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Many studies have used mobile device location data to model SARS-CoV-2
dynamics, yet relationships between mobility behavior and endemic respira-
tory pathogens are less understood. We studied the effects of population
mobility on the transmission of 17 endemic viruses and SARS-CoV-2 in Seattle
over a 4-year period, 2018-2022. Before 2020, visits to schools and daycares,
within-city mixing, and visitor inflow preceded or coincided with seasonal
outbreaks of endemic viruses. Pathogen circulation dropped substantially
after the initiation of COVID-19 stay-at-home orders in March 2020. During this
period, mobility was a positive, leading indicator of transmission of all ende-
mic viruses and lagging and negatively correlated with SARS-CoV-2 activity.
Mobility was briefly predictive of SARS-CoV-2 transmission when restrictions
relaxed but associations weakened in subsequent waves. The rebound of
endemic viruses was heterogeneously timed but exhibited stronger, longer-
lasting relationships with mobility than SARS-CoV-2. Overall, mobility is most
predictive of respiratory virus transmission during periods of dramatic beha-
vioral change and at the beginning of epidemic waves.

In early 2020, there was widespread adoption of public health mea-
sures to slow the spread of severe acute respiratory syndrome cor-
onavirus 2 (SARS-CoV-2). A variety of non-pharmaceutical
interventions (NPIs) were implemented in most countries to reduce
contact between infected and susceptible individuals, including
shelter-in-place or stay-at-home orders, gathering restrictions, school
and business closures, and travel bans. These interventions were

effective at reducing not only SARS-CoV-2 transmission but also the
spread of other directly transmitted respiratory pathogens'”. Many
endemic respiratory viruses did not return to widespread circulation
until the end of 2020 or 2021**'°, coinciding with the gradual lifting of
social distancing measures and mask mandates.

During the COVID-19 pandemic, aggregated location data from
mobile phones became an important source of information on
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changes in population-level movements and the effectiveness of NPIs
on SARS-CoV-2 transmission”. However, few studies have explored
relationships between human mobility and the dynamics of endemic
respiratory pathogens during the pandemic. Here we define “endemic”
pathogens as those that have regular periodic cycles and stable rates of
infection in outbreak periods. Due to the lack of circulation of endemic
respiratory viruses in the first years of the pandemic, population sus-
ceptibility to these pathogens is expected to have increased, leading to
earlier, larger, or more severe epidemics a few months later’?™,
Understanding the influence of mobility patterns on the dynamics of
endemic pathogens is important for predictive purposes, especially as
perturbed circulation can lead to overlapping epidemics of different
pathogens and, in turn, put extreme pressure on the healthcare system
(e.g., the US “tripledemic” during winter 2022-2023)".

Here, we investigate the impacts of population behavior on the
transmission dynamics of respiratory viruses in the greater Seattle,
Washington region over a 4-year period, November 2018 to June 2022,
using uniquely detailed data from hospital- and community-based
respiratory surveillance and the collective movements of mobile
device users. To determine which behavioral indices may best capture
transmission-relevant contacts, we systematically relate changes in the
daily transmissibility of 18 common respiratory viruses to trends in
within-city mixing, visitor inflow, the percentage of devices staying
home, foot traffic to various categories of points of interest (POIs),
masking, and COVID-19 NPIs. These viruses span different transmission
modes, seasonal cycles, and age distributions of infection and include
SARS-CoV-2, influenza viruses (A/H3N2, A/HIN1, and B), respiratory
syncytial viruses (RSV A and B), seasonal coronaviruses (hCoV 229E,
0C43, HKU1, and NL63), human metapneumovirus (hMPV), human
parainfluenza viruses (hPIV1, 2, 3, and 4), human rhinovirus (hRV), non-
rhinovirus enterovirus (EV), and adenovirus (AdV).

Results

Study overview

We use detailed individual-level surveillance data from the Seattle Flu
Study (SFS), which launched in the Fall of 2018 to improve detection
and control of epidemics and pandemics'®. SFS carried out intensive
hospital and community-based surveillance with systematic molecular
testing of nasal swabs for up to 26 respiratory pathogens'® (Table S1).
Our study spans November 19, 2018, to June 30, 2022, during which
respiratory specimens were collected from individuals with and with-
out respiratory illness across a variety of sites throughout the Seattle
metropolitan region, as previously described'**. In total, SFS screened
138,050 respiratory specimens for the presence of 24 or 26 pathogens
(Table S1), and we retained 80,891 specimens after limiting our analysis
to symptomatic individuals and discarding samples with missing
metadata or from multiple testing (Table 1, Table S2). 25.5%
(N=20,659) of samples were collected in hospitals, and 74.5%
(N=60,232) were collected through community-based testing,
including outpatient clinics, kiosks stationed in high foot traffic areas',
swab-and-send at-home testing programs'®?, and Public Health—
Seattle & King County COVID-19 drive through testing sites
(Table 1,Table S2). The majority of hospital residuals were collected
from younger age groups, while most community-based samples were
collected from adults (Table 1, Figure. S1, Table S2).

Over the course of the four-year study, 41% (N =33,153) of speci-
mens tested positive for at least one respiratory pathogen (including
SARS-CoV-2), 32.8% (N = 26,501) were positive for at least one endemic
respiratory pathogen, and 9.3% (N = 7,540) were positive for more than
one pathogen. Prior to the start of Washington’s COVID-19 restrictions
in March 2020, the most prevalent pathogens among positive samples
were influenza A/HIN1 virus (17.5%), followed by hRV (15.1%), influenza
A/H3N2 virus (13.7%), influenza B virus (12%), and RSV A (9.5%) (Fig-
ure. S2). After March 2020, the most prevalent pathogens were SARS-
CoV-2 (39.3%), hRV (35%), and AdV (5%) (Figure. S2).

We reconstructed daily incidences for SARS-CoV-2 and each
endemic pathogen, adjusting for testing volume over time, age, clinical
setting, and local syndromic respiratory illness rates (Fig. 1, Figure. S3).
Although SFS tested respiratory specimens for up to 26 pathogens, we
limited our analysis to 18 viruses with sufficient sampling (see “meth-
ods” for inclusion criteria), including SARS-CoV-2, influenza A/HIN1, A/
H3N2, and B viruses, RSV A and B, hCoV 229E, 0C43, HKU1, and NL63,
hPIV 1, 2, 3, and 4, hMPV, hRV, EV, and AdV (Fig. 1, Figure. S3). Due to
laboratory assay limitations, we grouped epidemiologically distinct
strains into one incidence time series each for hCoV 229E and hCoV
0C43 (hereon hCoV 229E + 0C43), hCoV HKU1 and hCoV NL63 (hCoV
HKU1 +NL63), hPIV 1 and hPIV 2 (hPIV 1+2), hPIV 3 and hPIV 4 (hPIV
3+4), hRV, EV, and AdV (Table S1).

Based on reconstructed incidences, we used semi-mechanistic
epidemiological models to measure the time-varying intensity of
transmission via the daily effective reproduction number (R,)>*
(Fig. 1). R, is the average number of secondary cases arising from an
infectious individual at time ¢, assuming epidemiological conditions
remain identical after that time”. To estimate R, based on dates of
infection, we convolved over uncertain incubation period and
reporting delay distributions (i.e., delays from symptom onset to

Table 1 | Participant characteristics

Site Category
Variable All sample Hospital SFS community COVID-19
sites, residuals, surveillance, drive
N=280,891° N=20,659° N=52,276" through

testing,
N=7,956"

Home

residence

North King 47,412 (59%) 10,464 (51%) 31,342 (60%) 5,606 (70%)

County

South King 17,964 (22%) 4,433 (21%) 11,846 (23%) 1,685 (21%)

County

Puget 15,515 (19%) 5,762 (28%) 9,088 (17%) 665 (8.4%)

Sound, non-

King County”

Sex

Female 44,691 (55%) 9,407 (46%) 30,888 (59%) 4,396 (56%)

Male 35,795 (44%) 11,249 (54%) 21,074 (41%) 3,472 (44%)

Other 44 (< 0.1%) 0 (0%) 44 (<0.1%) 0 (0%)

(Missing) 361 3 270 88

Mean 31(21) 15 (20) 35 (18) 47 (18)

(s.d.°) age

Age group

<1 3,459 (4.3%) 2,990 (14%) 469 (0.9%) 0 (0%)

1-4 9,839 (12%) 6,368 (31%)  3,341(6.4%) 130 (1.6%)

5-17 10,698 (13%) 5,830 (28%) 4,586 (8.8%) 282 (3.5%)

18-49 40,311 (50%) 3,310 (16%) 33,022 (63%) 3,979 (50%)

50-64 10,902 (13%) 1,209 (5.9%) 7,515 (14%) 2,178 (27%)

>65 5,682 (7.0%) 952 (4.6%) 3,343 (6.4%) 1,387 (17%)

Broad

age group

<5 13,298 (16%) 9,358 (45%) 3,810 (7.3%) 130 (1.6%)

>5 67,593 (84%) 11,301(55%) 48,466 (93%) 7,826 (98%)

n (%).

bPierce, Snohomish, Kitsap, San Juan, Whatcom, Skagit, Island, Clallam, Jefferson, Mason, and
Thurston counties.

°standard deviation.

Home residence, sex, and age distributions for individuals contributing respiratory specimens to
different Seattle Flu Study (SFS) surveillance arms, including hospitals, SFS community testing
(e.g., kiosks, swab-and-send at-home testing, outpatient clinics), and Public Health - Seattle &
King County COVID-19 drive through testing sites.
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Fig. 1| Daily incidence and transmissibility of endemic respiratory viruses and
SARS-CoV-2 in the greater Seattle region. A Daily time-varying effective repro-
duction numbers (R, thick lines, left y-axis) and reconstructed incidences of
endemic respiratory viruses (thin lines, right y-axis) during November 2018-June
2022. The vertical blue shaded panel indicates the timing of a major snowstorm in
Seattle (February 3-15, 2019), the vertical dashed line indicates the date of
Washington’s State of Emergency declaration (February 29, 2020), and the vertical

orange shaded panel indicates Seattle’s stay-at-home period (March 23-June 5,
2020). B Daily time-varying effective reproduction numbers of SARS-CoV-2 (R,,
thick green line, left y-axis), King County COVID-19 case counts (thin green line,
right y-axis), and the stringency of non-pharmaceutical interventions in Washing-
ton state, measured by the Oxford Stringency Index (thin orange line, left y-axis),
during January 2020 - June 2022. In A and B daily R, time series show the posterior
median (thin dark line) and 90% credible interval (shaded band).

testing), wherein delays were informed by our individual-level sur-
veillance data (see “Supplementary Methods”). We used aggregated
mobile device location data from SafeGraph and Meta Data for Good
to assess the effects of population-level movements on citywide
respiratory virus dynamics in pre- and post-pandemic years (Figs. 2-3).
During the pandemic period, we also considered the effects of non-
mobility behavioral indicators, including the stringency of Washing-
ton’s government response to COVID-19, measured by the Oxford
Stringency Index®® (Fig. 1), and the proportion of individuals masking
in public” (Fig. 2).

Declines in mobility correlate with reduced respiratory virus
circulation during a major snowstorm in February 2019

Most endemic viruses in our study, including influenza A viruses, RSV,
hCoV, hPIV 3+4, hMPV, hRV, EV, and AdV, circulated during the
2018-2019 winter season. This season was atypical in that Seattle
experienced unusually high snowfall during February 2019, prompting
widespread school and workplace closures and reduced regional travel
from February 3 to February 15, 2019. The mobility categories most
impacted by the snowstorm included foot traffic to elementary and
high schools, colleges, and transit stations (>75% declines below

Nature Communications | (2024)15:4164
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Fig. 2 | Mobility and behavior trends in the greater Seattle region based on
aggregated mobile device location data, November 2018 - June 2022. In each
panel, the vertical blue shaded panel indicates the timing of a major snowstorm in
Seattle (February 3-15, 2019), the vertical dashed line indicates the date of the
Washington’s State of Emergency declaration (February 29, 2020), and the vertical
orange shaded panel indicates Seattle’s stay-at-home period (March 23-June 5,
2020). A The percent change from baseline for large-scale population movements:
within-neighborhood movement (purple), between-neighborhood movement

(green), inflow of visitors from other Washington counties (red), and inflow of out-
of-state visitors (light blue). B The percent change from baseline in foot traffic to
various categories of points of interest (POIs): transit stations (purple), full-service
restaurants (dark yellow), religious organizations (green), groceries and pharma-
cies (pink), colleges and universities (light green), and elementary and high schools
(blue). C The percentage of devices staying completely at home (purple, left y-axis)
and the percentage of individuals masking in public in King County (dark green,
right y-axis).

baseline), visits to child daycare centers, and the inflow of out-of-state
visitors (>50% declines below baseline) (Fig. 2, Figure. S4). As pre-
viously described®, this city-wide shutdown led to a conspicuous dip
in the incidence of several pathogens (Figure. S5).

To measure the overall impact of the snowstorm on virus circu-
lation, we compared pathogen specific R, values during the two weeks
before and after the start of heavy snowfall on February 3, 2019
(Table 2). RSV, AdV, and EV were the pathogens most affected by
weather-related disruptions (33-40% declines), followed by influenza
viruses and hCoV (10-20% declines) (Table 2). Influenza A/H3N2 virus,

hPIV 3+4, hMPV, hRV, EV, and AdV rebounded after schools and
workplaces reopened, and their epidemics subsequently peaked from
mid-March to early April 2019 (Figure. S5).

During February 2019, reductions in mobility preceded or
coincided with declines in pathogen transmission, though the
strength of correlations varied across pathogens (Figures. S6-S7).
Among pathogens with the most substantial declines (RSV, AdV, and
EV), drops in R, coincided most closely with reductions in visitor
inflow and foot traffic to schools, child day care centers, restaurants,
and religious services (mean Spearman’s rank cross-correlation

Nature Communications | (2024)15:4164
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Fig. 3 | Undirected network of mobile device movement between neighbor-

hoods (census block groups, CBGs) in Seattle, Washington, during key epide-
miological time points. Time points include a major snowstorm in February 2019,
a week in July 2019 to show baseline movement, the beginning of stay-at-home

orders in March 2020, a week during the Delta wave in July 2021, and a week during
the Omicron BA.1 wave in January 2022. A Weekly visitors to points of interest (POI)
are aggregated by visitor home CBG and POI CBG. Network edges (lines) are shaded

according to the number of unique visitors between each pair of CBGs within a
particular week, with thicker, darker edges indicating a greater number of visitors.
B Histograms showing the frequency of degree k values for Seattle neighborhoods
(i.e., the integer number of other neighborhoods to which each individual neigh-
borhood is connected) at each time point. The vertical dashed line overlaying each
histogram indicates the median degree of the network of Seattle neighborhoods.

coefficients, p range: 0.79 - 0.98; all reported correlations are sta-
tistically significant; Figures. S6-S7). For pathogens that did not
experience declines in transmission (hPIV 3 +4, hMPV, and hRV), R,
had negative or non-significant associations with mobility during the
snowstorm (Figures. S6-S7).

Table 2 | Changes in transmissibility (time-varying effective
reproduction numbers, R,) during the two weeks before and
after two events: a major snowstorm in February 2019 and the
initiation of COVID-19 social distancing measures in

March 2020

Pathogen Major snowstorm, Early COVID-19 restrictions,
February 2019 March 2020
Change in R, P-value Change in R, P-value
Influenza A/H3N2 12 [-17,-7]1% 1x107° Not circulating
Influenza A/HIN1 -19 [-24, -15] % 1x107 -43[-54,-331% 1x10™
Influenza B Not circulating 15 [17, -12] % 1x107®
RSV A -40[-45,-35] % 1x10™ -9[-13, -5] % 1x10®
RSV B -37[-40,-321% 1x10™ -4[-5,-21% 1x107
hMPV 19 [16, 22] % 0.001 -21[-22, -19] % 1x107®
hPIV 1+2 Not circulating Not circulating
hPIV 3+4 149, 18] % 0.001 21.5[-22,-211% 1x10™
hCoV 229E +0C43 -10[-14, -5] % 1x107® -20 [-21, -19] % 1x107®
hCoV HKU1+NL63 -18 [-19, -17] % 1x107® -25[-28,-22]1%  1x10™
hRV 2[0,3]% 0.073 -29[-32,-26]% 1x10™
EV -33[-40, -251% 1x10™ -31[-53,-131%  0.003
AdV -39[-43,-33]% 1x10™ -33[-45, -211 % 1x107®
SARS-CoV-2 Not circulating -39 [-54,-25]% 1x10™®

We compared R, values before and after each event using nonparametric bootstrap tests for the
ratio of two means. Mean ratios, 95% confidence intervals, and two-sided p-values were esti-
mated from 1000 resamples.

Relationships between mobility and pathogen transmission
during the 2019-2020 winter season (pre-pandemic)

The 2019-2020 virus respiratory season was a relatively typical sea-
sonin Seattle with heightened activity of many common respiratory
viruses (Fig. 1). During Fall 2019, visits to child daycares, schools,
colleges, and religious organizations preceded or coincided with
initial increases in the circulation of influenza viruses, RSV, hMPV,
hCoV, AdV, and hPIV (moving window Spearman’s rank cross-
correlation coefficients, p range: 0.49 - 0.93; all reported correla-
tions are statistically significant; Fig. 4, Figure. S8). Large-scale
movements also correlated with changes in endemic virus trans-
missibility, in particular, the percentage of devices leaving home
(RSV, hCoV HKU1 + NL63, hPIV 3 + 4, and influenza A/HINI; p: 0.5 -
0.82) and between-neighborhood movement (AdV, hMPV, RSV A,
hPIV1+2,andinfluenzaB;p:0.48 - 0.82) (Fig. 4, Figure.S8).For most
pathogens, the strongest relationships between transmission and
mobility occurred at the beginning of the season in early autumn
(Fig. 4, Figure. S8).

We used multivariable generalized additive models (GAMs) to
measure non-linear relationships between mobility and R, and model
selection of GAMs to assess the relative importance of different
indicators in predicting R, during the 2019-2020 season, prior to the
start of the COVID-19 pandemic (September 2019-February 2020).
For each pathogen, we allowed candidate models to include a
smoothed temporal trend and up to two smoothed mobility terms.
GAMs were fit to timeframes spanning the exponential growth phase
of each outbreak, when R, exceeds 1 and susceptible depletion is
limited. For most pathogens, minimal models included a school-
related behavioral indicator (foot traffic to schools or colleges) and a
covariate related to large-scale population movement (the percen-
tage of devices leaving home or out-of-state inflow), with the partial
effects of most mobility covariates monotonically increasing with R,
(Figure. S9).
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Fig. 4 | Time series cross-correlations and optimal lags between respiratory
virus transmissibility (time-varying effective reproduction numbers, R,) and
cell phone mobility in the greater Seattle region, September 2019 - May 2020.
Points are individual mobility indicators derived from aggregated mobile device
location data. Spearman’s rank correlation coefficients are on the y-axis, and tem-
poral lags (in weeks) between R, and mobility are on the x-axis. Negative lags

O religious organizations

© elementary and high schools

indicate behavior leads R,, and positive lags indicate R, leads behavior. A lag of O
indicates the two time series are in phase (i.e., synchronous). The yellow shaded
panel in each facet includes mobility indicators that have a leading, positive rela-
tionship with transmission, and hence would be considered predictive of trans-
mission. Figure. S10 shows cross-correlations for the full set of mobility indicators.

Initial effects of COVID-19 restrictions on mobility and respira-
tory virus circulation

The first SARS-CoV-2 infections in Washington state arose from a single
introduction in late January or early February 2020, and at least one
clade was circulating in the Seattle area for 3—-6 weeks prior to February
28, when the first community-acquired case was reported”. To slow
the spread of SARS-CoV-2, Washington declared a State of Emergency
on February 29, closed schools in King, Pierce, and Snohomish coun-
ties on March 12, and enacted statewide stay-at-home (SAH) orders on
March 23. In the interim, King County recommended that workplaces
allow employees to work from home on March 4 and closed indoor
dining and many other businesses on March 16.

Mobility levels declined substantially after February 29, and by the
start of King County’s business closures on March 16, foot traffic to
transit stations was > 90% below baseline, foot traffic to schools and
colleges was > 80% below baseline, and out-of-state inflow and within-
city mixing were > 60% below baseline (Fig. 2, Figure. S4). After the
enactment of SAH orders on March 23, foot traffic to POIs and large-
scale movements declined to 65-95% below baseline (Fig. 2, Figure. S4),
while the percentage of devices staying completely at home increased
to 50% (Fig. 2). Notably, social distancing measures altered not only the

volume of movement between Seattle neighborhoods but also the
presence and absence of connections between neighborhoods (Fig. 3).

The transmission rates of all respiratory pathogens dropped
substantively after the State of Emergency, though some seasonal
pathogens were already declining prior to February 29 (Fig. 1, Fig-
ure. S3). We measured the initial impacts of COVID-19 NPIs on
respiratory virus circulation by comparing R, values during the
2 weeks before and after the State of Emergency declaration on
February 29 (Table 2). Early public health measures were effective at
lowering SARS-CoV-2 transmission rates by 39% [95% CI: 25, 54].
Among endemic pathogens, influenza A/HIN1 virus, AdV, EV, and hRV
were the most impacted by pandemic-related behavioral changes,
experiencing 29 - 43% reductions in transmissibility by March 16,
followed by hPIV 3+4, hMPV, and hCoV (20 - 25% declines).
Reductions in RSV and influenza B virus were more modest, given
their seasonal outbreaks had mostly concluded by late February. The
hPIV 1+2 outbreak subsided in mid-February and thus was not
impacted by COVID-19 NPIs.

We observed strong relationships between mobility and the
transmission of respiratory pathogens in the Spring of 2020. All
mobility metrics were positive, leading indicators of R, across all
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Fig. 5 | Relationships between SARS-CoV-2 transmission and mobility, mask-
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cates the date of Washington’s State of Emergency declaration (February 29, 2020),
and the vertical orange shaded panel indicates Seattle’s stay-at-home period
(March 23 - June 5, 2020). The blue shaded panels indicate the timing of four
COVID-19 waves in Seattle. A. Weekly effective reproduction numbers (R,) of SARS-
CoV-2, including the posterior median (thin dark line) and 90% credible interval
(shaded band). B. Rolling Spearman’s rank cross-correlations between weekly R,
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and behavioral indicators. Points represent the maximum (absolute) coefficient
values for 5-month rolling cross-correlations between weekly R, and individual
mobility metrics, after constraining the analysis to leading or synchronous rela-
tionships between mobility and R,. Point color and the number within each point
indicate the lag in weeks corresponding to the maximum cross-correlation coeffi-
cient value for each 5-month period (“optimal lag”). Negative values indicate that
behavior leads R,, and a lag of O indicates the time series are in phase (i.e., syn-
chronous). Point transparency indicates statistical significance of the cross-
correlation coefficient (yes: solid, no: transparent).

endemic viruses (Fig. 4, Figures. S10-S11). In contrast, mobility lagged
and was negatively correlated with SARS-CoV-2 transmission during
this period (Fig. 4, Figures. S10-S11). COVID-19 restrictions began to
relax on May 4, 2020, when King County entered Phase 1 of the
state’s reopening plan, allowing outdoor dining, worship services,
and fitness centers to reopen with limited capacity. SARS-CoV-2 R,
values ranged from 0.8 to 0.9 throughout April and May and did not
surpass 1 until early June (Fig. 1). During late April and May, SARS-
CoV-2 R, became positively correlated and synchronous with most
mobility indicators (moving window Spearman’s p: 0.59 - 0.92) and
inversely correlated with the stringency of NPIs (p: -0.85 - -0.7)
(Fig. 4, Figures. S10-S11). Yet, these relationships did not persist after
the virus’s initial rebound in early June 2020, when King County
reopened indoor dining and additional businesses (Figures. S10-S11).

Due to simultaneous changes in all mobility metrics, we could not
differentiate the effects of individual indicators on R, during Seattle’s
SAH period.

Population mobility did not immediately recover after SAH orders
were lifted in June 2020 (Figs. 2-3, Figure. S4). Visitor inflow from other
WA counties and US states remained depressed at levels 50% below
baseline until the spring and summer months of 2021, and within-and-
between-neighborhood movement had not returned to pre-pandemic
levels by the conclusion of our study in June 2022 (Figs. 2-3, Fig-
ure. S4). Further, SAH orders caused long-lasting structural changes to
the mobility network of Seattle, wherein neighborhoods with a high
degree of centrality (“hubs”) were most affected (Fig. 3). After March
2020, neighborhoods with fewer than 10 connections to other neigh-
borhoods became much more prevalent in the network, causing an
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overall downshift in the mobility network’s median degree for the
remainder of the study period (Fig. 3).

Associations between SARS-CoV-2 transmission and behavior
differ across COVID-19 waves

We measured cross-correlations between SARS-CoV-2 transmission,
mobility, masking, and NPI stringency during subsequent pandemic
waves in Seattle (Fig. 5). After its first two COVID-19 outbreaks in Spring
2020 and Summer 2020, Seattle experienced a large third wave during
winter 2020-2021 despite high masking rates (Fig. 5). During the early,
exponential growth stage of the outbreak, increases in R, coincided
with foot traffic to religious services and restaurants (moving window
Spearman’s p: 0.57 - 0.76). During the remainder of the wave, the
percentage of devices leaving home (p: 0.57 - 0.85), influx of visitors
from other WA counties and US states (p: 0.65 - 0.83), and stringency
of NPIs (p: -0.85 - -0.61) preceded or coincided with dynamics in R,
(Fig. 5). A smaller wave associated with the Alpha variant spanned
March to May 2021, during which R, was not significantly associated
with mobility (Fig. 5). COVID-19 cases and hospitalizations surged
again in July 2021, due to the spread of the highly transmissible Delta
variant. From June to late July 2021, increases in R, were synchronous
with foot traffic to restaurants, the percentage of devices leaving
home, visitor inflow, and the proportion of individuals not masking in
public (p: 0.66 - 0.94) (Fig. 5). The Omicron BA.1 variant was first
identified in the U.S. on December 1, 2021, and confirmed in
Washington state on December 4, 2021. Compared to prior variants of
concern (VOCs), Omicron BA.l1 had increased immune evasion and
greater intrinsic transmissibility’>”. In Seattle, slight increases in
within-neighborhood movement and foot traffic to groceries and
pharmacies preceded the rapid uptick in Omicron cases during
December 2021 (p: 0.63 - 0.89), while drops in several mobility indices
led the sharp decline in cases during January 2022 (Fig. 5). Minimal
GAMs fit to the exponential growth phase of each COVID-19 wave
retained the percentage of devices leaving home, the proportion of
individuals masking in public, foot traffic to restaurants, or out-of-state
inflow (Figure. S12), though associations between behavior and R, were
often nonlinear.

Mobility predictors of endemic pathogen rebound during the
COVID-19 pandemic

We observed a remarkably fast rebound of hRV, and AdV and EV to a
lesser degree, when SAH restrictions relaxed in early June 2020 (Fig. 1).
Increases in hRV transmission were preceded by or synchronous with
foot traffic to child daycares, restaurants, and transit stations and
large-scale movements, including the percentage of devices leaving
home, within-city mixing, and out-of-state inflow, from June to early
August 2020 (moving window Spearman’s p: 0.54-0.96; Figure. S13),
inversely correlated with NPI stringency from late August to early
October 2020 (p: -0.82 to -0.58), and continuously correlated with foot
traffic to religious organizations and inflow from other WA counties
until early 2021 (p: 0.55-0.97) (Figure. S13). From June to late August
2020, the rebound of AdV was preceded by or synchronous with slight
increases in foot traffic to schools and religious organizations (p:
0.55-0.88) and negatively correlated with NPI stringency (p: -0.74 to
-0.61) (Figure. S13). Lastly, EV R, briefly correlated with most mobility
metrics during its initial rebound in June and July 2020 (p: 0.53-0.81;
Figure. S13). For all three viruses, minimal GAMs fit to the first six
months of rebound retained foot traffic to religious services and out-
of-state inflow (Figure. S14).

Resurgence of other endemic viruses, including hCoV, hPIV,
hMPV, and RSV B, was not observed until early-to-mid 2021, and epi-
demic peaks for hCoV, hMPV, and RSV B occurred during the spring or
summer outside of their typical seasons (Fig. 1). We measured uni-
variate associations between mobility, masking, NPI stringency, and
daily transmissibility and found fewer clear relationships compared to

Seattle’s SAH period and the 2019-2020 winter season. Several mobi-
lity indicators preceded or coincided with the rebound of these viruses
(Figure. S15). For example, at the beginning of RSV B’s rebound in
summer 2021, increases in R, were preceded by between-
neighborhood movement and foot traffic to schools, child daycares,
and religious services (p: 0.63 - 0.88) and synchronous with the per-
centage of devices leaving home, the proportion of individuals not
masking in public, foot traffic to restaurants, and out-of-state inflow (p:
0.57 - 0.86) (Figure. S15). However, associations between mobility and
RSV B R, were more transient compared to the pre-pandemic period,
persisting for 2-4 months (Figure. S15) instead of 3-6 months (Fig-
ure. S8). Minimal GAMs fit to the first months of each virus’s rebound
retained between neighborhood movement, out-of-state inflow, or
foot traffic to religious services, though relationships between mobi-
lity and R, were often nonlinear and not consistently positive
(Figure. S16).

In late 2021, endemic virus circulation declined as Omicron cases
surged, and reductions in endemic virus transmission were preceded
by or coincided with drops in mobility (Figures. S13, S15, S17). For
example, reductions in most mobility indicators preceded declines in
RSV B, hMPV, hCoV, AdV, and hPIV 3 +4 circulation by 1 to 4 weeks,
while reduced visits to child daycares, religious services, restaurants,
colleges, and transit stations were synchronous with declines in hRV
transmission (Figures. S13, S15). The transmission rates of RSV B,
hMPV, hCoV, RV, and AdV also correlated with the percentage of
devices staying home, which spiked from 30% to 50% in December
2021 (Fig. 2, Figure. S17). During the Omicron BA.1 wave, the best fit
minimal GAMs for endemic viruses retained a school-related beha-
vioral indicator, the percentage of devices leaving home, between-
neighborhood movement, or out-of-state inflow, similar to results
observed for the 2019-2020 season (Figure. S18).

Short-term forecasting of daily transmissibility using
mobility data
Although our study’s aim was inferential rather than predictive, we
built forecasting models predicting daily R, at one-week horizons for
three viruses that circulated continuously throughout the study per-
iod: hRV, AdV, and SARS-CoV-2 (Figures. S19-S21; see “Supplementary
Methods”). We evaluated the predictive power of cellphone-derived
mobility metrics, the co-circulation of other viruses, and climatic
variables, in combination with the past activity of the target virus
during the previous two weeks (14 autoregressive terms), against a
baseline model that only included autoregressive (AR) terms. An
additional model for SARS-CoV-2 spanning 2021-2022 included cov-
ariates for vaccination coverage and variant emergence (Figure. S22).
For each virus, models including mobility and AR terms produced
generally accurate forecasts over the entire study period (RMSE: hRV:
0.013; AdV: 0.04; SARS-CoV-2: 0.03; Table S3), and especially during
Seattle’s stay-at-home orders and the initial lifting of restrictions
(RMSE: hRV: 0.006; AdV: 0.02; SARS-CoV-2: 0.02; Table S4). When
forecasting SARS-CoV-2 R, during 2021-2022, covariates for vaccina-
tion and variant circulation did not improve model accuracy, but
models including mobility had a 13% improvement in prediction RMSE
relative to the baseline model (Table S5). When assessing model
accuracy over the entire study period, models including mobility, cli-
matic variables, or viral interference did not outperform baseline
models for any of the three viruses (Figures. S19-S21; Table S3). Thus,
although mobility data can provide small to moderate benefits to
prediction accuracy, the additional information provided by past
population movements is limited in comparison to the knowledge of

past disease incidence™®.

Discussion
We investigated the impacts of human behavior on the transmission of
respiratory viruses in the greater Seattle region during pre- and post-
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pandemic years by modeling incidence derived from hospital and
community-based respiratory surveillance and human movements
from high-resolution mobile device location data. From November
2018 to June 2022, we characterized the epidemiological dynamics of
17 endemic viruses and SARS-CoV-2 and related changes in daily
transmissibility (time-varying effective reproduction numbers, R,) to
trends in population mobility, masking, and COVID-19 non-pharma-
ceutical interventions (NPIs). To our knowledge, this is the first study
to explore the effects of mobility and behavior on transmission across
a large set of endemic pathogens; interestingly, we saw notable het-
erogeneity in the timing and size of each endemic pathogen’s rebound
during the pandemic period.

Mobility was most predictive of transmission during periods of
dramatic behavioral change, as observed during Seattle’s stay-at-home
(SAH) orders in March 2020. Smaller-scale changes in mobility also
preceded or coincided with increases in R, at the beginning of out-
breaks and with declines in R, during shorter interruptions to human
movement, as observed during a major snowstorm in February 2019
and the Omicron BA.1 wave in late 2021. Across all endemic viruses,
trends in daily R, were repeatedly associated with the same set of
mobility metrics, including foot traffic to elementary and high schools,
colleges, child daycare centers, and religious organizations, the per-
centage of devices leaving home, between-neighborhood movement,
and the inflow of visitors from other WA counties and US states. After
the SAH period, SARS-CoV-2 transmission correlated with foot traffic
to restaurants, religious organizations, and colleges, the percentage of
devices leaving home, and visitor inflow. Foot traffic to specific busi-
nesses and educational and religious activities may approximate close
contacts or crowded conditions that facilitate direct, aerosol, or dro-
plet transmission, while the percentage of devices leaving home,
within-city mixing, and inflow from other regions may be indicative of
human movements that promote viral introductions and dispersal.

The age distribution of infections may explain slight differences in
which categories of POIs correlated with endemic virus transmission
versus SARS-CoV-2 transmission. Recurrent associations between
endemic virus R, and visits to schools and daycares are consistent with
children experiencing the highest rates of (endemic) respiratory
infections and schools and daycares acting as a major source of
transmission in the community®~**. Unlike endemic respiratory viru-
ses, all age groups are susceptible to SARS-CoV-2 infection. Correla-
tions between SARS-CoV-2 R, and foot traffic to colleges, religious
organizations, and restaurants, but not schools or daycares, could be
attributed to greater rates of symptomatic infection (and hence
shedding propensity) in adults relative to younger age groups® or to
the greater relevance of adult networks in spreading SARS-CoV-2
compared to endemic viruses.

COVID-19 NPIs significantly perturbed the transmission of
respiratory pathogens at a global level®, causing the complete dis-
appearance, delayed return, or “off-season” outbreaks of endemic
pathogens®™. In Seattle, all endemic respiratory viruses experienced
rapid declines at the beginning of Seattle’s SAH orders in March 2020,
but as restrictions eased, their rebound was heterogeneous. Similar to
trends observed in the US and other countries*”'°**% the circulation
of hRV, EV, and AdV resumed in early June 2020, immediately after
nonessential businesses and indoor dining reopened, while other
respiratory viruses virtually disappeared during March 2020 and did
not recirculate until 2021. Further, the resurgence of RSV B, hCoV, and
hMPV occurred outside of their typical seasons, as reported in other
locations’™’. After the initial easing of COVID-19 restrictions, relation-
ships between endemic virus dynamics and mobility were less clear
compared to Seattle’s SAH orders or the 2019-2020 winter season,
potentially due to continued social distancing and masking, a more
refined understanding of “high-risk” activities, the delay of in-person
instruction for school students until spring 2021, or structural changes
to Seattle’s mobility network. Nonetheless, associations between

endemic virus R, and population behavior were overall stronger and
longer-lasting than those observed for SARS-CoV-2.

It is remarkable that the three viruses that rebounded immedi-
ately after lockdown restrictions lifted, hRV, EV, and AdV, are non-
enveloped viruses, while the other viruses studied here are enveloped.
The immediate rebound of non-enveloped viruses could be attributed
to viral stability and persistence. Non-enveloped viruses are less sus-
ceptible to lipophilic disinfection and can persist on hands and fomites
for longer periods of time than enveloped viruses®**’. In addition to the
presence or absence of an envelope, several other factors, such as
transmission mode, seasonality, source/sink dynamics, and duration of
infectious period and immunity, could have affected the timing of
rebound. While enveloped viruses disappeared in March 2020, non-
enveloped viruses may have continued to spread during SAH restric-
tions, due to their longer periods of viral shedding, high preexisting
community prevalence, or ability to persist on environmental
surfaces” *°. We hypothesize that low levels of transmission or resi-
dual viral particles on surfaces, combined with slight increases in
movement, close contacts, and visitor inflow, were sufficient to facil-
itate the rapid rebound and ongoing transmission of hRV, EV, and AdV
after SAH orders were lifted in June 2020. Further, surgical masks are
less effective at filtering hRV compared to influenza viruses and sea-
sonal coronaviruses*.

Our study period encompasses the two respiratory virus seasons
prior to the start of the COVID-19 pandemic and two pandemic years.
The Seattle Flu Study (SFS) began collecting samples in November
2018, which precluded us from evaluating potential leading indicators
of transmission at the beginning of the 2018-2019 season. However, we
were able to detect strong links between mobility and transmission in
February 2019 when a major snowstorm forced work and school clo-
sures, consistent with previous SFS research that did not specifically
examine cell phone mobility patterns®. SFS continued to collect
respiratory samples throughout 2019, enabling us to test for leading
indicators of transmission during the 2019-2020 winter season. During
Fall 2019, the transmission dynamics of enveloped viruses were more
strongly correlated with mobility than those of non-enveloped viruses.
For enveloped viruses, foot traffic to schools and colleges, between-
neighborhood movement, and visitor inflow preceded or coincided
with increases in transmission, with associations between R, and
mobility weakening over the course of the season, presumably due to
accumulating immunity in the population. During this same period,
non-enveloped viruses had fewer positive relationships with mobility,
potentially because hRV, EV, and AdV circulate year-round and have
less defined peaks and troughs.

SARS-CoV-2 began circulating in the greater Seattle region during
January or February 2020V, with the first community-acquired case
confirmed on February 28, 2020. Mobility had a negative, lagging
relationship with SARS-CoV-2 R, during the early months of 2020,
suggesting that Seattle residents adjusted their behavior in response
to COVID-19 case counts or restrictions rather than the reverse. This
result is consistent with a comprehensive analysis of US counties,
which found that not all major cities (e.g., San Francisco) experienced
strong positive associations between mobility and infection growth
rates during the first wave*’. A caveat is that R, estimates during this
time were likely upwardly biased due to low case counts, sampling
biases, and rapid increases in testing capacity and may not have fully
captured the steepness of transmission declines after NPIs were
implemented. To mitigate this issue, we limited SARS-CoV-2 R, esti-
mates to dates after February 28, 2020, when the first community-
acquired case was detected and cumulative confirmed cases exceeded
50. We also applied centered smoothing windows to case counts, R,
estimates, and mobility indicators so that cross-correlations captured
broad signals that were accurately oriented in time****. After March
2020, mobility was briefly predictive of SARS-CoV-2 transmission when
social distancing restrictions first relaxed in summer 2020 and during
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the winter 2020-2021, Delta and Omicron BA.1 waves, though rela-
tionships were less clear compared to the stay-at-home period.

Climate affects the stability and seasonal dynamics of respiratory
viruses**¢ but was an unlikely driver of endemic virus resurgence in
Seattle. hRV, EV, and AdV have year-round circulation with peaks in the
spring and late summer or early autumn*’, while influenza viruses, RSV,
hCoV, hMPV, and hPIV have distinct seasonality with peaks during the
winter or spring*®*. The lifting of SAH orders in June 2020 coincided
with the typical timing of low circulation for enveloped viruses and
increasing activity for non-enveloped viruses. However, the intersec-
tion of relaxing NPIs with warmer weather cannot account for the
global differences observed between non-enveloped and enveloped
virus rebound. The prolonged absence of influenza and RSV circula-
tion was also reported during the Southern Hemisphere winter**’, and
climatic factors cannot explain the rebound of hCoV, hMPV, and RSV B
outside of their typical seasons.

Our findings suggest that in-person school instruction played a
key role in the rebound of enveloped viruses in Seattle. Prior research
has shown that increased contact rates among older children during
school terms influence the timing of seasonal influenza and “common
cold” virus outbreaks®*°*, and younger children and adults acquire
influenza and RSV infections from preschool or school-aged children
living in the same household*>*, All King County public school districts
began the 2020-2021 academic year remotely**, with some districts
offering limited in-person instruction to special education students
during Fall 2020. Foot traffic to schools was 75% below baseline in Fall
2020, gradually increased to 50% below baseline during Spring 2021,
and returned to baseline levels in Fall 2021. We observed that the
circulation of hCoV, hPIV, and hMPV increased after elementary school
students were offered in-person instruction in February and March
2021 and that the off-season RSV B wave in summer 2021 began
directly after hybrid learning became available to all grades in mid-
April’*. These trends suggest that a year of remote learning and, in
turn, reduced contacts among school-aged children contributed to the
delayed return of enveloped virus circulation to Seattle.

The rebound of enveloped viruses also coincided with increasing
rates of travel into Seattle. Annual influenza epidemics in North
America are seeded via air travel by strains originating in East and
Southeast Asia®, and the regional spread of influenza viruses corre-
lates closely with work commutes®. We did not have data on inter-
national air travel or commuting patterns, but cell phone data show
that the inflow of visitors from other WA counties and US states was
50% below baseline throughout 2020 and did not return to pre-
pandemic levels until late spring or summer 2021. Although the con-
tribution of local persistence versus external seeding is less under-
stood for other seasonal respiratory viruses, increasing inflow into
Seattle likely imported cases from other regions, seeding new
outbreaks’.

Lastly, prolonged lack of exposure due to reduced viral circula-
tion during 2020 and 2021 is expected to have increased the cohort of
children completely naive to various respiratory viruses and the wan-
ing of immunity in previously infected individuals'**. This “immunity
debt” may have provided enough susceptible individuals to sustain
spring and summer outbreaks of enveloped viruses. Although we
expected these outbreaks to be larger or more severe than those
observed during pre-pandemic seasons, substantial influenza and RSV
epidemics did not occur until the Fall of 2022, potentially due to
Seattle residents continuing to social distance and mask throughout
2021 or negative interference between Omicron BA.1 viruses and
endemic viruses during the 2021-2022 winter season. After the con-
clusion of our study, the 2022-2023 season saw atypically early out-
breaks of influenza and RSV and higher hospitalization rates in children
and adolescents compared to pre-pandemic seasons™’.

This study has limitations related to the type of cell phone
mobility data used, its geographic scope, and the underlying

demographics of mobile device data in general. Young children
experience the highest rates of endemic respiratory infections, but
SafeGraph does not track individuals younger than 16 years of age.
Nonetheless, we found that visits to schools and daycares were posi-
tive, leading indicators of transmission, both prior to and during the
pandemic, demonstrating that cell phone data collected from adults
can approximate the movements or contacts of children. Second,
relationships between cellphone mobility and transmission are weaker
in more sparsely populated areas®**>*®, due to differences in the data
generation process and representativeness between urban and rural
locations. Because our study is limited to a single metropolitan region,
our findings may not be applicable to rural counties. Third, although
we found statistically significant associations between aggregate
movement patterns and pathogen transmission, spatial colocation of
mobile devices may better approximate the interpersonal contacts
that underlie transmission®>*, Although we would have liked to
incorporate a spatial colocation metric into our analysis, at the time of
writing, Meta Data for Good’s Colocation Map dataset was dis-
continued for our study period, and we did not know of other spatial
location datasets that are publicly accessible. Lastly, longitudinal
cross-sectional surveys on social interactions, such as the CoMix sur-
vey in England, can provide more direct measures of epidemiologically
relevant behavior and more representative samples of populations
than mobile device data®. However, to our knowledge, similar data do
not exist for the US.

Our findings are subject to other limitations. First, due to the
limited number of seasons in our study, we could not determine if
leading indicators of transmission are consistent across timespans
longer than four years. Although SFS continued to conduct respira-
tory surveillance into the 2022-2023 winter season, its community
surveillance approach changed substantially after July 2022, making
it difficult to extend our study. Second, variability in test volume over
time caused SFS surveillance to sometimes miss less prevalent
pathogens. For example, SFS detected only a few cases during a small
influenza A/H3N2 wave in spring 2022. Third, our multiplex PCR
assay could not distinguish between types, strains, or serotypes of
some pathogens (hCoV, hPIV, AdV, EV, and hRV). Consequently, our
R, estimates may average over heterogeneities in transmission
dynamics among viruses belonging to the same species'®. Fourth,
previous work has shown that SARS-CoV-2 transmission dynamics
differed between North and South King County'*', presumably due
to socioeconomic inequities (e.g., differences in income, household
size, and proportion of essential workers) and North King County
maintaining a greater reduction in mobility over time. However, we
did not have sufficient surveillance data to explore geographic dif-
ferences in the transmission dynamics of endemic viruses. Fifth,
population immunity may modulate relationships between mobility
and transmission; analysis of serologic data could shed light on this
question. Additional research is needed to delineate the contribu-
tions of an increasingly susceptible population and decreased social
distancing to the rebound of endemic viruses.

In summary, mobility patterns are most predictive of respiratory
virus transmission during drastic changes in contacts and, to a lesser
extent, at the beginning of epidemic waves. During the pandemic
period, endemic respiratory viruses exhibited stronger relationships
with mobility than pandemic SARS-CoV-2. As SARS-CoV-2 transitions
to endemicity, relationships with mobility could gradually start to
operate similarly to those of other enveloped viruses. Our study shows
that mobile phone data can approximate transmission-relevant con-
tacts and has the potential to support the surveillance of endemic
respiratory viruses, with the caveat that relationships between trans-
mission and mobility vary depending on the pathogen, magnitude of
mobility change, and phase of the epidemic’>*’. Future research
should consider other host factors, such as prior immunity, and more
direct proxies of interpersonal contacts to further disentangle
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relationships between population behavior and respiratory virus
dynamics.

Methods

Virologic surveillance and laboratory methods

This population-level study uses cross-sectional surveillance data col-
lected through the Seattle Flu Study (SFS) from November 2018 to June
2022. Initiated in November 2018, SFS was a multi-arm surveillance
study of influenza and other respiratory pathogens in the greater
Seattle, Washington region, that utilized community and hospital-
based sampling'. In its first 1.5 years, SFS tracked the transmission of
influenza and other respiratory pathogens in the Seattle region by
testing swabs collected at hospitals, community sites (e.g., kiosks in
high foot traffic areas, outpatient clinics, workplaces, college cam-
puses), and through its swab-and-send at-home testing study'®?
(Table S2). The SFS team launched the greater Seattle Coronavirus
Assessment Network (SCAN) in March 2020 to detect and understand
the spread of SARS-CoV-2%2. SCAN deployed self-administered at-home
testing kits to monitor the spread of both SARS-CoV-2 and endemic
respiratory pathogens from March 2020 to July 2022. Protected Health
Information (PHI) from study participants and patients contributing
residual samples were collected through REDCap projects built by the
Institute of Translational Health Sciences (ITHS). We describe each
surveillance arm in the Supplementary Methods.

Each respiratory specimen was screened in duplicate for a panel
of respiratory pathogens using a custom TaqMan RT-PCR OpenArray
panel (Thermo Fisher)®%. Laboratory methods are described in detail
elsewhere'®*?, Pathogen targets included adenovirus (AdV); human
bocavirus (hBoV); human coronaviruses (hCoV) 229E, 0C43, HKU1,
and NL63; human metapneumovirus (hMPV); human parainfluenza
viruses (hPIV) 1, 2, 3, and 4; human parechovirus (hPeV); influenza A
(IAV) HIN1 and H3N2; pan influenza A (IAV); pan influenza B (IBV); pan
influenza C (ICV); respiratory syncytial viruses (RSV) A and B; human
rhinovirus (hRV); enterovirus D68 (EV.D68); pan enterovirus excluding
D68 (EV); measles; mumps; Streptococcus pneumoniae (SPn); Myco-
plasma pneumoniae (MPn); Chlamydia pneumoniae (CPn); and SARS-
CoV-2 (Table S1). For a specimen to be designated positive for a given
target, both duplicates must test positive in replicate RT-PCR assays.
Due to assay limitations, epidemiologically distinct strains were
grouped into one assay each for hCoV 229E and hCoV 0C43, hCoV
HKU1 and hCoV NL63, hPIV 1 and hPIV 2, hPIV 3 and hPIV 4, EV, hRV,
and AdV. hPIV 3 likely comprises most of hPIV 3 + 4 incidences because
hPIV 4 infections are detected infrequently and tend to be mild or
asymptomatic®,

We excluded hBoV, hPeV, MPn, and CPn from downstream ana-
lysis because probes for these pathogens were removed from our
custom OpenArray panel in 2020. We also excluded ICV, EV.D68,
measles, and mumps because these pathogens did not have a sufficient
number of positive specimens to estimate daily incidence (< 200
positives from 2018 to 2022). A substantial number of specimens
tested positive for SPn, a common commensal, with SPn detected in
26.7% of positive samples prior to March 2020 and 18.5% of positive
samples after March 2020 (Figure. S2). We opted to not include SPn in
the downstream analysis due to our inability to distinguish acute
infections from chronic carriage.

All downstream data manipulation and analysis was performed
using R version 4.3%, unless otherwise noted.

Syndromic surveillance data

We obtained respiratory syndromic surveillance data for King County,
WA from the Rapid Health Information Network (RHINO) program at
the Washington Department of Health (WA DOH) (Figure. S23), and for
Washington state from the U.S. CDC Outpatient Influenza-like Iliness
Surveillance Network (ILINet)*. Syndrome criteria are described in the
Supplementary Methods.

Data on cell phone mobility, masking, and the stringency of non-
pharmaceutical interventions

We obtained mobile device location data from SafeGraph (https://
safegraph.com/), a data company that aggregates anonymized loca-
tion data from 40 million devices, or approximately 10% of the United
States population, to measure foot traffic to over 6 million physical
places (points of interest) in the US. We estimated foot traffic to spe-
cific points of interest (POIls), movement within and between census
block groups, and the in-flow of visitors residing outside of King
County from November 2018 to June 2022, using SafeGraph’s “Weekly
Patterns” dataset, which provides weekly counts of the total number of
unique devices visiting a POI from a particular home location. POIs are
fixed locations, such as businesses or attractions. A “visit” indicates
that a device entered the building or spatial perimeter designated as a
POL. A “home location” of a device is defined as its common nighttime
(18:00-7:00) census block group (CBG) for the past 6 consecutive
weeks. We restricted our datasets to King County POIs that had been
recorded in SafeGraph’s dataset since January 2019. SafeGraph data
were imported and processed using the SafeGraphR package®®.

To measure movement within and between CBGs (“neighbor-
hoods”) in King County, we extracted the home CBG of devices vis-
iting points of interest (POIs) and limited the dataset to devices with
home locations in the CBG of a given POI (within-neighborhood
movement) or with home locations in CBGs outside of a given POI's
CBG (between-neighborhood movement). To measure the inflow of
visitors from other counties in Washington state or from out-of-state,
we limited the dataset to devices visiting POIs in King County with
home locations in other WA counties or in other US states, respec-
tively. To measure foot traffic to specific categories of POls, we
aggregated daily visits to POIs by North American Industry Classifi-
cation System (NAICS) category without considering the home
locations of devices visiting these POIs. To adjust for variation in
SafeGraph’s device panel size over time, we divided Washington’s
census population size by the number of devices in SafeGraph’s
panel with home locations in Washington state each month and
multiplied the number of daily or weekly visitors by that value. For
each mobility indicator, we summed adjusted daily or weekly visits
across POIs and measured the percent change in movement over
time relative to the average movement observed in all of 2019,
excluding national holidays.

Daily data on the percentage of devices staying home in King
County were obtained from SafeGraph’s Social Distancing Metrics and
Meta Data for Good’s Movement Range Maps. SafeGraph social dis-
tancing metrics were available from January 1, 2019, to April 16, 2021,
and Meta Movement Range Maps were available from March 1, 2020,
to May 22, 2022. Trends in the percentage of devices staying home
were almost identical across the two data sources, though the per-
centage of devices staying home in the Meta dataset was lower than
that observed in the SafeGraph dataset (Figure. S24). We added a
scaling factor to the Meta indicator and joined the two-time series to
create a single metric for our study period (Figure. S24). To reduce
noise, we smoothed the joint time series with a centered 7-day moving
average.

We obtained survey data on the daily percentage of King County
residents wearing face masks in public from the Carnegie Mellon
University Delphi Group COVIDcast API”. Masking data were collected
as part of the COVID-19 Trends and Impact Survey conducted by the
Delphi group in collaboration with Meta and a consortium of uni-
versities and public health officials’. The survey ran continuously from
April 6, 2020, to June 25,2022, with approximately 40,000 individuals
in the United States participating every day. The survey included
specific questions about masking from September 8, 2020, to June 25,
2022. We supplemented the COVIDcast King County masking data
with COVIDNearYou survey data for Washington state®® to extend the
time series to June 2, 2020.
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We extracted data collected by the Oxford COVID-19 Government
Response Tracker (OXCGRT)*® to measure variation in Washington
state’s government policies related to COVID-19 from March 1, 2020 to
June 30, 2022. The OxCGRT database tracked publicly available
information for policies related to closure and containment, health,
and economic policy in 180 countries, recording policy responses on
ordinal or continuous scales for 19 policy areas. We obtained daily
values for the stringency index (Fig. 1), which combines all contain-
ment and closure indicators (C1-C8: school and university closures,
workplace closures, cancellation of public events, restrictions on
gatherings, closures of public transport, stay-at-home orders, restric-
tions on internal movement, and restrictions on international travel)
and the HI indicator (public information campaigns). The Oxford
Stringency Index is based on policy mandates in place over time and
does not measure the actual implementation of NPIs or population
adherence to mandates®.

Reconstructing pathogen incidences

While SFS sampling is robust enough to provide granular (daily) sur-
veillance data on the circulation of multiple pathogens, the diversity of
SFS sampling schemes requires pre-processing to infer pathogen
incidence. To properly reconstruct pathogen incidences through time,
we considered the different populations sampled by SFS, particularly
regarding age group, clinical setting, and the presence of respiratory
symptoms (Figure. S25).

We first excluded samples with missing age or home address
information (as reported by individuals participating in community
surveillance or obtained through electronic hospital records), samples
from individuals residing outside the greater Seattle region (King,
Pierce, Snohomish, Kitsap, San Juan, Whatcom, Skagit, Island, Clallam,
Jefferson, Mason, and Thurston counties), samples from individuals
who were asymptomatic for respiratory illness, and samples from
multiple testing of individuals. If an individual tested more than once
in a 30-day period, we kept one result per pathogen in that period. If
test results for all pathogens were consistent across the testing
instances in the 30-day period, we kept the results from the first testing
instance and discarded the subsequent instances. If an individual tes-
ted negative and then positive or tested positive then negative, we
kept the result for the first positive testing instance and discarded the
instances prior to or after that result. We also excluded samples col-
lected as part of Public Health - Seattle & King County’s (PHSKC)
contact tracing efforts or through collaborations with community-
based organizations.

Next, we used a three-step approach to control for sampling
variation over time (Figure. S25). In the first step, we disaggregated
daily pathogen presence and absence data derived from OpenArray
testing by clinical setting (hospital or community) and age group (> 5
years or < 5 years). We then divided the number of positive samples for
each pathogen by the total number of specimens tested in each setting
and age stratum (Figure. S26). Daily proportion test-positive values for
each age group a and setting s were then multiplied by the expected
age distribution of cases for each pathogen in each setting, which were
obtained from the U.S. Outpatient Influenza-like Illness Surveillance
Network (ILINet)®, the U.S. Influenza Hospitalization Surveillance
Network (FluSurv-NET)®°, the Washington State Department of
Health’, or published literature (Table S6). For each pathogen, the
daily adjusted proportion test-positive is calculated as:

Positive Tests,

Adjusted Proportion Positive, ;. = “Total Tests .~
a,s,t

x [ (Prop.cases,),
@

where Positive Tests, ;. and Total Tests,, ; , are the number of positive
tests and total test volume for age group a (= 5 years or < 5 years) in
clinical setting s (hospital or community) collected on day ¢, and

I (Prop.cases, ) is the expected proportion of cases in age group a in
clinical setting s, based on external data sources.

In the second step, we combined pathogen proportion test-
positive information from Equation (1) with citywide syndromic sur-
veillance indicators for respiratory illnesses. Specifically, we multiplied
the adjusted proportion test-positive data by a weekly indicator of the
proportion of the King County population seeking care for respiratory
illness at emergency departments (ED). Percent positive multiplied by
the percentage of medical encounters attributable to respiratory ill-
ness is considered to be a more robust measure of respiratory virus
activity than percent positive alone, and similar approaches have been
used successfully to model influenza and seasonal coronavirus activity
over multiple seasons (e.g.,”*’?,). We applied this adjustment separately
to community and hospital data, wherein the daily adjusted propor-
tion of test-positive values for each age group a in clinical setting s are
multiplied by the weekly proportion of ED visits coded as general
respiratory illness (all endemic viruses except influenza viruses),
influenza-like illness, ILI (influenza viruses), or COVID-like illness, CLI
(SARS-CoV-2) for age group a:

Respiratory illness visits, ,

Incidence, . . = Adjusted Proportion Positive, . , x —
ase=Ad p ast Total visits, ,

@

To produce an aggregate measure of daily incidence for each
pathogen in the greater Seattle region, the third step entailed sum-
ming the age-specific incidences (< 5 years and > 5 years) for each
pathogen in each setting s on day ¢ from Equation (2), rescaling age-
combined hospital- and community-based incidences to fall between O
and 1, and summing the separate community- and hospital-based
incidences:

Scaled Incidence, , = scale(Incidence.s s, + Incidence. s ; .,0,1) 3)

Scaled Incidence, = Scaled Incidence g4, + Scaled Incidence o pmynity,c

“)

We used this approach to estimate the daily incidences of 17
endemic pathogens from November 2018 to June 2022, including
influenza A/HIN1, A/H3N2, and B viruses, RSV A and B, four seasonal
coronaviruses, four human parainfluenza viruses, human metapneu-
movirus, rhinovirus, enterovirus, and adenovirus. We opted to esti-
mate daily SARS-CoV-2 incidence from publicly available COVID-19
case data for King County’® because SCAN did not test respiratory
specimens for SARS-CoV-2 during May and June 2020 (Figure. S27).

Statistical analysis
An overview of the statistical analyses and their various inputs is shown
in Figure. S28.

Transmission modeling. For each pathogen, we estimated time-
varying (instantaneous) reproduction numbers, R,, by date of infection
using the Epidemia R package®**. R, can be expressed as the number
of new infections i on day ¢ relative to the cumulative sum of indivi-
duals infected s days before day ¢, weighted by the current infec-
tiousness of those individuals g;>**:

— it
Zs<tisgt—s
Epidemia implements semi-mechanistic Bayesian models using
the probabilistic programming language Stan”. Instead of using a

deterministic renewal process to propagate infections, we modelled
new infections as unknown latent parameters, because the additional

R, ®
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variance around infections can account for uncertainty in initial
growth rates, as well as superspreading events”**. Transmission model
specifications are described in the Supplementary Methods.

We evaluated changes in transmissibility during the two weeks
before and after two major events in our study period: a major snow-
storm in February 2019 and the initiation of COVID-19 social distancing
measures in March 2020. For each pathogen, we used a nonparametric
(two-sided) bootstrap test (1000 samples drawn with replacement) to
estimate the ratio of mean R, values before and after each event and
associated 95% confidence intervals (boot R package™).

Cross-correlations between human behavior and pathogen trans-
mission. To measure dynamic associations between population
behavior and pathogen transmissibility, we estimated rolling Spear-
man’s rank cross correlations between mobility indicators and
pathogen specific R, values. To avoid spurious correlations, we
smoothed daily R, and mobility time series with centered 15-day
moving averages. In all analyses, we weighted cross-correlations with
an exponential decay such that observations at the edges of each
time window were weighted approximately 50% less than observa-
tions at the window midpoint. This approach is reactive to recent
changes in mobility and R, while still incorporating long-term trends.
Due to limited testing at the beginning of the pandemic, we limited
cross-correlations involving SARS-CoV-2 R, estimates to dates after
February 28, 2020, when the first community-acquired case was
confirmed, and cumulative confirmed cases exceeded 50. By March 1,
2020, the 95% credible intervals of SARS-CoV-2 R, were within 15% of
the median value.

From Fall 2019 to Summer 2022, we computed cross-correlations
between weekly pathogen specific R, values and the weekly percent
change from baseline in mobility in rolling five-month windows.
Although our original data have daily resolution, we chose to use
weekly averages of R, and mobility due to the length of the timeframe
analyzed and our desire to focus on broad long-term trends. We chose
5-month windows because this length of time provides a good trade-
off between reducing noise and retaining a biologically relevant time
window. In sensitivity analyses varying the length of rolling time win-
dow, shorter windows introduced more noise into the results (e.g.,
periods of alternating positive and negative correlations rather than
consistent long-term trends) while longer windows diminished our
ability to pinpoint when mobility most strongly correlated with R,.
During the pandemic period, we also estimated weekly cross-
correlations and optimal lags between R, and the proportion of indi-
viduals masking in public (June 2020 to June 2022) and between R, and
the Oxford Stringency Index (March 2020 to June 2022). During the
2018-2019 respiratory virus season, we estimated cross-correlations
between daily R, and the daily percent change from baseline in
mobility in rolling one-month windows, due to limited data at the start
of that season (respiratory specimen collection began in November
2018) and to better capture the effects of the 12-day snowstorm in
February 2019.

For each rolling window, we estimated weighted cross-
correlations between mobility and R, at different lags (up to 4 weeks
for 5-month rolling windows and up to 21 days for one-month rolling
windows) and extracted the maximum (absolute) coefficient value and
the lag (in weeks or days) at which this value occurred (the ‘optimal
lag’). Negative lag values indicate behavior leads R,, and positive lag
values indicate R, leads behavior. A lag of O indicates that two time
series are in phase (i.e., synchronous). To generate monthly cross-
correlations and lags, we averaged the correlation coefficients and
optimal lags of window midpoints that fell within a given calendar
month. As an example, for five-month rolling windows each month’s
statistics are an average of correlation coefficients and lags for dates
falling 10 weeks prior to and 10 weeks following each week in
that month.

To test the statistical significance of cross-correlations for each
rolling window, we used a block bootstrap approach to generate
1000 samples of each mobility time series shuffled in two-week
increments (tseries R package™) and recomputed cross-correlations
between R, and mobility for each replicate, yielding a null distribution
of 1000 cross-correlations. Cross-correlations between R, and mobility
indicators were considered statistically significant when observed
coefficients were outside the bounds of the null distribution’s 90%
interval. We performed bootstrapped cross-correlations using the
high-performance computational resources of the Biowulf Linux
cluster at the National Institutes of Health, with R version 4.2. Figures
of monthly cross-correlations and optimal lags show both leading and
lagging relationships between mobility and R,, while figures of rolling
cross-correlations are constrained to lags less than 1 to reduce noise
and focus on synchronous or leading relationships.

As a sensitivity analysis, we estimated the daily transmissibility of
the ancestral SARS-CoV-2 virus and each major variant of concern
(VOC), using generation intervals, incubation periods, and reporting
delays specific to each lineage, and computed rolling cross-
correlations between VOC-specific R, values and behavioral indica-
tors. Most VOC time series were too short to measure dynamic chan-
ges in correlations between R, and behavior, likely because VOC-
specific analyses could not include the period immediately preceding
increases in R,.

Multivariable generalized additive regression models. For each
pathogen, we used generalized additive models (GAMs) to measure
non-linear relationships between mobility and R, and to assess the
relative importance of different behavioral indicators in predicting R,
during key epidemiological timepoints (see Supplementary Methods
for specific dates). We used the mgcv R package’® to fit each GAM with
a Gamma error distribution and log link. Methodological details are
described in the Supplementary Methods.

Ethics oversight

The Seattle Flu Study and Greater Seattle Coronavirus Assessment
Network were approved by the Institutional Review Board of the
University of Washington (protocols #00006181 and #000010432).
At the time of enrollment, participants provided informed consent
for the respiratory sample and metadata collection and for the sec-
ondary use, banking, and/or future sharing of de-identified data for
research purposes. These IRB protocols explicitly approve the use of
the surveillance data for secondary research and do not impose
restrictions on the specific types of secondary research that can be
conducted or the external data sources that can be analyzed in tan-
dem with the surveillance data. In accordance with UW IRB approval,
informed consent for residual samples and clinical data collection
was waived, as these samples were already collected as part of rou-
tine clinical care, and it was not possible to re-contact these indivi-
duals. IRB exemption for the use of non-publicly available aggregated
respiratory syndromic surveillance data for King County, WA, was
approved by the Washington State Institutional Review Board
(Exempt Determination #2022-004). The human cellphone mobility
data are aggregated and anonymous and were freely available to
academic researchers prior to the start of this study; thus, these data
do not constitute human subjects research. We did not collect cell-
phone data from surveillance study participants, and there is no
individual-level linkage between the mobility and surveillance data-
sets. Individual-level linkage between these two datasets is not pos-
sible, given that the mobility data are aggregated and anonymous/
de-identified. All other data sources pertaining to humans are
aggregated, anonymous, and openly available. This study
followed the Strengthening the Reporting of Observational Studies
in Epidemiology (STROBE) reporting guidelines for cross-sectional
studies.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Aggregated epidemiological and mobility data that support the find-
ings of this study can be accessed at https://doi.org/10.5281/zenodo.
110448217 and https://github.com/aperofsky/seattle_mobility rt.
Access to deidentified individual-level study participant data requires a
signed data access agreement with the Seattle Flu Alliance and can be
made available to researchers whose proposed use of the data is
approved by study investigators. Requests for data access should be
submitted to data@seattleflu.org. Some mobility metrics were gen-
erated using SafeGraph Weekly Patterns and Social Distancing data-
sets, which were originally made freely available to academics in
response to the COVID-19 pandemic. The SafeGraph Weekly Patterns
dataset is currently available to academics for non-commercial use
through an institutional university subscription or individual sub-
scription to Dewey (https://www.deweydata.io/). The data access
agreement with Dewey does not permit sharing of the raw data.
Mobility data from Meta Data for Good Movement Range Maps are
publicly accessible through the Humanitarian Data Exchange (https://
data.humdata.org/dataset/movement-range-maps). SafeGraph social
distancing data and Meta Data for Good survey data on masking are
publicly accessible through the Carnegie Mellon Delphi group’s COV-
IDcast Epidata API (https://cmu-delphi.github.io/delphi-epidata/api/
covidcast.html). Data on the stringency of non-pharmaceutical inter-
ventions in US states are publicly accessible through the Oxford
COVID-19 Government Response Tracker (https://github.com/
OxCGRT/covid-policy-tracker). Aggregated influenza syndromic and
virologic surveillance data for Washington state are publicly accessible
through the US Centers for Disease Control and Prevention (CDC)
FluView Interactive dashboard (https://www.cdc.gov/flu/weekly/
fluviewinteractive.htm). Aggregated respiratory syndromic surveil-
lance data for King County, WA are not publicly available and were
provided by the Rapid Health Information Network (RHINO) program
at the Washington Department of Health (WA DOH). Access for
research purposes requires a signed data-sharing agreement with WA
DOH and exemption approval from the Washington State Institutional
Review Board. Requests for data access should be submitted to RHI-
NO@doh.wa.gov. Data on COVID-19 cases in King County, WA are
publicly accessible through the WA DOH COVID-19 dashboard (https://
doh.wa.gov/emergencies/covid-19/data-dashboard). Data on COVID-
19 vaccination in King County, WA are publicly accessible through the
Public Health - Seattle & King County COVID-19 Vaccination dash-
board (https://kingcounty.gov/en/dept/dph/health-safety/disease-
iliness/covid-19/data/vaccination). Nextstrain-curated SARS-CoV-2
sequence metadata can be downloaded via the Nextstrain CLI tool
(https://docs.nextstrain.org/projects/cli/en/stable/). Daily records of
precipitation, temperature, and humidity in Seattle, WA are publicly
accessible through the National Centers for Environmental Informa-
tion’s U.S. Local Climatological Database (https://www.ncei.noaa.gov/
products/land-based-station/local-climatological-data).

Code availability

Code to reproduce the results and figures in this study is available at
https://doi.org/10.5281/zenodo.11044821”7 and https://github.com/
aperofsky/seattle_mobility rt.
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