following sections, we use the simulation characterized in Table 1227

to benchmark methods for analyzing influenza sequences. This simulation re-228

produced various aspects of influenza evolution. A phylogenetic tree of viruses229

sampled from this simulation exhibits a characteristic ladder-like structure (Fig-230

ure 2A). Case counts across the three demes display realistic seasonal patterns,231

with Northern and Southern demes exhibiting opposite seasonal peaks and the232

tropics showing more constant transmission (Figure 2B). The distribution of233
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Mutation Characteristic Empirical Value Scaled Value Simulation Value
(25 years) (30 years) (30 years)

Trunk Mutations
Epitope mutations 50 60 66
Non-epitope mutations 32 38 49
Ratio (epitope:non-epitope) 1.56 1.56 1.35

Side Branch Mutations
Epitope mutations 485 582 1254
Non-epitope mutations 1177 1412 3294
Ratio (epitope:non-epitope) 0.41 0.41 0.38

Table 1: Comparison of mutation patterns between an empirical phylogeny and
the simulated phylogeny used for downstream analysis. The table shows counts
of mutations occurring in epitope and non-epitope regions along the trunk vs.
side branches. Empirical values are derived from 25 years of H3N2 HA sequences
from Huddleston et al. (Huddleston et al., 2020), with trunk and side branch
annotations following the methodology of Bedford et al. (Bedford et al., 2015).
Scaled values extrapolate empirical counts to 30 years (×1.2) for comparison
with simulation values. Simulation values are from a 30 year simulation.

sampled viruses in antigenic space reveals distinct antigenic clusters that show234

sustained antigenic evolution over time (Figure 2C). Epitope mutations accumu-235

late approximately linearly over time (Figure 2D) and global variant frequency236

dynamics show sequential variant emergence-and-replacement patterns observed237

in the original antigen (Bedford et al., 2012) (Figure 2E).238

2.3 Benchmarking variant-assignment methods239

We sought to use the above antigen-prime simulation to benchmark meth-240

ods for grouping viral genetic sequences into variants with similar antigenicity,241

with the simulation providing ground-truth coordinates of each virus in anti-242

genic space. We evaluated three methods. The first method uses k-means243

clustering of viruses by their ground-truth antigenic coordinates, providing a244

baseline for comparison. The second method uses Neher’s clade suggestion al-245

gorithm (Neher et al., 2025) to cluster viruses based on a phylogenetic tree246

built from their sequences. This approach defines variants by considering tree247

topology, overall genetic divergence, and amino acid changes at epitope sites,248

and has been applied in efforts to guide seasonal influenza vaccine composi-249

tion (Huddleston et al., 2024). We parameterized this method using the same250

set of 49 epitope sites that we used in the simulation. The third method uses251

pathogen-embed (Nanduri et al., 2024) to compute pairwise Hamming distances252

between viral sequences, then use those data to project sequences into a low-253

dimensional space using t-SNE, and cluster sequences in that space using k-254

means. We configured the antigenic and sequence-based methods to produce255

30 variants, and the phylogenetic method to produce approximately 30 variants256

(resulting in 31) for comparison. When visualized in antigenic space, all three257
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Figure 2: Genetic, antigenic, and epidemiological dynamics from a 30 year
antigen-prime simulation. A: Phylogenetic tree of 150,000 viruses sampled
from the simulation, with tips colored by antigenic variant assignment. B: Case
counts across three geographic demes (North, Tropics, South), demonstrating
realistic seasonal epidemic patterns with hemispheric differences. C: Antigenic
space of sampled viruses colored by variant, with variants assigned using k-
means clustering on antigenic coordinates. The data show distinct antigenic
clusters. D: Epitope mutations accumulate approximately linearly over time
(red dashed line shows 1 mutation/year reference), indicating consistent anti-
genic drift throughout the simulation. E: Global variant frequency dynamics
aggregated across all demes, showing sequential variant emergence and replace-
ment patterns. 9
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methods create largely distinct clusters (Figure 3A-C), even though the latter258

two approaches use only genetic data. As expected, the first approach results259

in strictly non-overlapping clusters. The latter two approaches result in clus-260

ters that are mostly separated, but have some overlap, reflecting the inherent261

difficulty in cleanly resolving antigenic boundaries from genetic data alone.262

We quantified method performance using the following three metrics. First,263

we quantified the number of circulating variants per year. We tuned each264

method to produce approximately three per year to reflect real-world influenza265

dynamics (Huddleston et al., 2024). Each method resulted in similar traces of266

this quantity over time (Figure 3D).267

Second, we quantified the variance in antigenic fitness among viruses as-268

signed to a given variant (Figure 3E). Specifically, for each year, we used the269

annual host population immunity centroid from that year to calculate the fit-270

ness of each sampled virus from the entire simulation, where fitness represents271

infection risk and is a function of the distance between a virus and the immunity272

centroid in antigenic space. For each variant, we then computed the variance in273

these fitness values among viruses assigned to that variant, and then averaged274

these variances across all variants. The blue line from Figure 3E shows the per-275

formance of the first variant-assignment method, which clusters viruses by their276

ground-truth coordinates in antigenic space, and which we use as a baseline for277

evaluating the other two methods. The blue line is close to zero for all years,278

indicating low variance in fitness values and thus high performance. The other279

two methods also result in low variance (see the orange and green lines), as280

expected from their ability to effectively cluster viruses in antigenic space (Fig-281

ure 3B/C). However, the variance of these methods is ∼3-10-fold higher than282

the blue baseline, reflecting the observation that there is some overlap between283

clusters. The sequence-based method shows consistently lower variance, and284

thus higher performance, than the phylogenetic method.285

Third, we quantified the extent that the sequence- and phylogenetics-based286

assignments agreed with the ground-truth assignments from k-means clustering287

in antigenic space (Figure 3F,G). We quantified agreement using the normal-288

ized information distance (NID) (Li et al., 2004); a distance metric ranging289

from 0 to 1 where lower values indicate more agreement between two variant290

assignments and higher values indicate less agreement. Both the sequence-based291

and phylogenetic-based methods resulted in assignments with high overlap with292

ground-truth assignments, with the former method showing better overlap (NID293

= 0.226) than the latter (NID = 0.322).294

Overall, this benchmark indicates that both the sequence-based and295

phylogenetic-based variant-assignment methods are effective at grouping296

viruses into antigenically similar variants, with the former method showing297

higher performance. The success of these approaches also helps validate that298

antigen-prime successfully implements the fundamental coupling between299

genetic sequences and antigenic phenotypes that drives influenza evolution.300
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Figure 3: Benchmarking variant-assignment methods. (A-C) Variant assign-
ments visualized in simulated antigenic space. Each panel shows the same viral
sequences plotted by their antigenic coordinates, with colors representing dif-
ferent variants. (D) Number of variants circulating over time. The red dashed
line marks three variants per year, reflecting typical real-world dynamics. (E)
Average within-variant fitness variance over time. Lower values indicate better
grouping of viruses with similar fitness. (F) Variant-assignment agreement be-
tween the sequence-based method and ground-truth antigenic variants. Bubble
sizes represent the number of sequences shared between compared variants. The
overlap is high (NID = 0.226). (G) Same as panel F, but for the phylogenetics-
based method. The overlap is intermediate (NID = 0.322).
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2.4 Benchmarking methods for inferring variant-specific301

growth rates302

Next, we sought to use the simulated data to benchmark the ability of models to303

infer variant-specific growth rates. Natural data on SARS-CoV-2 has been used304

to benchmark the ability of MLR models to perform this task (Abousamra et al.,305

2024). But, previous studies have not benchmarked the more sophisticated FGA306

and GARW models.307

To derive ground-truth growth rates from the simulated data, we divided the308

30 years of data into overlapping one-year windows staggered every six months,309

capturing influenza seasons in both Northern and Southern demes. We further310

divided the simulated data by North, South, and Tropics demes. Then, for each311

window from each deme, we computed variant-specific frequencies and growth312

rates in weekly time bins, using variant assignments from k-means clustering of313

viruses in antigenic space. We omitted some variants at some time points due314

to insufficient case or sequence count data to accurately derive growth rates.315

We then tested the ability of the FGA and GARW models from evofr to316

recover these growth rates. We separately fit each model to each window of317

data from each deme. As input, the models take the total number of reported318

cases amongst the host population and the observed counts for each variant in319

the sampled viral population. They then use a Bayesian approach to estimate320

probability distributions of variant-specific growth rates and frequencies over321

time. To analyze model predictions, we sampled 500 times from the inferred322

posterior distributions for variant growth rates and report the median values and323

95 % highest posterior density (HPD) intervals. For each analysis window, we324

then calculated the mean absolute error (MAE) between predicted and ground-325

truth growth rates.326

Below, we mostly focus on results from the GARW model as it allows growth327

advantages to vary smoothly over time, accommodating situations where the328

fixed-advantage assumption made in the FGA model may break down: for in-329

stance, due to shifting population immunity or cross-immunity between vari-330

ants (Figgins and Bedford, 2025). Results for the simpler FGA model show331

comparable performance and are available in the supplement (Figure S3, Fig-332

ure S4).333

The performance of the GARW model varied across analysis windows. For334

many windows, the MAE values are low near zero, indicating accurate growth-335

rate predictions (Figure 4). Figure 4B provides a detailed view of one such336

window, which shows good agreement between variant-specific frequencies and337

growth rates inferred by the model (see the lines) and those directly derived338

from the simulated data (see the circles).339

However, for several other windows, the MAE values are substantially higher,340

pointing to inaccurate growth-rate predictions. Examining these windows re-341

vealed a failure mode that has not been documented in previous studies. Fig-342

ure 4C-E provides three examples of this failure mode. In each case, there is343

one variant that initially predominates and then begins to decline in frequency344

as one or two low-frequency variants start increasing in frequency. The model345
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Figure 4: GARW model performance on variant growth-rate inference. (A)
Distribution of log MAE values of inferred variant-specific growth rates across
geographic demes. The red dashed line indicates the screening threshold used
to identify analysis windows for detailed analysis. Each data point represents a
single variant from a specific training window. Variants selected for panels B-E
are circled. (B-E) Example analysis windows. Each panel shows case counts
per 100,000 hosts over time (top), variant frequencies (second), case counts by
variant (third), and inferred growth rates (bottom) for a given window. Points
show values derived directly from the simulated data. Not all variants are
shown at all time points due to data filtering on observed count thresholds
for a series of timepoints (see Methods). Solid lines show median of model
inferences and shaded regions indicate 95 % HPD intervals. Average log MAE
values for each variant are reported below the growth-rate plots. (B) Successful
inference of frequencies and growth rates (North, 2027-10-01). (C) Growth
rates underestimated near end of the analysis window (Tropics, 2048-10-01).
(D) Growth rates overestimated for multiple variants (Tropics, 2032-10-01).
(E) Growth rates inaccurately inferred for both variants 27 and 28 (South,
2052-10-01).
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accurately predicts the frequency trajectory of each variant. However, in many346

weekly time bins, the model does not accurately predict variant-specific growth347

rates, especially in bins near the middle or end of the window when the ini-348

tial predominant variant begins to substantially decline in frequency. Often,349

the prediction error is larger than the estimated model uncertainty (observed350

growth rates fall outside the HPD interval). Strikingly, there are multiple exam-351

ples where the predicted and observed growth rates have opposing signs, like in352

Figure 4D where the pink variant is predicted to have a positive growth rate in353

several time bins where it actually has a negative growth rate, or in Figure 4C354

where the opposite is true for the purple and red variants. In general, in time355

bins with enough data to quantify growth rates for multiple variants, when the356

predicted growth rate is inaccurate for one variant, it tends to be inaccurate357

for the other variants by roughly the same amount and in roughly the same358

direction, indicating systematic bias. This bias may stem from an underlying359

assumption in both the GARW and FGA models that variant-specific growth360

rates tend to change in a concerted manner.361

In all, this benchmark indicates that the GARW and FGA models are largely362

effective at predicting variant-specific growth rates from the simulated data.363

However, it also revealed potential problems with these models that motivate364

additional investigation.365

3 Discussion366

We have presented antigen-prime, a simulator that jointly models the genetic367

and antigenic evolution of viruses under selection from host population immu-368

nity. We showed that antigen-prime can be used to simulate H3N2 seasonal369

influenza-like dynamics over long timescales. The dynamics are influenza-like370

in terms of their phylogenetic structure, antigenic evolution, and sequence-level371

mutation patterns, with mutations at epitope sites driving antigenic change.372

We then used the simulated data to benchmark computational methods that373

are currently used to interpret influenza surveillance data, and have relevance374

for public-health decision-making.375

Our work helps address a fundamental challenge in evaluating these com-376

putational methods: the lack of ground-truth data in natural viral populations377

makes it difficult to assess whether the methods accurately capture the bio-378

logical processes they aim to model. Simulated data with known ground-truth379

values can be used to benchmark methods. But, the field lacks simulators of380

pathogen evolution that model both genetic and antigenic evolution under se-381

lection from host population immunity. antigen-prime fills the gap, enabling382

benchmarking of the methods we analyzed in this paper.383

The benchmarking results update our understanding of the efficacy of these384

methods. The benchmark on variant assignment showed that both the sequence-385

based and phylogenetic-based methods were effective at grouping viruses with386

similar antigenic properties even without explicit access to fitness or antigenic387

information. Interestingly, the sequence-based approach performed better than388
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the phylogenetic one. The reason for this is not immediately evident to us,389

and could warrant future exploration. Future work could also benchmark vari-390

ant assignment over shorter evolutionary time scales relevant for interpreting391

real-time influenza evolution. We note that performance on this benchmark392

is probably higher than expected for natural viral populations, since predict-393

ing phenotype from genotype is more challenging in nature due to factors not394

captured in antigen-prime, such epistasis between mutations and variable im-395

munity in the host population.396

The benchmark on growth-rate inference showed that the GARW and FGA397

methods performed well in most time windows, but also revealed windows where398

model predictions dramatically differed from ground-truth. While the GARW399

method is conceptually more flexible, this additional flexibility did not pro-400

vide substantial advantages over the simpler FGA method in our benchmark.401

Investigating low-performance windows identified a previously undocumented402

failure mode. Thus, these results helped identify limitations to these methods,403

and could be used to help guide future method development. In the future,404

antigen-prime simulated data could also be used to benchmark the ability of405

methods to forecast influenza evolution, which is also highly relevant to devel-406

oping effective vaccines.407

Despite capturing many features of viral evolution under immune selection,408

antigen-prime makes several simplifying assumptions that limit its biological409

realism. The fitness of simulated viruses is determined solely by their antigenic410

phenotype. However, other models of influenza evolution also model potential411

fitness costs of mutations at non-epitope sites (Luksza and Lässig, 2014), where412

mutations can disrupt HA’s ability to mediate viral entry. Additionally, the413

model maintains static epitope sites throughout the simulation, and employs a414

simple mutation model without epistatic interactions.415

In all, antigen-prime provides a powerful framework for simulating sea-416

sonal influenza evolution, enabling researchers to benchmark and guide devel-417

opment of methods for interpreting influenza surveillance data. In the future,418

antigen-prime could be tuned to simulate evolutionary dynamics of other419

viruses, helping to benchmark methods for a variety of pathogens related to420

human health.421

4 Methods422

4.1 Data and code availability423

The antigen-prime simulator source code is available at https://github.com/424

matsengrp/antigen-prime. Analysis scripts, simulation outputs, and code to425

generate all figures are available at https://github.com/matsengrp/antigen-426

forecasting.427
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4.2 Implementation of antigen-prime428

antigen-prime is implemented as a Java program forked from the original429

antigen simulator (Bedford et al., 2012). The software is compiled using Maven430

and requires Java 11 or higher, with dependencies specified in the project’s431

pom.xml file. The complete source code is available at https://github.com/432

matsengrp/antigen-prime.433

Two major extensions distinguish antigen-prime from the original simula-434

tor: (1) explicit genetic sequence evolution with site-specific mutation effects on435

antigenic movement, and (2) periodic sampling of host population immunity to436

enable fitness calculations for downstream analysis.437

The core simulation algorithm follows the discrete-event SIR (Susceptible-438

Infected-Recovered) framework described in Bedford et al. (Bedford et al., 2012),439

with key extensions to couple genetic and antigenic evolution. The simula-440

tion proceeds through discrete time steps, modeling viral transmission dynam-441

ics across structured host populations (demes) while tracking both genetic se-442

quences and antigenic coordinates for each virus. At each time step, the algo-443

rithm processes infection events based on host susceptibility and viral fitness,444

applies stochastic mutations to viral genomes according to the K80 model, up-445

dates antigenic coordinates based on mutation type and location, and samples446

host immunity profiles periodically to calculate population-level immunity cen-447

troids.448

In this paper, we use an overall viral mutation rate of µ = 10−3 mutations449

per virus per day. Epitope sites comprise ∼9% of the sequence (49/566 sites)450

and have an acceptance rate of 0.75, resulting in an effective mutation rate451

of µ × 0.065 mutations per virus per day at epitope sites. Non-epitope sites452

comprise the remaining ∼91% of the sequence and have a lower acceptance rate453

of 0.2, reflecting greater purifying selection at these sites (Luksza and Lässig,454

2014), resulting in an effective rate of µ × 0.183 mutations per virus per day.455

We tuned these acceptance rates to reproduce mutational patterns observed in456

seasonal influenza in nature (Figure S2).457

4.3 Simulation parameterization and host population im-458

munity sampling459

We simulated 40 years of influenza evolution across three demes, and discarded460

the first 10 years as burn-in. We parameterized mutation step-size distributions461

to reflect the differential antigenic impact of epitope versus non-epitope muta-462

tions. Non-epitope sites used rne ∼ Gamma(α = 1, β = 0.0001) while epitope463

sites used re ∼ Gamma(α = 2.25, β = 0.267). All mutations received a step464

direction θ ∼ Uniform(0, 2π).465

We sampled 150,000 viruses over the course of the simulation, proportionally466

by prevalence across demes and time, yielding approximately 4,400 unique nu-467

cleotide sequences to provide adequate count data for downstream growth-rate468

inference. To track population-immunity dynamics, we calculated and saved the469

antigenic centroid from the most recent infection stored in the immune memories470
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of 10,000 hosts from each deme every 365 days. The host population immunity471

centroid at time t is calculated as:472

Ht =
1

|H|
∑
h∈H

(ag∗1, ag∗2)h (1)

where H is the set of all sampled hosts across demes, |H| is the total num-473

ber of hosts sampled, and (ag∗1, ag∗2)h represents the two-dimensional antigenic474

coordinates of the most recent infection for host h. This centroid represents475

the average antigenic position of the host population’s immunity at time t and476

is used to calculate virus fitness values in the downstream variant assignment477

benchmark.478

4.4 Simulation selection for benchmarking applications479

We applied three criteria for selecting simulations suitable for benchmarking: (1)480

realistic epidemiological dynamics with seasonal epidemic patterns in the tem-481

perate demes and year-round transmission in the tropics, (2) summary statistics482

matching empirical A/H3N2 HA genetic and antigenic evolution, and (3) suffi-483

cient viral diversity for robust benchmarking of methods for variant assignment484

and growth-rate inference.485

To achieve the first criterion, we maintained the same antigenic and epi-486

demiological parameter values from the original antigen paper by Bedford et487

al. (Bedford et al., 2012). We also set the overall mutation rate to µ = 10−3488

mutation events per individual per day. For the second criterion, we ran 120489

total simulations with four different parameter configurations for epitope and490

non-epitope mutation acceptance rates (epitope: 0.75 or 1.0; non-epitope: 0.1491

or 0.2), using 30 replicates for each configuration. All 120 simulations ran to492

completion without viral population extinction (Figure S1, Figure S2).493

We define the mean pairwise genealogical diversity πG as the average total494

branch length between randomly sampled virus pairs:495

πG =
1

n

n∑
i=1

[
(tvi

A
− tMRCAi) + (tvi

B
− tMRCAi)

]
(2)

where n is the number of sampled pairs, tv is the birth time of virus v, and496

tMRCA is the birth time of the most recent common ancestor for each pair. We497

then applied a filtering criterion to focus on “flu-like” simulations: πG ≤ 9.0498

years. This filtering reduced the dataset from 120 to 83 qualifying simulations.499

For downstream variant assignment and growth rate inference benchmarking,500

we selected a single simulation with epitope acceptance rate of 0.75 and non-501

epitope acceptance rate of 0.2. This simulation had a simulated πG of 3.6 years502

and TMRCA of 3.4 years, and average antigenic movement of 1.6 units per year,503

closely matching empirical observations. The mutation summary statistics re-504

ported in Table 1 represent this selected simulation. Final selection involved505

confirming that phylogenetic trees and antigenic space distributions exhibited506

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2026. ; https://doi.org/10.64898/2026.01.23.701420doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.23.701420
http://creativecommons.org/licenses/by/4.0/


realistic influenza-like dynamics by visual inspection. Phylogenetic trees were507

inspected to ensure they displayed ladder-like structures, and case count dynam-508

ics were examined to confirm seasonal epidemic patterns in temperate demes509

and year-round transmission in the tropics.510

4.5 Variant assignment for antigen-prime simulations511

Three variant-assignment methods were applied to the 5,900 unique sequences:512

antigenic clustering (ground truth), sequence-based clustering, and phyloge-513

netic variant assignment. Antigenic variants were defined by k-means clustering514

(k = 30) on two-dimensional antigenic coordinates. Sequence-based variants515

were assigned using pathogen-embed (Nanduri et al., 2024): (1) sequence align-516

ment with MAFFT via augur align, (2) pairwise Hamming distance calculation,517

(3) t-SNE embedding in 2D space, and (4) k-means clustering (k = 30) on em-518

beddings. The k = 30 parameter for both methods reflects empirical influenza519

dynamics of approximately three variants per year over the 30 year simulation.520

Phylogenetic variants were assigned using the Neher clade assignment521

algorithm (Neher et al., 2025) following phylogeny reconstruction and ances-522

tral inference. The algorithm was configured to use the same epitope sites523

defined by  Luksza and Lässig (Luksza and Lässig, 2014) that are used in524

the antigen-prime simulation. Phylogeny inference used IQ-TREE via augur525

tree with augur refine refinement. Ancestral reconstruction applied augur526

ancestral and augur translate with default parameters. Clade assignment527

used parameters: bushiness branch scale 1.0, divergence scale 2.0, branch length528

scale 2.0, minimum clade size 22 sequences, targeting approximately 30 variants529

(resulting in 31). All variant assignments were re-labeled chronologically by530

average birth date of constituent viruses.531

Within-variant fitness variance was calculated to evaluate how well each532

method grouped viruses with similar fitness. We computed fitness for all viruses533

annually using the host population immunity centroid (Figure 1), then calcu-534

lated average within-variant fitness variance for each assignment method.535

WSS(t) =
1

|V |
∑
v∈V

Var(ωt,v) (3)

where V is the set of all variants assigned by a method, |V | is the total number536

of variants, and ωt,v represents the fitness values of all viruses in variant v at537

time t.538

Agreement between variant assignments was quantified using the normalized539

information distance (NID) (Li et al., 2004):540

NID(X,Y ) = 1− I(X,Y )

H(X,Y )
(4)

where I(X,Y ) is the mutual information between assignments X and Y , and541

H(X,Y ) is their joint entropy. NID ranges from 0 (identical assignments) to 1542

(completely independent assignments).543
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4.6 Inferring variant growth rates with evofr forecasting544

models545

We implemented two forecasting models from the evofr (Figgins and Bedford,546

2025) framework to infer variant growth rates from simulated surveillance data.547

The Fixed Growth Advantage (FGA) model implements a renewal equation548

approach where each variant has a fixed multiplicative growth factor, while549

the Growth Advantage Random Walk (GARW) model allows variant growth550

advantages to vary smoothly over time using a random walk prior.551

Data preparation involved extracting weekly variant-specific sequence counts552

and case counts from simulation outputs for each analysis timepoint. Data were553

separated by deme with analysis dates representing both in-season and out-of-554

season periods across different epidemic contexts. The retrospective observation555

window was limited to 365 days from each analysis date.556

Model fitting used the evofr software package for both FGA and GARW557

models. Model-specific hyperparameters were initialized with spline basis558

functions of order 4 with 10 knots to model time-varying parameters. Gen-559

eration time and reporting delay distributions were defined for the renewal560

equation models, with generation times parameterized as gamma distribu-561

tions: g(τ) ∼ Gamma(mean = 3.0, std = 1.2). Sequence count data used562

Dirichlet-Multinomial likelihood with concentration parameter 100, while case563

count data used Negative Binomial likelihood with dispersion parameter 0.05.564

Variational inference approximated posterior distributions of model parameters565

using full-rank variational inference with 50,000 iterations and learning rate of566

0.01, generating 500 posterior samples per model. We focused on the inferred567

variant growth rates in this work.568

4.7 Benchmarking growth rate inference performance569

Empirical growth rates (rdata,v) were calculated from simulated surveillance570

data using spline-based smoothing to reduce noise. For each variant v and571

location d, sequence data processing used univariate spline interpolation by572

log-transforming sequence counts to handle data skew and stabilize variance,573

applying a cubic univariate spline (degree k = 3) with smoothing factor s = 1.0574

to the log-transformed data, then transforming the smoothed values back to the575

original scale.576

After obtaining smoothed sequence counts, we calculated variant-specific577

incidence by multiplying total case counts by variant frequencies, then computed578

empirical growth rates as the change in log-transformed variant incidence over579

time:580

rdata,v(ti) =
ln(Cd(ti) · fv,d(ti))− ln(Cd(ti−1) · fv,d(ti−1))

∆t
(5)

where Cd(ti) represents the total case counts in location d at time ti, fv,d(ti)581

represents the smoothed frequency of variant v in location d at time ti, and ∆t is582

the time difference between observations. This approach scales the total disease583
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burden by variant-specific frequencies, providing a representation of variant-584

specific growth rates.585

Data filtering ensured reliable growth-rate estimates by excluding time586

points with smoothed sequence counts below 10 sequences (due to high sam-587

pling variance), variant frequencies below 1% of the total population (to avoid588

stochastic effects in rare variants), and variant incidence below 50 cases on589

any given day (to ensure sufficient case data). We required a minimum of 3590

consecutive valid time points for a variant to be included in the growth-rate591

benchmarking analysis.592

Performance on growth-rate inference was evaluated using mean absolute er-593

ror (MAE) between the medians of the inferred growth rate posteriors (rmodel,v)594

and empirical (rdata,v) growth rates for each variant:595

MAEv =
1

n

n∑
i=1

|rdata,v(ti)− rmodel,v(ti)| (6)

where n is the number of time points for variant v. We report log(MAE) for596

each variant to facilitate comparison across the small error ranges typically597

observed. The identification of analysis windows with unforeseen pathologies598

was done by tediously looking at many analysis windows with exceptionally599

high errors. Complete results, including detailed performance metrics for all600

analysis windows, are available at https://github.com/matsengrp/antigen-601

forecasting/notebooks/.602
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Figure S1: Genealogical and antigenic summary statistics for 120 simulations of
30 years of H3N2-like evolution. Each point represents a single simulation. Red
dashed horizontal lines represent empirical values reported in previous studies.
The 9.0 diversity cutoff was used in Bedford et al. (Bedford et al., 2012), and
the antigenic movement per year metric was chosen to reflect results observed
in Smith et al. (Smith et al., 2004) and Koel et al. (Koel et al., 2013). A: Ge-
nealogical diversity (πG). B: Time to most recent common ancestor (TMRCA),
red dashed line used as a target value based on data from nature (Scotch et al.,
2025). C: Antigenic movement per year, red dashed line used as a target value
based on data from nature.

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2026. ; https://doi.org/10.64898/2026.01.23.701420doi: bioRxiv preprint 

https://doi.org/10.64898/2026.01.23.701420
http://creativecommons.org/licenses/by/4.0/


40

60

80

100

120

trunk epitope mutations

0

20

40

60

80

trunk non-epitope mutations

0

5

10

15

20

25

30

35
trunk epitope to non-epitope ratio

Non-epitope acceptance rate
0.1
0.2

0.75 1.0

600

800

1000

1200

1400

1600

1800

side branch epitope mutations

0.75 1.0
Epitope acceptance rate

1500

2000

2500

3000

3500

side branch non-epitope mutations

0.75 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

side branch epitope to non-epitope ratio

Figure S2: Summary of antigen-prime mutation statistics for 120 simulations
of 30 years across various epitope/non-epitope acceptance rate configurations.
Each point represents results from a single simulation. Red dashed horizontal
lines represent empirical values reported in Table 1. A: Total number of epitope
mutations observed on the trunk of the phylogeny. B: Total number of non-
epitope mutations observed on the trunk of the phylogeny. C: Ratio of epitope to
non-epitope mutations observed on the trunk of the phylogeny. D: Total number
of epitope mutations observed on side branches of the phylogeny. E: Total
number of non-epitope mutations observed on side branches of the phylogeny.
F: Ratio of epitope to non-epitope mutations observed on side branches of the
phylogeny.
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Figure S3: Distribution of variant-specific growth rate inference errors compar-
ing FGA and GARW models across geographic demes. Log-mean absolute error
(log MAE) distributions show the performance of both model types in inferring
exponential growth rates (rmodel) compared to empirical growth rates (rdata)
calculated from variant frequency dynamics. The red dashed line indicates the
screening threshold used to identify analysis windows for detailed analysis. Each
data point represents a single variant within a training window, with boxplots
showing the distribution of errors and individual points overlaid. Both FGA
and GARW models demonstrate comparable performance with similar median
errors and error variance across all geographic demes.
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Figure S4: FGA model performance for variant growth-rate inference. (A)
Distribution of log MAE values of inferred variant-specific growth rates across
geographic demes. The red dashed line indicates the screening threshold used
to identify analysis windows for detailed analysis. Each data point represents
a single variant from a specific training window. Variants selected for panels
B-E are circled. (B-E) Examples of FGA model performance across different
training windows. Average log MAE values for each variant are reported below
the growth-rate plots. (B) Successful inference of frequencies and growth rates
(North, 2027-10-01). (C) Growth rates underestimated near end of the analysis
window (Tropics, 2048-10-01). (D) Growth rates overestimated for multiple
variants (Tropics, 2032-10-01). (E) Growth rates inaccurately inferred for both
variants 27 and 28 (South, 2052-10-01).
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