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Phylodynamics is a set of population genetics tools that aim at recon-
structing demographic history of a population based on molecular sequences
of individuals sampled from the population of interest. One important task
in phylodynamics is to estimate changes in (effective) population size. When
applied to infectious disease sequences, such estimation of population size
trajectories can provide information about changes in the number of infec-
tions. To model changes in the number of infected individuals, current phylo-
dynamic methods use nonparametric approaches (e.g., Bayesian curve-fitting
based on change-point models or Gaussian process priors), parametric ap-
proaches (e.g., based on differential equations), and stochastic modeling in
conjunction with likelihood-free Bayesian methods. The first class of meth-
ods yields results that are hard to interpret epidemiologically. The second
class of methods provides estimates of important epidemiological parame-
ters, such as infection and removal/recovery rates, but ignores variation in
the dynamics of infectious disease spread. The third class of methods is the
most advantageous statistically but relies on computationally intensive par-
ticle filtering techniques that limits its applications. We propose a Bayesian
model that combines phylodynamic inference and stochastic epidemic mod-
els and achieves computational tractability by using a linear noise approxima-
tion (LNA)—a technique that allows us to approximate probability densities
of stochastic epidemic model trajectories. LNA opens the door for using mod-
ern Markov chain Monte Carlo tools to approximate the joint posterior distri-
bution of the disease transmission parameters and of high dimensional vec-
tors describing unobserved changes in the stochastic epidemic model com-
partment sizes (e.g., numbers of infectious and susceptible individuals). In a
simulation study we show that our method can successfully recover param-
eters of stochastic epidemic models. We apply our estimation technique to
Ebola genealogies estimated using viral genetic data from the 2014 epidemic
in Sierra Leone and Liberia.

1. Introduction. Phylodynamics is an area at the intersection of phylogenetics and pop-
ulation genetics that studies how epidemiological, immunological, and evolutionary pro-
cesses affect viral genealogies/phylogenies that were constructed based on molecular se-
quences sampled from the population of interest (Grenfell et al. (2004), Volz, Koelle and
Bedford (2013b)). Phylodynamics is especially useful in infectious disease modeling because
genetic data provide a source of information that is complementary to the traditional disease
case count data. Here, we are interested in inferring parameters governing infectious disease
dynamics from the genealogy/phylogeny estimated from infectious disease agent molecular
sequences collected during the disease outbreak. Working in a Bayesian framework, we de-
velop an efficient Markov chain Monte Carlo (MCMC) algorithm that allows us to work with
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stochastic models of infectious disease dynamics, properly accounting for stochastic nature
of the dynamics.

Infectious disease phylodynamics methods handle densely and sparsely sampled outbreaks
differently (but see Smith, Ionides and King (2017), Vaughan et al. (2019) for potentially uni-
versal methods). In a densely sampled outbreak scenario, it is possible to simultaneously infer
infectious disease dynamics parameters and a transmission network (Ypma, van Ballegooijen
and Wallinga (2013), Jombart et al. (2014), Klinkenberg et al. (2017)). When an outbreak is
sampled sparsely, a setting we are interested in this paper, it is impossible to determine who
infected whom, so additional modeling is needed to connect sampled hosts to the unobserved
population dynamics. Currently, learning about population-level infectious disease dynamics
from a sparse sample of molecular sequences can be accomplished using three general strate-
gies. The first strategy relies on the coalescent theory—a set of population genetics tools
that specify probability models for genealogies relating individuals randomly sampled from
the population of interest (Kingman (1982), Griffiths and Tavaré (1994), Donnelly and Tavare
(1995)). Using a subset of these models (Griffiths and Tavaré (1994)), it is possible to estimate
changes in effective population size—the number of breeding individuals in an idealized pop-
ulation that evolves according to a Wright–Fisher model (Wright (1931)). Such reconstruc-
tion can be done assuming parametric (Kuhner, Yamato and Felsenstein (1998), Drummond
et al. (2002)) or nonparametric (Drummond et al. (2002), Drummond et al. (2005), Minin,
Bloomquist and Suchard (2008), Palacios and Minin (2013), Gill et al. (2013)) functional
forms of the effective population size trajectory. In the context of infectious disease phylody-
namics, nonparametric inference is the norm, and the estimated effective population size is
often interpreted as the effective number of infections or the effective number of infectious
individuals. However, reconstructed effective population size trajectories are not easy to in-
terpret, and estimation of parameters of disease dynamics is difficult to accomplish if one
wishes to maintain statistical rigor (Pybus et al. (2001), Frost and Volz (2010)).

Another way to learn about infectious disease dynamics from molecular sequences is to
model explicitly events that occur during the infectious disease spread and to link these events
to the genealogy/phylogeny of sampled individuals using birth-death processes. For example,
a susceptible-infectious-removed (SIR) model includes two possible events, infections and
removals (e.g., recoveries and deaths), represented by births and deaths in the corresponding
birth-death model (Kühnert et al. (2014), Stadler et al. (2013)). Other SIR-like models (e.g.,
SI and SIS models) differ by the number and types of the events that are needed to accurately
describe natural history of the infectious disease (Leventhal et al. (2013)).

Structured coalescent models provide the third strategy of inferring parameters governing
spread of an infectious disease (Volz (2012), Volz et al. (2009), Dearlove and Wilson (2013)).
These models assume infectious disease agent genetic data have been obtained from a random
sample of infected individuals, allowing for serial sampling over time. Although similar to
the birth-death modeling framework, the structured coalescent models have two advantages.
First, one does not have to keep track, analytically or computationally of extinct and not
sampled genetic lineages. Second, the density of the genealogy can be obtained given the
population level information about status of individuals: for example, in the SIR model it is
sufficient to know the numbers of susceptible (S(t)), infectious (I (t)), and recovered, (R(t))
individuals at each time point t . The second advantage comes with two caveats: (1) such
densities can be obtained only approximately, and (2) evaluating densities of genealogies is
not straightforward and involves numerical solutions of differential equations. Even in cases
when these caveats are manageable, the density of the assumed stochastic epidemic model
population trajectory remains computationally intractable. One way around this intractability
assumes a deterministic model of infectious disease dynamics (Volz (2012), Volz and Pond
(2014), Volz et al. (2009)) which potentially leads to overconfidence in estimation of model
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parameters. Particle filter MCMC offers another solution (Rasmussen, Ratmann and Koelle
(2011), Rasmussen, Volz and Koelle (2014)).

In this paper we develop methods that allow us to bypass particle filter MCMC with the
help of a linear noise approximation (LNA). LNA is a low order correction of the determin-
istic ordinary differential equation describing the asymptotic mean trajectories of compart-
mental models of population dynamics defined as Markov jump processes (e.g., chemical
reaction models and SIR-like models of infectious disease dynamics) (Kurtz (1970), Kurtz
(1971), Van Kampen and Reinhardt (1981)). LNA can also be viewed as a first-order Taylor
approximation of Markov population dynamics models represented by stochastic differential
equations (Giagos (2010), Wallace (2010)). A key feature of the LNA method is that it ap-
proximates the transition density of a stochastic population model with a Gaussian density
(Komorowski et al. (2009)).

Inspired by recent applications of LNA to analysis of Google flu trends data (Fearnhead,
Giagos and Sherlock (2014)) and disease case counts (Buckingham-Jeffery, Isham and House
(2018)), we develop a Bayesian framework that combines LNA for stochastic models of in-
fectious disease dynamics with structured coalescent models for genealogies of infectious
disease agent genetic samples. Our approach yields a latent Gaussian Markov model that
closely resembles a Gaussian state-space model. We use this resemblance to develop an ef-
ficient MCMC algorithm that combines high-dimensional elliptical slice sampler updates
(Murray, Adams and MacKay (2010)) with low-dimensional Metropolis–Hastings (MH)
moves. Using simulations, we demonstrate that this algorithm can handle reasonably com-
plex models, including an SIR model with a time-varying infection rate. We apply this SIR
model to a recent Ebola outbreak in West Africa. Our analysis of data from Liberia and Sierra
Leone illuminates significant changes in the Ebola infection rate over time, likely caused by
the public health response measures and increased awareness of the outbreak in the popula-
tion.

2. Methodology.

2.1. Genealogy as data. We start with n infectious disease agent molecular sequences
obtained from infected individuals sampled uniformly at random from the total infected pop-
ulation. Further, we assume that a phylogenetic tree or genealogy, g, relating these sequences
has been estimated in such a way that the tree branch lengths respect the known sequence
sampling times. Such estimation can be performed with, for example, BEAST—a software
package for Bayesian phylogenetic inference (Suchard et al. (2018)). The genealogy is rep-
resented by a tree structure with its nodes containing two sources of temporal information:
coalescent and sampling times. The coalescent times correspond to the internal nodes of the
tree, which are defined as the times at which two lineages in the tree are merged into a com-
mon ancestor. The sampling times, corresponding to the tips of the tree, are the times at which
molecular sequences were sampled. Note that sampling times are observed directly, while co-
alescent times are estimated from molecular sequences during phylogenetic reconstruction.

To perform inference about infectious disease dynamics using the above genealogy, we
need a probability model that relates the genealogy and infectious disease dynamics model
parameters. We assume that the infectious disease is spreading through the population accord-
ing to the SIR model—a canonical compartmental model that at each time point t tracks the
number of susceptible individuals S(t), number of infected/infectious individuals I (t), and
number of removed individuals R(t) (Bailey (1975), Anderson and May (1992)). We assume
that the population is closed so S(t)+ I (t)+R(t) = N for all times t , where N is the popula-
tion size that we assume to be known. This constraint implies that vector X(t) = (S(t), I (t))

is sufficient to keep track of the population state at time t . We follow common practice and
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FIG. 1. SIR Markov jump process. From the current state with the counts S, I , R, the population can transition
to state S − 1, I + 1, R (an infection event) with rate β(t)SI or to state S, I − 1, R + 1 (a removal event) with
rate γ (t)I . No other instantaneous transitions are allowed.

model X(t) as a Markov jump process (MJP) with allowable instantaneous jumps, shown in
Figure 1 (O’Neill and Roberts (1999)). Because we allow the infection rate β(t) and removal
rate γ (t) to be time-varying, the assumed MJP process X(t) is inhomogeneous.

The structured coalescent models assume that only coalescent times c1 < c2 < · · · < cn−1
provide information about the population dynamics. These times are modeled as jumps of an
inhomogeneous pure death process with rate λ(t), where each “death” event corresponds to
coalescence of two lineages and λ(t) is called a coalescent

rate. Then, the density of the genealogy, which serves as a likelihood in our work, is written
as

Pr(g) ∝
n∏

k=2

λ(ck−1) exp
(
−

∫ ck

ck−1

λ(τ)dτ

)
,

where cn denotes the most recent sequence sampling time. The dependence of coalescent rate
on the assumed population dynamics can be complicated and mathematically intractable, but
luckily, approximations exist for some specific cases. For the SIR model the approximate
coalescent rate can be obtained via the following formula:

(1) λ(t) = λ
(
l(t), β(t),X(t)

) =
(
l(t)

2

)
2β(t)S(t)

I (t)
,

where l(t) is the number of lineages present at time t (Rasmussen, Ratmann and Koelle
(2011), Volz, Koelle and Bedford (2013b)). The coalescent rate in the SIR model can be
interpreted as the rate of infection events between sampled lineages present at time t : λ(t) ≈(
l(t)
2

)
/
(
I (t)

2

) ·β(t)S(t)I (t), where β(t)S(t)I (t) is the total infection rate in the population and(
l(t)
2

)
/
(
I (t)

2

)
corresponds to the probability that the infection occurs between lineages present

at time t . Note that, when the number of susceptibles is not changing significantly relative
to the total population size (i.e., S(t) ≈ N ) and infection rate is constant (i.e., β(t) = β),
the structured coalescent reduces to the classical Kingman’s coalescent, where we interpret
I (t)/(2βN) as the effective population size trajectory (Kingman (1982)). It is possible to find
approximate coalescence rate for general compartmental models, but closed form expressions
exist only for a few models with a low number of compartments (e.g., SI, SIR) (Volz (2012),
Volz et al. (2009), Dearlove and Wilson (2013)).

Since we allow sequences to be sampled at different times s1 < s2 < · · · < sm = cn,
some intercoalescent times are censored. To deal with this censoring algebraically, each
intercoalesecent interval [ck−1, ck) is partitioned by the sampling events into ik subin-
tervals: I0,k, . . . ,Iik−1,k . The intervals that start with a coalescent event are defined as
I0,k = [ck−1,min{ck, sj }), for sj > ck−1 and k = 2, . . . , n. Let the number of lineages in
each interval Ii,k be li,k . Then, the number of lineages at each time point t can be written

as l(t) = ∑n
k=2

∑ik−1
i=0 1{t∈Ii,k}li,k . If the interval Ii,k ends with a coalescent time, the number

of lineages in the next interval will be decreased by 1. If the interval ends with a sampling
event si , then the number of lineages in the next interval is increased by ni—the number
of sequences sampled at time si . Figure 2 shows an example of a genealogy with labeled
coalescent times, sampling times, number of lineages, and the corresponding intervals.
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FIG. 2. Example of a genealogy. Black solid lines show the genealogy structure. The colescent times c1, . . . , c4
and sampling times s1, . . . , s4 are labeled with vertical dashed lines. The number of lineages li,k is given in each
intervals Ii,k .

We are now ready to connect the SIR model and a genealogy with serially sampled tips
with the help of a structured coalescent density/likelihood. First, we discretize the time in-
terval between the time to the most recent common ancestor c1 (time corresponding to the
root of the tree) and the most recent sampling time sm using a regular grid t0 < t1 < · · · < tT
(t0 < c1 and tT > sm). Using this grid, we discretize the latent epidemic trajectory by assum-
ing that X(t) = ∑T

j=1 Xj−11[tj−1,tj )(t), where Xj = (Sj , Ij ) is a column vector. Similarly,
we discretize the infectious disease dynamics parameter vector trajectory θ(t) = (β(t), γ (t))

so that θ(t) = ∑T
j=1 θ j−11[tj−1,tj )(t), where θ j = (βj , γj ) is also a column vector. We collect

latent variables Xj s and parameters θ j s into matrices X0:T and θ0:T respectively. The SIR
structured coalescent density/likelihood then becomes

Pr(g | X0:T , θ0:T ) ∝
n∏

k=2

(
l(ck−1)

2

)
2β(ck−1)S(ck−1)

I (ck−1)

× exp

(
−

ik−1∑
i=0

∫
Ii,k

(
li,k
2

)
2β(τ)S(τ )

I (τ )
dτ

)
.

(2)

Since S(t), I (t), and β(t) are piecewise constant functions, the integrals in the above formula
are readily available in closed form and are fast to compute.

2.2. Bayesian data augmentation.

2.2.1. Posterior distribution. Given genealogy g, our goal is to infer the latent SIR pop-
ulation dynamic X0:T and rate parameters θ0:T over time grid t0 < t1 < · · · < tT . Let Pr(X0)

and Pr(θ0:T ) denote the prior densities for the initial compartment states and the SIR parame-
ters, respectively. The posterior distribution for the population trajectory X0:T and parameters
θ0:T , given observed genealogy g, is

Pr(X0:T , θ0:T | g) ∝ Pr(g | X0:T , θ0:T )Pr(X1:T | X0, θ0:T )

× Pr(θ0:T )Pr(X0),
(3)
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where Pr(g | X0:T , θ0:T ) is the structured coalescent likelihood introduced in Section 2.1 and
Pr(X1:T | X0, θ0:T ) is the likelihood function for discrete observations of trajectory X1:T ,
given the initial value X0,

(4) Pr(X1:T | X0, θ0:T ) =
T∏

i=1

Pr(Xi | Xi−1, θ i−1),

where the factorization comes from the assumed Markov property of the disease dynamics.
However, the SIR transition density Pr(Xi | Xi−1, θ i−1) becomes intractable, as population
size N grows large, making it difficult to perform likelihood-based inference for outbreaks in
large populations.

2.2.2. Linear noise approximation. To furnish a feasible computation strategy for large
populations, we use a linear noise approximation (LNA) method in which the computation-
ally intractable transition probability Pr(Xi | Xi−1, θ i−1) is approximated using a closed form
Gaussian transition density (Kurtz (1970, 1971), Komorowski et al. (2009)).

The LNA method replaces the MJP discrete state space with a continuous state space
of X(t) to approximate the counts of at time t , under the following constraints: S(t) > 0,
I (t) > 0 and S(t)+ I (t) ≤ N . To briefly explain how this approximation is obtained, we will
need additional notation.

The SIR MJP instantaneous transitions, depicted in Figure 1, are encoded in an effect
matrix

(5) A =
susceptible infected( )−1 1 infection

0 −1 removal.

Each row in matrix (5) represents a type of transition event, and each column corresponds to
a change in the susceptible and infected populations. Next, we define a rate vector h and a
rate matrix H,

(6) h
(
X(t), θ(t)

) =
(
β(t)S(t)I (t)

γ (t)I (t)

)
, H =

(
β(t)S(t)I (t) 0

0 γ (t)I (t)

)
.

The above notation as well as subsequent developments based on it can be generalized to
other epidemic models and, more generally, to a large class of density dependent stochastic
processes, such as chemical reaction and gene regulation models (Wilkinson (2011)); see
Section A-1 in the Appendix (Tang et al. (2023)) for more details on this generalization.

Consider a transition from Xi−1 at time ti−1 to Xi at ti . Recall that we assume that the
SIR rates θ(t) take constant values θ i−1 in [ti−1, ti). The LNA represents the value of the
next state Xi , as Xi = η(ti) + M(ti), where η(ti) is a deterministic component and M(ti) is
a stochastic component. The deterministic component η(ti) can be obtained by solving the
standard SIR ODE that in our notation can be written as

(7) dη(t) = AT h
(
η(t), θ i−1

)
dt, t ∈ [ti−1, ti].

The stochastic part M(ti) corresponds to the solution of the following SDE at time ti :

(8) dM(t) = F
(
η(t), θ i−1

)
M(t)dt +

√
AT H

(
η(t), θ i−1

)
A dWt , t ∈ [ti−1, ti],

where F(η(t), θ i−1) := ∂AT h(X(t),θ i−1)
∂X |X=η(t) is the Jacobian matrix of the deterministic part

AT h(X(t), θ i−1) in (7) evaluated at η(t). The solution of SDE (8), M(t), is a Gaussian pro-
cess and can be recovered by solving two ordinary differential equations governing the mean
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function m(t) := E[M(t)] and covariance function �(t) := Var(M(t)),

dm(t) =F
(
η(t), θ i−1

)
m(t)dt,(9)

d�(t) = (
F

(
η(t), θ i−1

)
�(t) + �(t)FT (

η(t), θ i−1
)

+ AT H
(
η(t), θ i−1

)
A

)
dt,

(10)

for t ∈ [ti−1, ti]. A heuristic derivation of LNA, based on (Wallace (2010)), is given in Sec-
tion A-2 of the Appendix. Let ηti−1

, mti−1 , �ti−1 denote the initial values of η(t), m(t), �(t)

at time ti−1 in differential equations (7), (9), and (10), respectively. There are two options for
choosing these initial conditions: the nonrestarting LNA of Komorowski et al. (2009) and the
restarting LNA of Fearnhead, Giagos and Sherlock (2014). In this paper we will use the non-
restarting LNA by Komorowski et al. (2009) since it allows us to isolate the effect of adding
stochasticity to the ODE method, as the mean population trajectory of the non-restarting LNA
is the trajectory from the ODE method. The nonrestarting LNA has the following choice of
initial conditions:

1. ηti−1
= η(ti−1), where η(ti−1) was obtained by solving the ODE (7) using parameter

vector θ i−2 over the interval [ti−2, ti−1],
2. mti−1 = Xi−1 − η(ti−1),
3. �ti−1 = 0.

Solving the system of ODEs (7), (9), (10), we obtain η(ti), m(ti), and �(ti). The solution
m(ti) will be a function of the initial value Xi−1 − η(ti−1), the interval length �ti := ti −
ti−1, and the SIR rates θ i−1. To make this dependence explicit, we write m(ti) := μ(Xi−1 −
η(ti−1),�ti, θ i−1). Since (9) is a first-order homogeneous linear ODE, the solution μ(Xi−1 −
η(ti−1),�ti, θ i−1) is a linear function of Xi−1 − η(ti−1). Hence, the transition from Xi−1 to
Xi follows the following Gaussian distribution:

(11) Xi | Xi−1, θ i−1 ∼N
(
η(ti) + μ

(
Xi−1 − η(ti−1),�ti, θ i−1

)
,�(ti)

)
.

To summarize, the derived conditional Gaussian densities Pr(Xi | Xi−1, θ i−1) allow us to
compute the density of the latent SIR trajectory (4). As a result, our augmented posterior
distribution of X0:T and θ0:T , shown in equation (3), can be computed up to proportionality
constant and approximated via “standard” (not particle filter) MCMC approaches.

2.3. Reparameterization, priors, and MCMC algorithm.

2.3.1. Reparameterizing SIR rates. We have experimented with multiple parameteriza-
tions of our inhomogeneous SIR model and found that the following parameterization works
best with our proposed MCMC algorithm for approximating the posterior distribution (3).
First, recall that we allow SIR rates to vary with time. Since it is much more likely for the
infection rate to be time variable, we are going to assume a constant removal/recovery rate γ .
This leaves us with the following parameters: infection rates on a grid β , removal rate γ , and
initial SIR state X0 = (S0, I0). Since we are interested in modeling an emerging infectious
disease outbreak, we set the initial counts of susceptibles to S0 = N − I0. Initial counts of
infected individuals, I0, is assumed to be low and treated as an unknown parameter with a
lognormal prior distribution. Instead of the time-varying infection rate β(t), we parameterize
our SIR model with a time-varying basic reproduction number R0(t) = [β(t)N]/γ . The re-
production number is interpreted as the average number of cases that one case generates over
its infectious period in a completely susceptible population. Since our infection rate changes
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in a piecewise manner, the basic reproduction number varies over time in a piecewise manner
too,

(12) R0(t) =
T∑

i=1

R0i−11[ti−1,ti )(t),

where R0i
= [βiN ]/γ is the reproduction number corresponding to the time interval [ti−1, ti).

Let R0 = R00 be the initial basic reproductive number and δi = log(R0i
/R0i−1)/σ be a nor-

malized log ratio of R0(t) over two successive time intervals. Then, interval-specific basic
reproduction numbers can be written as

(13) R0i
= R0(t, δ1:T , σ ) = R0 exp

(
i∑

k=1

σδk

)
, for i = 1, . . . , T ,

where we assume a priori that δis are independent standard normal random variables.
This construction implies that log-transformed piecewise constant reproduction numbers,

log(R0i
)s, a priori follow a first-order Gaussian Markov random field (GMRF) with stan-

dard deviation σ that controls the a priori smoothness of R0(t) trajectory (Rue (2001),
Rue and Held (2005)). In addition to speeding MCMC convergence, working with R0(t)

is convenient, because this trajectory is dimensionless and retains its interpretation when one
changes the population size N . The initial R0 is assigned a lognormal(a1, b1) prior. We use a
lognormal(a2, b2) prior for the inverse of standard deviation 1/σ .

2.3.2. Grid size and prior for GMRF standard deviation. The number of grid intervals
T can be thought of as a tuning parameter in our model. Increasing T linearly increases
complexity of the coalescent likelihood and R0(t) prior density calculations, suggesting that
keeping T small is prudent from a computational point of view. However, if the chosen T

is too small, we may miss large changes of the latent numbers of susceptible and infectious
individuals and changes of the basic reproduction number. We recommend choosing T large
enough to capture these changes, possibly experimenting with multiple grid sizes. We recom-
mend setting the prior distribution for σ in conjunction with T , for example, by controlling
the probability that R0(t) a priori stays within a reasonable range.

2.3.3. Reparameterizing SIR latent trajectories. We reparameterize the latent SIR tra-
jectory X1:T with a sequence of independent Gaussian random variables ξ1:T , following a
noncentered parameterization framework of Papaspiliopoulos, Roberts and Sköld (2007). Ac-
cording to formula (11), conditional on Xi−1, Xi can be written as

(14) Xi = η(ti) + μ
(
Xi−1 − η(ti−1),�ti, θ i−1

) + �
1/2
i ξ i ,

where ξ i

iid∼ N (0, I) for i = 1, . . . , T and I is a 2 × 2 identity matrix. In our parameterization
we will treat ξ1:T as random latent variables and the SIR latent trajectory X1:T as a determin-
istic transformation of ξ1:T . More details about our noncentered parameterization of X1:T
can be found in Section A-3 of the Appendix.

2.3.4. MCMC algorithm. Using our new parameterization, we are now interested in the
posterior distribution of the initial number of infected individuals, I0, removal rate, γ , the ini-
tial basic reproduction number, R0, standardized vectors, δ1:T and ξ1:T , and GMRF standard
deviation, σ ,

Pr(I0,R0, γ, δ1:T , ξ1:T , σ |g) ∝ Pr(g|I0,R0, γ, δ1:T , ξ1:T , σ )Pr(I0)

× Pr(R0)Pr(γ )Pr(δ1:T )Pr(ξ1:T )Pr(σ )

∝ Pr(g|X0:T , θ0:T )Pr(I0)Pr(R0)Pr(γ )

× Pr(δ1:T )Pr(ξ1:T )Pr(σ ).
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The latent variables X0:T and parameter vector θ0:T are deterministic functions of new
parameters I0, γ , R0, δ1:T , ξ1:T , and σ . We use the following MCMC with block up-
dates to approximate this posterior distribution. We update high-dimensional vector U =
(log(R0), δ1:T , log(σ )) using the efficient elliptical slice sampler (Murray, Adams and
MacKay (2010)). Vector ξ1:T is updated the same way in a separate step. Initial number
of invected individuals I0 and removal rate γ are updated using univariate Metropolis steps.
The full procedure is described in Algorithm 2 which, together with details of the elliptical
slice sampler, can be found in Section A-4.1 of the Appendix. After MCMC is done, we
report posterior summaries using natural parameterization. For example, we report posterior
medians and 95% Bayesian credible intervals (BCIs) of the piecewise latent reproduction
number trajectory, R0i

for i = 0, . . . , T , and latent trajectory X0:T .

2.3.5. Implementation. Our R package called LNAPhylodyn provides an implementa-
tion of our MCMC algorithm. The package code is publicly available at https://github.com/
MingweiWilliamTang/LNAphyloDyn. This repository also contains scripts that should allow
one to reproduce key numerical results in this manuscript. The PhyDyn simulation exam-
ple is also included in https://github.com/MingweiWilliamTang/LNAphyloDyn/blob/master/
inst/SIR_phydyn_example.xml.

3. Simulation experiments.

3.1. Simulations based on single genealogy realizations. In this section we use simulated
genealogies to assess performance of our LNA-based method and to compare it with an ODE-
based method, where we replace equation (14) with its simplified version, Xi = η(ti). Under
our assumption of a fixed and known genealogy and constant R0, our ODE-based method
closely resembles previously developed methods by Volz et al. (2009) and Volz and Siveroni
(2018). To compare ODE-based and LNA-based models in a Bayesian nonparametric set-
ting, we equip the ODE model with the GMRF prior for time-varying R0(t), described in
Section 2.3.1. We use the same MCMC algorithm for both LNA-based and ODE-based mod-
els, except we do not have a separate step to update latent vector ξ1:T (equivalently, X0:T ) in
the ODE-based inference; see Algorithm 3 in the Appendix for a more detailed description
of the ODE-based MCMC.

The simulation protocol consists of two steps. First, given the population size N and pre-
specified parameters γ , I0, and R0(t), we simulate one realization of the SIR population tra-
jectory based on the MJP using the Gillespie algorithm (Gillespie (1977)). Next, we generate
realistic lineage sampling times and simulate coalescent times from the distribution specified
by density (2) using a thinning algorithm by Palacios and Minin (2013). We specified several
sampling times spanning the time of the epidemic. The number of sampled sequences at each
sampling time in each scenario is set to be approximately proportional to the true prevalence.
More details are given in Appendix Section A-5.1.

We test LNA-based and ODE-based methods under three “true” R0(t) trajectories over the
time interval [0,90]:

1. Constant (CONST) R0(t). R0(t) = 2.2 for t ∈ [0,90]. Recovery rate γ = 0.2. Initial
counts of infected individuals I0 = 1. Total population size is N = 100,000. The total number
of sampled sequences is 1022.

2. Stepwise decreasing (SD) R0(t). R0(t) = 2, t ∈ [0,30), R0(t) = 1, t ∈ [30,60), and
R0(t) = 0.6, t ∈ [60,90]. Recovery rate γ = 0.2. Initial counts of infected individuals I0 = 1.
Total population size N = 1,000,000. The total number of sampled sequences is 342.

https://github.com/MingweiWilliamTang/LNAphyloDyn
https://github.com/MingweiWilliamTang/LNAphyloDyn/blob/master/inst/SIR_phydyn_example.xml
https://github.com/MingweiWilliamTang/LNAphyloDyn
https://github.com/MingweiWilliamTang/LNAphyloDyn/blob/master/inst/SIR_phydyn_example.xml
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3. Nonmonotonic (NM) R0(t). R0(t) = 1.4 × 1.0150.5t , t ∈ [0,30], R0(t) = 1.750 ×
0.975t−30, t ∈ [30,80], and R0(t) = 0.4583, t ∈ [80,90]. Recovery rate γ = 0.3. Initial
counts of infected individuals I0 = 3. Total population size N = 1,000,000. The total number
of sampled sequences is 442.

For all simulations we use lognormal(1,1) prior for I0. The parameters of the log-
normal priors for the initial R0 and inverse standard deviation 1/σ are set to a1 = 0.7,
b1 = 0.5, and a2 = 3, b2 = 0.2, respectively, in such a way that a priori R0(t) trajectory
stays within a reasonable range of [0,5] with 0.9 probability. We assign an informative prior
for γ in each simulation scenario, assuming that prior information about this parameter is
available: (1) CONST: γ ∼ lognormal(−1.7,0.1), (2) SD: γ ∼ lognormal(−1.7,0.1), (3)
NM: γ ∼ lognormal(−1.2,0.1). We set the grid size to T = 36, with ti − ti−1 = 2.5 for
i = 1, . . . ,36. As a result, each scenario has 72 latent variables that keep track of latent num-
bers of infectious and removed individuals, X1:36, and 36 parameters that describe changes in
the basic reproduction number, δ1:36, plus parameters R0, I0, γ , and σ . For both LNA-based
and ODE-based methods, we use 1,000,000 MCMC iterations. All MCMC chains appeared
to converge (trace plots are shown in Section A-5.4.1 of the Appendix). The effective sample
sizes of all unknown quantities were above 400 (see Table A-1 for more details).

The first row of Figure 3 shows pointwise posterior medians and 95% BCIs for the basic
reproduction number trajectory, R0(t). Our LNA-based method performs well in capturing
the continuous dynamics of R0(t). Though our approach may not perfectly catch the discon-
tinuous changes in R0 in the SD scenario, the method provides BCIs that are able to capture
most of the R0(t) trajectory. The ODE-based method yields similar results in the CONST
case and the SD case but underestimates the magnitude of the decrease in R0(t) toward the
end of the epidemic.

The second row in Figure 3 shows posterior summaries of removal rate γ . Both LNA-
based and ODE-based methods provide good estimates in the CONST scenario with posterior
modes centered at the true value and higher posterior densities at truth when compared with
the prior. In the SD and NM scenarios with the time varying R0(t), the posterior estimates
from the LNA-based method and ODE-based method, though still centered at the truth, do
not differ much from the prior distribution.

Posterior summaries of S(t) and I (t) are depicted in the third and fourth rows of Figure 3.
The two methods produce similar results in the CONST and SD scenario, as both of them
have narrow BCIs covering the true trajectories. However, in the NM case, while the LNA-
based method manages to recover the latent SIR trajectory trend, the BCIs from the ODE-
based method fail to cover the true prevalence trajectory in the middle and at the end of
the epidemic. Somewhat counterintuitively, LNA-based method produces BCIs for the latent
trajectories, S(t) and I (t), that are narrower than its ODE counterparts. We suspect this is a
result of the ODE-based method poor estimation of the basic reproduction number trajectory
at the end of the epidemic.

3.2. Frequentist properties of posterior summaries. In this section we design a simu-
lation study based on repeatedly simulating SIR trajectories using MJP with prespecified
parameters. We report simulations based on the nonmonotonic R0(t) trajectory scenario in
Section 3.1 with the same parameter setup, except the parameters of the lognormal prior for
the initial R0 are set to a1 = 0.7, b1 = 0.3. Results of repeatedly simulating SIR trajectories
with constant and monotonic R0(t) trajectories are reported in Appendix Section A-5.3. Sim-
ulating SIR dynamics under low initial number of infected individuals I0 can end up with
low prevalence trajectories that end at the beginning of the epidemic, or trajectories having
unrealistically high prevalence, which are less likely to be observed during real infectious dis-
ease outbreaks. Therefore, while simulating SIR trajectories, we reject such “unreasonable”
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FIG. 3. Analysis of three simulation scenarios. Columns correspond to CONST, SD, and NM simulated R0(t)

trajectories. The first row shows the estimated R0(t) trajectories for the three scenarios, with the black solid lines
representing the truth, the red dashed lines depicting the posterior median, and the red-shaded area showing the
95% BCIs for the LNA-based method. For the ODE-based method, the posterior median is plotted in blue dotted
lines, with blue shading showing the 95% BCIs. The second row corresponds to the estimation for the removal rate
γ . Posterior density curves from the LNA are shown in red lines, and the posterior density for ODE is plotted in
blue lines, compared with prior density curve in green lines. The bottom two figures shows the estimated trajectory
of S(t) and I (t), respectively.

realizations to arrive at 100 simulated trajectories. The details of the rejection criteria are
given in Section A-5.2 of the Appendix. For each simulated SIR trajectory, a realization of a
genealogy is generated using the structured coalescent process. We use both LNA-based and
ODE-based models to approximate the posterior distribution of model parameters and latent
variables for each genealogy. In addition to the informative prior for removal rate γ , used in
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Section 3.1, we use a weaker prior γ ∼ lognormal(−1.2,0.25) to probe prior sensitivity of
both LNA-based and ODE-based methods.

We use three metrics to evaluate models based on their estimates of R0(t) and I (t): aver-
age error of point estimates (posterior medians), width of credible intervals, and frequentist
coverage of credible intervals. Since the value of R0(t) is greater than 0 and usually upper-
bounded by 20 (i.e, it stays within the same order of magnitude), we will measure accuracy
using an unnormalized mean absolute error (MAE),

(15) MAE = 1

T + 1

T∑
i=0

∣∣R̂0i
− R0(ti)

∣∣,
where R̂0i

is the posterior median of R0(ti). In contrast, I (t) varies from one at the beginning
of the epidemic to thousands at the peak, so to evaluate accuracy of prevalence estimation,
we use the mean relative absolute error (MRAE),

(16) MRAE = 1

T + 1

T∑
i=0

|Îi − I (ti)|
I (ti) + 1

,

where Îi is the posterior median of I(ti). We assess precision of R0(t) estimation based on
the mean credible interval width (MCIW),

(17) MCIW = 1

T + 1

T∑
i=0

[
R̂0.975

0i
− R̂0.025

0i

]
,

where R̂0.025
0i

and R̂0.975
0i

denote the lower and upper bounds of the 95% BCI for R0i
. Sim-

ilar as our measure of accuracy, precision of I (t) estimation is quantified via mean relative
credible interval width (MRCIW),

(18) MRCIW = 1

T + 1

T∑
i=0

Î 0.975
i − Î 0.025

i

I (ti) + 1
,

where Î 0.025
i and Î 0.975

i specify the lower and upper bounds of the 95% BCI of I (ti).
In addition, we compute the “envelope” (ENV)—a measure of coverage of BCIs the true
trajectory—for R0(t) and I (t) as follows:

ENV-R0 = 1

T + 1

T∑
i=0

1
(
R̂0.025

0i
≤ R0(ti) ≤ R̂0.975

0i

)
,

ENV-I = 1

T + 1

T∑
i=0

1
(
Î 0.025
i ≤ I (ti) ≤ Î 0.975

i

)
.

Sampling distribution boxplots of R0(t), posterior summaries are depicted in the left three
plots of Figure 4. The LNA-based method yields lower MAE than the ODE-based method
under both informative and weakly informative priors for the removal rate γ . As a trade-off,
the MCIWs produced by the LNA-method are generally higher, as expected, since the LNA-
based method incorporates the stochasticity in the population dynamics. With less bias and
wider BCIs, the LNA-based method BCIs result in better R0(t) coverage than ODE-based
BCIs, as shown by the envelope boxplots. Informative prior for the removal rate γ helps both
LNA-based and ODE-based methods to estimate R0(t).

Sampling distribution boxplots of I (t) posterior summaries, shown in Figure 4, are similar
to the R0(t) results, with the LNA-based method generally having lower MRAEs, higher MR-
CIWs and a better coverage/envelope than the ODE-based method. Again, somewhat counter-
intuitively, the MRCIWs for the LNA-based method are smaller than the ODE counterparts.
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FIG. 4. Boxplots comparing performance of LNA-based and ODE-based methods using 100 simulated genealo-
gies under informative prior (IP) and weakly informative prior (WIP) for removal rate γ . The first row shows
mean absolute error (MAE), mean credible interval width (MCIW), and envelope (ENV-R0) for R0(t) trajectory.
The second row depicts mean relative absolute error (MRAE), mean relative credible interval width (MRCIW),
and envelope (ENV-I) for I (t) (prevalence) trajectory (ENV-I). The last two plots show the absolute error (AE)
and Bayesian credible interval (BCI) width for γ .

This is likely caused by significant bias in R0(t) estimation by the ODE-based method. The
contrast between results of informative and weakly informative prior is a little different from
R0(t) estimation results, because the LNA-based method is estimating I (t) better than R0(t)

under the weakly informative prior.
We also report the absolute error (AE) and 95% BCI widths for removal rate γ in Figure 4.

The LNA-based method yields slightly higher AEs than the ODE method. Under the infor-
mative prior, both LNA-based and ODE-based methods have coverage of 95% BCIs equal to
1.0. However, coverage of LNA-based method drops to 0.65 under the weakly informative
prior, while the ODE-based method’s 95% BCI coverage becomes 0.99.

In conclusion, the ODE-based method tends to be biased and overconfident when esti-
mating basic reproduction number R0(t) and prevalence I (t). By modeling stochasticity of
the population trajectory dynamics, our LNA-based method produces more accurate and less
precise estimators of R0(t) and I (t) that enjoy good frequentist properties. However, the
ODE-based method does better in estimating the recovery rate γ which is only weakly iden-
tifiable.

3.3. Additional simulations and validation. We perform the same repeated simulations
for the constant and stepwise decreasing R0(t) scenarios under the same parameter setup as
in Section 3.1 and report the corresponding frequentist properties of the posterior summaries
in Appendix Figures A-5 and A-6. Both LNA-based and ODE-based methods results are
similar to the results from the nonmonotonic R0(t) simulation scenario, but the differences
between LNA-based and ODE-based methods are less pronounced than in the nonmonotonic
R0(t) scenario.

Theoretically, both structured coalescent models and LNA are designed to work for epi-
demics in large populations. We test performance of LNA-based and ODE-based methods in a
relatively small population with the size of N = 1000. For simplicity, we use a constant R0(t)

simulation scenario. Assuming that R0 is constant also allows us to compare our method to
the BEAST 2 PhyDyn module that implements the ODE-based approach. PhyDyn can han-
dle a wide range of different compartmental models of infectious disease dynamics, but we
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use only a simple SIR model in this comparison. This simulation study shows that our im-
plementations of both LNA-based and ODE-based approaches perform reasonably in this
small population setting, but PhyDyn does do as well. However, we find that the disagree-
ment between our ODE implementation and PhyDyn is artifact of the small population size
setting, which leads to the outbreak to be densely sampled. In Appendix Section A-9 we
demonstrate that our ODE-based method implementation agrees with R package PhyDynR
(a predecessor of BEAST 2 PhyDyn) under a setup with a large population size, but the
two implementations disagree under a small population size setting.

4. Analysis of Ebola outbreak in West Africa. We apply our LNA-based method to
the Ebola genealogies reconstructed from molecular data collected in Sierra Leone and
Liberia during the 2014–2015 epidemic in West Africa (Dudas et al. (2017)). We use a
Sierra Leone genealogy, depicted in the top left plot of Figure 5, which was estimated from
1010 Ebola virus full genomes sampled from 2014-05-25 to 2015-09-12 in 15 cities. The
Liberia genealogy, shown in the top left plot of Figure 6, was estimated from a smaller
number of samples: 205 Ebola virus full genomes sampled from 2014-06-20 to 2015-02-
14. The original sequence data and the reconstructed genealogies are publicly available at
https://github.com/ebov/space-time.

When Ebola virus infections were detected in West Africa in mid-Spring of 2014, various
intervention measures were proposed and implemented to change behavior of individuals in
the populations through which Ebola was spreading. Border closures, encouragement to re-
duce individual day-to-day mobility, and recommendations on changing burial practices were
among the broad spectrum of interventions attempted by multiple countries. It is reasonable
to expect that these intervention measures resulted in lowering the contact rates among mem-
bers of the populations, which, in turn, reduced the infection rate or, equivalently, the basic
reproduction number.

When analyzing the Sierra Leone and Liberia genealogies, we rely on conclusions of
Dudas et al. (2017) and assume the population in each country to be well mixed. Further-
more, we assume Ebola spread to follow SIR dynamics. For each country, the population
size is specified based on its census population size in 2014, with N = 7,000,000 for Sierra
Leone and N = 4,400,000 for Liberia. We investigated robustness to population size mis-
specification in Appendix Section A-8.2 and found that altering population size of Liberia
by an order of magnitude in each direction did not appreciably change estimation results. As
in our simulation study, we use the lognormal prior for R0 with a1 = 0.7 and b1 = 0.5 and
the lognormal prior for the inverse standard deviation 1/σ with a2 = 3, b2 = 0.2. Recall that
this prior setting ensures that a priori R0(t) stays within a reasonable range of [0,5] with
probability 0.9. For removal rate γ , we use an informative lognormal prior with mean 3.4
and variance 0.2 based on previous studies (Towers, Patterson-Lomba and Castillo-Chavez
(2014)). The parameter 1/γ , interpreted as the length of the infectious period, is expected
to be eight to 18 days for each country a priori. The total time span for each genealogy is
divided evenly into 40 intervals, which results in grid interval lengths, �tis, to be 12.41 days
for Sierra Leone and 6.9 days for Liberia. We experimented with two additional grid sizes for
the Liberia analysis in Appendix Section A-7 and found that our results are not too sensitive
to the choice of grid size.

We run the MCMC algorithm in Section 2.3 for 2,000,000 iterations with nine parallel
chains for Sierra Leone data and 750,000 iterations for Liberia data using a single chain. The
posterior samples are obtained by discarding the first 100,000 iterations and saving every 30th
iteration afterward. The trace plots in Section A-5.4.2 of the Appendix indicate the MCMC
algorithm has converged and achieved good mixing in each case.

Figures 5 and 6 show results for Sierra Leone and Liberia, respectively, with intervention
events mapped onto the calendar time on the x-axis. Our LNA-based method estimates the

https://github.com/ebov/space-time
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FIG. 5. Analysis of the genealogy relating Ebola virus sequences collected in Sierra Leone. The top left plot
depicts the Ebola genealogy. The top right plot shows the estimated R0(t), with the red dashed line showing the
posterior median and the salmon shaded area showing the 95% BCIs of the LNA-based method. The posterior
median, based on the ODE-based method, is plotted as the blue dotted line with blue shading corresponding to
the 95% BCIs. The medium left figure shows prior and posterior densities of the mean infection period 1/γ . The
prior density is shown in green, while the posterior densities, based on LNA and ODE, are plotted in red and blue,
respectively. The medium right and the bottom left figures show the estimated trajectory of S(t) and I (t), using
the same legend as in top right plot. The bottom right plot shows the predicted median and 95% BCIs for weekly
reported incidence together with the reported incidence from WHO shown as crosses.

initial R0 in Sierra Leone during 2014–2015 to be 1.66, with 95% BCI of (1.31,2.15). Simi-
larly, R0 in Liberia during 2014–2015 has a point estimate 1.67 and a 95% BCI (1.29,2.24).
using incidence data. Our estimate of initial R0 in Sierra Leone is consistent with the esti-
mates of Stadler et al. (2014), who fitted multiple birth-death models to 72 sequences at the
early stages of the outbreak. Our LNA-based method yields a slightly smaller estimate of
the initial R0 than methods based on susceptible-exposed-infectious-removed (SEIR) mod-



16 TANG, DUDAS, BEDFORD AND MININ

FIG. 6. Analysis of the genealogy relating Ebola virus sequences collected in Liberia; see caption in Figure 5
for the explanation of the plots.

els. For example, Volz and Pond (2014) used a SEIR model with a constant R0 and estimated
it to be 2.40 (CI: (1.54,3.87)). Althaus (2014) assumed an exponentially decaying R0(t)

with an estimated initial R0 of 2.52 (CI: (2.41,2.67)). The discrepancies between our and
SEIR-based estimates are not unexpected, because SEIR models generally yield higher R0
estimates than SIR models when applied to the same dataset (Keeling and Rohani (2011),
Wearing, Rohani and Keeling (2005)). Our estimated R0 for Liberia is in agreement with re-
sults of Althaus (2014), who fitted a SEIR model to incidence data and arrived at an estimated
R0 of 1.59 (CI: (1.57,1.60)).

The R0(t) dynamics in the two countries share a similar pattern with: (1) a decreasing trend
that starts in Spring/Summer of 2014, (2) a stable/constant period until the end of September
2014, and (3) a final decrease below 1.0 (epidemic is contained) around November 2014.
Since the number of susceptible individuals did not change significantly over the course of
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the epidemic, relative to the total population size, the basic and effective reproduction num-
bers, R0(t) = β(t)N/γ and Reff(t) = β(t)S(t)/γ , are approximately equal. This allows us to
compare our R0(t) estimation results with previously estimated changes in Reff(t). Our esti-
mation of early R0(t) dynamics in Sierra Leone agrees with results of Stadler et al. (2013),
who concluded that the effective reproduction number did not significantly decrease until
mid-June. Our estimated R0(t) trajectory suggests that later interventions, such as border
closures and release of burial guides, may have been helpful in controlling the spread of the
disease. The infectious period for Sierra Leone epidemic is estimated to be 10.8 days with a
95% BCI (7.6,15.6). For Liberia the infection period has a point estimate of 9.8 with a 95%
BCI (6.87,14.05). The posterior median of the total number of infected individuals (final
epidemic size) is 7450 and its 95% BCI is (3495,15518) for Sierra Leone, which is close to
8706 total confirmed number of cases reported by CDC (2019). Liberia had a smaller epi-
demic than Sierra Leone, with estimated total infected individuals being 2842 and a 95% BCI
of (1296,6173). These results are also in agreement with 3163 total confirmed cases from
CDC.

We perform an out-of-sample validation by comparing our results with weekly reported
confirmed incidence in Sierra Leone and Liberia from WHO (2016). The posterior predictive
weekly incidence at time t , denoted by N̂(t), is approximated by

(19) N̂(t) = β̂(t)Ŝ(t)Î (t) · �t,

where β̂(t), Ŝ(t), and Î (t) are the posterior estimates of the infection rate, number of suscep-
tible, and number of infected individuals at time t , respectively, and �t := 7/365 corresponds
the time interval of one week. We plot the posterior predictive estimates of weekly incidence
together with the corresponding weekly reported confirmed incidence. For both countries, our
model-based incidence 95% BCIs cover the reported incidence counts from WHO, suggest-
ing that our time-varying SIR model can estimate incidence well from genetic data alone.
Because not all Ebola cases were reported and recorded, we note that our estimated latent
incidence should be greater than the reported incidence. However, the discrepancy between
latent and reported incidence should not be large, because Ebola reporting rate was high. For
example, Scarpino et al. (2014) estimated that 83% of Ebola cases were reported.

We also report results from the ODE-based method and superimpose these results over
LNA-based results on Figures 5 and 6. For the relatively small Liberia genealogy, the ODE-
based and LNA-based methods yield similar parameter estimates. However, the larger Sierra
Leone genealogy produces substantial differences between ODE-based and LNA-based esti-
mates of the R0(t). The ODE-based method captures the decreasing trend of R0(t) in Spring
and Summer of 2014 but provides narrow BCIs with unrealistic short-term fluctuations in the
basic reproduction number trajectory.

5. Discussion. In this paper we propose a Bayesian phylodynamic inference method that
can fit a stochastic epidemic model to an observed genealogy estimated from infectious dis-
ease genetic sequences sampled during an outbreak. Our statistical model can be viewed as
semiparametric with: (1) a parametric SIR model describing the infectious disease dynam-
ics and (2) a nonparametric GMRF-based estimation of the time-varying basic reproduction
number. To the best of our knowledge, this is the first method combining a Bayesian non-
parametric approach with a deterministic or stochastic SIR model for phylodynamic infer-
ence (although, see Xu, Kypraios and O’Neill (2016) for a similar approach applied to more
traditional epidemiological data). Our use of LNA allows us to devise an efficient MCMC
algorithm to approximate high-dimensional posterior distribution of model parameters and
latent variables. Our LNA-based method produces posterior summaries with better frequen-
tist properties than the state-of-the-art ODE-based method, underscoring the importance of
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working with stochastic models, even in large populations. We showcase our method by ap-
plying it to the Ebola genealogies estimated from viral sequences collected in Sierra Leone
and Liberia during the 2014–2015 outbreak. Our nonparametric estimates of R0(t) in Sierra
Lione and Liberia suggest that the basic reproduction number decreased in two-stages, where
the second stage brought it below 1.0—a sign of epidemic containment. The second stage
of R0(t) decrease closely follows in time implementation of interventions, pointing to their
effectiveness.

Our method relies on the assumption that population is well mixed and the population
dynamics follow a SIR model. However, it may be desirable to be able to relax these as-
sumptions. For example, in Ebola spread modeling some authors used a SEIR model that
assumes a latent period during which an infected individual is not infectious (Althaus (2014),
Volz and Siveroni (2018)). Moreover, adding more compartments should allow us to par-
tially relax the unrealistic assumption of homogeneous mixing. For example, stratifying com-
partments by age group would allow us to account for different contact rates between these
groups. One future direction of this work is to generalize the LNA-based method to fit com-
plicated compartmental epidemic models, including models with multistage infections, like
SEIR model and models with the population stratified by sex, age, geographic location, or
other demographic variables. The structured coalescent likelihoods under these models may
not have closed-form expressions. However, Volz (2012), Dearlove and Wilson (2013), and
Müller, Rasmussen and Stadler (2017) propose several strategies to approximate structured
coalescent likelihoods. Our LNA-based methodology is directly portable to these approxi-
mate structured coalescent likelihood approaches, but our current implementation lacks this
generality. We hope to remedy this in our future work.

The experiments in Section 3.1 indicate that one has to pay close attention to parameter
identifiability when fitting SIR models to genealogies or to sequence data directly. Identifia-
bility may not be a problem under an assumption of a constant R0(t). However, the removal
rate tends to be only weakly identifiable in the scenarios with a time-varying basic reproduc-
tion number in which the estimation can be sensitive to the choice of priors. In Section 3.2
and Appendix Section A-6, we demonstrate that putting a weakly informative prior on the
removal rate can cause bias not only in the estimation for removal rate but also can lead
to a failure in recovering the reproduction number and latent population dynamics. There-
fore, successful inference of SIR model parameters, using genealogical data, should rely on
a sound informative prior for the removal rate. This constraint is not a big shortcoming in
situations where prior information about the removal rate, or mean length of the infectious
period, is available from patient hospitalization data (Team (2014)).

Since parameter identifiability is a recurring problem in infectious disease modeling, in-
tegration of multiple sources of information is of great interest. Using particle filter MCMC,
Rasmussen, Ratmann and Koelle (2011) demonstrated that jointly analyzing genealogy and
incidence case counts considerably reduces the uncertainty in both estimation of latent pop-
ulation trajectory and SIR model parameters, compared with estimation based on a single
source of information. We plan to use our LNA-based framework to perform similar inte-
gration of genealogical data and incidence time series. Another possible source of informa-
tion is the distribution of genetic sequence sampling times. Karcher et al. (2016) proposed
a preferential sampling approach that explicitly models dependence of the sampling times
distribution on the effective population size. The authors demonstrated that accounting for
preferential sampling helps decrease bias and results in more precise effective population
size estimation. It would be interesting to incorporate preferential sampling into our LNA-
based framework by assuming a probabilistic dependency between sampling times and latent
prevalence I (t).
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Our method assumes a genealogy/phylogenetic tree is given to us. In reality, genealo-
gies are not directly observed and need to be inferred from molecular sequences. Geneal-
ogy estimation remains one of the biggest computational bottlenecks in phylodynamics with
computational burden of such estimation being typically higher than the burden of phylo-
dynamics methods that use the genealogy as input. Ideally, uncertainty in the genealogy
should be handled by building a Bayesian hierarchical model and integrating over the space
of genealogies using MCMC. In fact, implementations of such Bayesian hierarchical model-
ing already exist for nonparametric, birth-death, and ODE-based phylodynamic approaches
(Drummond et al. (2005), Minin, Bloomquist and Suchard (2008), Volz and Siveroni (2018),
Gill et al. (2013), Stadler et al. (2013)). Therefore, an important future direction will be to
extend our LNA framework to fitting stochastic epidemic models to molecular sequences,
instead of genealogies. Similarly to the structured coalescent model implementation of Volz
and Siveroni (2018), the easiest way to achieve this will be integration of our LNA MCMC
algorithm into popular open source phylogenetic/phylodynamic software packages, such as
BEAST, BEAST2, and RevBayes (Suchard et al. (2018), Bouckaert et al. (2014), Höhna et
al. (2016)).
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SUPPLEMENTARY MATERIAL

Appendix (DOI: 10.1214/21-AOAS1583SUPPA; .pdf). Additional tables, figures, and de-
tails are included in the Appendix.

Code (DOI: 10.1214/21-AOAS1583SUPPB; .zip). The zip archive contains code imple-
menting our MCMC algorithms (R package) and scripts that allow for reproducing paper
results.
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