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Supplementary Methods 

Seattle Flu Study surveillance arms 
Recruitment sites and sample sizes are listed in Table S2. 
 
Community and clinic kiosks. In the first year of SFS, participants with acute respiratory illness (ARI) were 
recruited at stand-alone kiosks in 7 clinical facilities (emergency departments, clinic and urgent care waiting rooms) 
and at 14 public sites, including the UW campus, SeaTac airport, workplaces, and high-traffic tourist areas. 
Participants were eligible to enroll if they had two or more new or worsening respiratory symptoms in the previous 7 
days (fever, cough, sore throat, headache, diarrhea, nausea, or vomiting, runny or stuffy nose, rash, fatigue, muscle 
or body aches, increased trouble with breathing, and/or ear pain or discharge) and were English- or Spanish-
speaking. After completing a brief screening for eligibility to participate, individuals were consented. Upon 
enrolling, participants (or parent/guardian for minors) completed a questionnaire to collect participant 
demographics, illness characteristics, and behavioral and other clinical data. Trained research staff collected middle 
turbinate swabs for respiratory virus testing (Copan Diagnostics Inc., Murietta, CA). Participants received a $10 gift 
card for completing the study, and no additional study-related follow-up occurred. Participants were not permitted to 
re-enroll within a 7-day period. 
 
Outpatient clinics (Kaiser Permanente). From November 2018 to March 2020, participants seeking outpatient care 
for acute respiratory illness (ARI) at Seattle-based US Flu Vaccine Effectiveness (VE) Network sites were 
prospectively identified and recruited through Kaiser Permanente as part of the CDC Flu VE surveillance protocol1,2. 
Patients eligible for the CDC Flu VE study were aged at least 6 months of age and had a cough illness of < 8 days 
duration. Eligible and consenting patients (or parent/guardian for minors) were interviewed for demographics, risk 
factors for ARI, and influenza vaccination history. Study staff collected combined nasal and oropharyngeal swabs 
(nasal only in children aged < 2 years) for respiratory virus testing. In accordance with UW IRB approval, Health 
Insurance Portability and Accountability Act (HIPAA) authorization and written, informed consent was waived, as 
there was no direct contact with these participants or reasonable ability to recontact them for consent to participate 
in the study. Samples were obtained through a contractual agreement with Kaiser Permanente and transported to the 
study laboratory at the University of Washington (UW) for further molecular testing. 
 
Swab-and-Send Study. From October 2019 to March 2020, SFS deployed swab-and-send kits to collect nasal swabs 
from individuals in the community experiencing ARI. Study design, recruitment, and data collection are described in 
detail elsewhere3. Briefly, study participants were recruited through referrals from health care providers, clinics, SFS 
community kiosks, schools, and workplaces, dissemination of printed flyers posted at community locations, and 
social media advertising. Individuals were eligible to participate in the study if they lived within the greater Seattle 
region, had experienced new or worsening cough and/or two ARI symptoms (fever, headache, sore throat or 
itchy/scratchy throat, nausea or vomiting, runny/stuffy nose or sneezing, fatigue, muscle or body aches, increased 
trouble with breathing, diarrhea, ear pain/discharge, or rash) within 7 days of enrollment, were English speaking, 
had a valid email address, and access to the Internet at home. After an initial online screening questionnaire and 
consenting to participate in the research study, eligible participants completed an online enrollment questionnaire to 
provide their home address and contact information. Enrollees were mailed a home sample collection kit within 48 
hours via private courier. Upon kit receipt, participants completed an online illness questionnaire to collect 
demographics, illness characteristics, and data on health behaviors. Samples were self-collected by participants 13 
years and older via unsupervised middle turbinate swab (Copan Diagnostics Inc.). Parents or guardians performed 
swab collection for children younger than 13 years. Pediatric nasal swabs (Copan Diagnostics Inc.) were available 
for participants 5 years of age or younger. Participants were encouraged to return their nasal specimen within 24 
hours or as soon as possible. Swab samples were returned to the study laboratory at UW via USPS Priority Mail 
prepaid postage, with a median time of 3 days from nasal swab collection to receipt at the lab3.  
 
Greater Seattle Coronavirus Assessment Network. The greater Seattle Coronavirus Assessment Network (SCAN) 
was launched on March 23, 2020, and concluded in July 2022. Design, recruitment, and data collection for SCAN 
are described in detail elsewhere4,5. Briefly, SCAN was restricted to King County, WA residents and recruited 
participants through social media advertising and community outreach. Eligibility criteria changed over time in 
response to testing demand and and were based on Public Use Microdata Areas (PUMA) and reported symptoms. 
Each PUMA had a daily allocation of enrollments, with over sampling of PUMAs in southern King County to 
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ensure more equitable access to testing across the county population4,5. Study materials were available in English 
and 12 of the most spoken non-English languages in King County. Although symptom quotas changed over time, 
the majority of participants were symptomatic at the time of enrollment (> 90%)5, with symptomatic enrollees 
defined as individuals who self-reported experiencing a new or worsening fever, cough, or shortness of breath 
within the past 7 days, and asymptomatic enrollees defined as individuals self-reporting none of these symptoms. In 
addition to community enrollments, some participants were invited as part of Public Health – Seattle & King County 
(PHSKC) contact tracing efforts or through collaborations with community-based organizations to increase testing 
of underrepresented or high-risk populations; these samples were excluded from the analysis. After an initial online 
screening questionnaire, eligible participants (or parent/guardian for minors) were prompted to complete a detailed 
demographic and health behavior questionnaire. Within 24 hours of enrollment, sample collection kits were 
delivered via private courier. Samples were self-collected by participants aged 13 years and older via unsupervised 
middle turbinate or anterior nares swabs. Parents or guardians performed swab collection for children younger than 
13 years of age. Swab samples were picked up by private courier on the morning after delivery and returned within 
24 hours to the study laboratory at UW for testing. 
 
King County COVID-19 drive-through testing sites. Beginning in April 2021, SFS obtained residual nasal swab 
specimens collected at eight Public Health – Seattle & King County (PHSKC) COVID-19 drive-through testing 
sites. In accordance with UW IRB approval, HIPAA authorization and written, informed consent was waived, as 
there was no direct contact with these participants or reasonable ability to recontact them for consent to participate 
in the study. Samples were obtained through a contractual agreement with UW Virology, which conducted the 
SARS-CoV-2 testing for PHSKC drive-through sites. At the time of testing, individuals completed an optional 
questionnaire that collected demographics, the reason for testing, COVID-19 vaccination status, whether they are 
currently symptomatic, and, if symptomatic, the number of days since symptom onset. Samples from both 
symptomatic and asymptomatic individuals were obtained by SFS, with symptomatic individuals defined as those 
who answered “yes” to the question “Do you have COVID-19 symptoms now?” 
 
Residual hospital samples. Since the inception of the study, SFS obtained residual nasal swab specimens collected 
at clinician discretion from major hospitals in the Seattle area, including Seattle Children’s, UW Medical Center, 
Northwest Hospital, and Harborview Medical Center. In April 2020, surveillance from UW Medical Center and 
Northwest Hospital discontinued. Samples were linked with demographic and clinical metadata extracted from the 
patients’ electronic medical records (EMR). In accordance with UW IRB approval, HIPAA authorization and 
written, informed consent was waived, as there was no direct contact with these participants or reasonable ability to 
recontact them for consent to participate in the study. Samples were obtained through contractual agreements with 
each medical center and transported to the study laboratory at UW for further molecular testing. Encounter IDs and 
medical record numbers (MRNs) were used in combination as unique patient identifiers at sites except Seattle 
Children’s, where a unique patient ID was created. Prior to March 2020, most hospital residuals were collected from 
patients experiencing ARI. After March 2020, there was increased testing of asymptomatic individuals at hospitals 
due to pre-procedure or surveillance testing for COVID-19. We used International Classification of Diseases, Tenth 
Revision (ICD-10) codes specific to respiratory illness (Harborview Medical Center, Northwest Hospital, and UW 
Medical Center) (Table S8) or pre-procedure COVID-19 testing flags (Seattle Children’s) to distinguish 
symptomatic and asymptomatic patients. 

Syndromic surveillance data 

We obtained respiratory syndromic surveillance data for King County, WA from the Rapid Health Information 
Network (RHINO) program at the Washington Department of Health (WA DOH) (Fig. S23). Syndrome criteria are 
defined by the Electronic Surveillance System for the Early Notification of Community-Based Epidemics 
(ESSENCE). We received weekly counts of total emergency department (ED) visits and ED visits classified as 
influenza-like illness (ILI) (mention OR diagnosis of influenza OR fever (>100°F) and cough OR fever (>100F) and 
sore throat), COVID-like illness (CLI) (mention OR diagnosis of coronavirus AND no diagnosis of influenza OR 
fever OR chills AND cough OR shortness of breath OR difficulty breathing), and broad respiratory illness (acute 
bronchitis OR chest congestion OR cough OR difficulty breathing OR hemoptysis OR laryngitis OR lower 
respiratory infection OR nasal congestion OR otitis media OR pneumonia OR shortness of breath OR sore throat OR 
upper respiratory infection OR wheezing OR acute respiratory distress). Weekly data were disaggregated by age 
group (0-4, 5-24, 25-64, and ≥65). We collapsed age groups into two categories, < 5 and ≥ 5 years of age, and 
calculated the weekly proportion of ED visits coded as ILI, CLI, or broad respiratory illness (Fig. S23). 
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Respiratory syndromic surveillance data for Washington state were obtained from the U.S. Outpatient Influenza-like 
Illness Surveillance Network (ILINet) via the CDC FluView Interactive dashboard (cdcfluview R package)6,7. 
ILINet consists of approximately 3,200 sentinel outpatient healthcare providers throughout the United States that 
report the total number of consultations for any reason and the number of consultations for ILI every week. ILI is 
defined as fever (temperature of 100°F [37.8°C] or greater) and a cough and/or a sore throat. ILINet provides the 
weekly proportion of outpatient consultations for ILI and the number of ILI encounters by age group (0-4, 5-24, 25-
64, and ≥65). We collapsed age groups into two categories, < 5 and ≥ 5 years of age, and calculated the weekly 
proportion of outpatient visits for ILI for each age group. 

Statistical Analysis 
 
Reporting delays 

We estimated reporting delays (i.e., the delay from symptom onset to testing) using questionnaire metadata collected 
from symptomatic individuals who tested positive for endemic respiratory viruses (hRV, N = 4848 survey 
responses; EV, N = 376 ; influenza viruses, N = 830; RSV, N = 423; hPIV, N = 325; hCoV, N = 666; hMPV, N = 
148; AdV, N = 443) or SARS-CoV-2 (N = 3566). We used the probabilistic programming language Stan8 to fit a 
lognormal distribution to 100 subsampled bootstraps (each with 250 samples drawn with replacement) of the 
available reporting delay data for endemic virus and SARS-CoV-2 infections, with a maximum allowed delay of 30 
days (EpiNow2 R package9). This resulted in a lognormal onset-to-testing delay distribution with mean 0.49 (1.02 
SD) days for endemic viruses and mean 0.65 (1.1 SD) days for SARS-CoV-2. 

Transmission modeling 

For each pathogen, we estimated time-varying (instantaneous) reproduction numbers, 𝑅!, by date of infection using 
the Epidemia R package10,11. Epidemia implements semi-mechanistic Bayesian epidemiological models using Stan8. 

Model specifications. 

Formally, 𝑅! is modelled as: 

𝑅! = exp(𝛽" +	𝜖!#), (1)	 

𝛽"	~	Normal(log(𝑅"),0.2), (2) 

𝜖!#	~	Normal(0, 𝜎$), (3) 

𝜎$	~	Half − Normal(0,0.02) (4) 

where exp is the exponential function, the mean of the prior for the intercept 𝛽" is the natural log of the basic 
reproduction number 𝑅" (Table S7), and 𝜖!# is a daily random walk process. The steps of the daily walks 𝜖!# are 
independent and centered around 0 with standard deviation 𝜎$. 

Instead of using a renewal process to propagate infections, we modelled new infections 𝑖! as unknown latent 
parameters 𝑖!%, because the additional variance around infections can account for uncertainty in initial growth rates, 
as well as superspreading events10,11: 

𝑖!	~	Normal(𝑖!% , 𝑑), (5) 

𝑑	~	Normal(10,2), (6) 

where 𝑑 is the coefficient of dispersion. This prior assumes that infections have conditional variance around 10 
times the conditional mean10. 
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For each pathogen, we specified a generation interval distribution 𝑔&, which is the probability that s days separate 
the moment of infection in an index case and in an offspring case. The intrinsic generation interval is rarely 
observable, but it can be approximated with the serial interval (the time between symptom onsets)12. We obtained 
pathogen-specific generation or serial intervals from published literature (Table S7).  

Given the generation (or serial) interval distribution 𝑔&, the number of new infections on day t is given by the 
convolution function: 

𝑖!% =	𝑅! F𝑖'𝑔!('	,
'	*	!

(7) 

where		𝑅! is the non-negative instantaneous reproduction number.	𝑅! can be expressed as the number of new 
infections on day t relative to the cumulative sum of individuals infected s days before day t, weighted by the current 
infectiousness of those individuals12,13: 

𝑅! 	= 	
𝑖!% 	

∑ 𝑖'𝑔!(''	*	!
	 (8) 

The model is initialized with seeded infections 𝑖+:-	, 𝑣 < 0, which are treated as unknown parameters25,26. The prior 
on 𝑖+:- assumes that daily seeds are constant over a seeding period of 6 days: 

𝑖(.:-	~	Exponential(𝜏(#), (9) 

𝜏	~	Exponential(𝜆-), (10) 

where 𝜆- > 0 is a rate hyperparameter. 𝜆- is given an uninformative prior (0.03) so that seeds are primarily 
determined by initial transmission rates and the chosen start date of the epidemic25,26. 

Daily case counts 𝑌! are modelled as deriving from past new infections 𝑖', 𝑠 < 𝑡, assuming a negative binomial 
observation model with mean 𝑦! and overdispersion parameter 𝜙. The expected number of observed cases at time t 
was mapped to past infections by convolving over the time distribution of infection to case observation 𝜋&: 

𝑌!	~	NegativeBinomial(𝑦! , 𝜙) (11) 

𝜙	~	Normal(10,5) (12) 

logit(𝑦!) = 	F 𝑖'𝜋!('
'	/	!

(13) 

For each pathogen, we estimated 𝜋& by summing the incubation period distribution and the reporting delay 
distribution. We obtained incubation periods from published literature (Table S7) and estimated reporting delays 
from individual-level surveillance data, as described in the Reporting Delays section. 

Prior to	𝑅! estimation, we computed proxies of daily case counts of endemic pathogens by multiplying reconstructed 
incidences by 1000 and rounding the resultant values to integers. To reduce the influence of day-of-week effects and 
observational noise, we smoothed endemic pathogen case counts with centered 3-week moving averages prior to 
deconvolution13,14. Epidemic trajectories were fit independently using Stan’s Hamiltonian Monte Carlo sampler15. 
For each model, we ran 4 chains, each for 30,000 iterations (including a burn-in period of 15,000 iterations that was 
discarded), producing a total posterior sample size of 60,000. We verified convergence by confirming that all 
parameters had sufficiently low R-hat values (all R-hat < 1.1⁠) and sufficiently large effective sample sizes (>15% of 
the total sample size). Models were fit using the high-performance computational resources of the Biowulf Linux 
cluster at the National Institutes of Health, with R version 4.2.0. 
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Multivariable generalized additive regression models 

For each pathogen, we used generalized additive models (GAMs) to measure non-linear relationships between 
mobility and 𝑅! and to assess the relative importance of different behavioral indicators in predicting 𝑅! during key 
epidemiological timepoints. These time periods included the 2019-2020 respiratory virus season, prior to the 
COVID-19 pandemic (September 2019 – February 2020), the first three months of each of four COVID-19 waves, 
the first six months of rebound of non-enveloped viruses (June – November 2020), the first three months of rebound 
of each enveloped virus in 2021, and the decline of endemic viruses during the Omicron wave in late 2021 
(November 2021 – January 2022). To reduce the confounding effects of susceptible depletion on 𝑅!, GAMs were fit 
to the exponential growth phase of each outbreak16, when 𝑅! exceeds 1 and susceptible depletion is limited. 

GAMs are nonparametric regression models that replace parametric terms with (smooth) nonparametric functions of 
the covariates. This approach allows relationships between covariates and the dependent variable to be linear or 
nonlinear, depending on underlying patterns in the data. We used the gam()function in the mgcv R package17 to fit 
each GAM with a Gamma error distribution and log link. Mobility covariates and time trends were modelled using 
thin plate regression splines (the default smoothing basis in mgcv). We specified for the model to add an extra 
penalty to each term so that it could be penalized to zero (select = TRUE), which enables the smoothing 
parameter estimation to completely remove terms when fitting the model. 

To further refine our set of predictors and reduce concurvity, we used Akaike’s Information Criteria corrected for 
small sample sizes (AICc) to select the best fit “minimal” model for each pathogen, allowing candidate models to 
include a smoothed weekly time trend and up to two smoothed behavioral terms. Candidate predictors included 
between-neighborhood movement, inflow from other US states, the percentage of devices leaving home, and foot 
traffic to various categories of POIs, including restaurants, religious organizations, elementary and high schools, and 
colleges. For SARS-CoV-2, we also included the proportion of individuals masking in public and NPI stringency as 
candidate predictors. After model selection of candidate models, parameter estimation of the final model was 
performed by restricted maximum likelihood.  

For each pathogen in each time period, the final GAM can be formally written as:  

log(𝔼(𝑅!)) 	= 	𝛽- 	+		𝑓#(𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟1!) 	+	𝑓0(𝐵𝑒ℎ𝑎𝑣𝑖𝑜𝑟2!) 	+ 𝑓1(𝑤𝑒𝑒𝑘!) 	+ 𝜀! , (14) 

where 𝑅! is the daily effective reproduction number, 𝛽- is the model intercept, 𝑓2 are smooth nonparametric 
functions of model covariates, and 𝜀! are identically and independently distributed (i.i.d.) model errors (residuals). 
For daily time series data, the assumption of independence of model residuals is often violated18. To account for 
temporal autocorrelation of residuals, we evaluated GAMs that included a continuous time first-order autoregressive 
process (CAR(1) with correlation parameter 𝜙), with and without a smoothed weekly time trend. GAMs plus 
CAR(1) experienced convergence issues and produced poorer fits to the data, potentially because our models were 
fit to 2- to 6-month timespans, and fluctuations in the dependent variable and strong autocorrelation (𝜙 → 1) can be 
unidentifiable when they occur on similar time scales18. 
 
Short-term forecasting of daily transmissibility 
 
We built forecasting models predicting daily 𝑅! at one-week horizons for three viruses that circulated continuously 
throughout the study period: hRV, AdV, and SARS-CoV-2. Candidate predictors included cellphone derived 
mobility metrics, the co-circulation of other viruses, and climatic variables, and past activity of the target virus 
during the previous two weeks (14 autoregressive terms). We evaluated an additional model for SARS-CoV-2 
spanning 2021-2022 that included covariates for vaccination coverage and variant emergence (Fig. S22). 
 
Similar to an approach for forecasting influenza-like illness activity (AutoRegression with GOogle search data)19, 
our models implemented L1 regularization (LASSO) to automatically select the most relevant terms for predicting 
𝑅! up to 7-days ahead, using a moving window for the training period (that immediately precedes the dates of 
estimation) to capture the most recent changes in human mobility, weather, and viral activity19. For all three viruses, 
we found that one-month moving windows produced the most accurate forecasts of 𝑅!, though there were few 
discernible trends in which mobility terms training windows retained over time. Expanding the training window 



 7 

produced clearer patterns of which mobility terms were consistently retained by models but at the expense of 
predictive accuracy. 
 
Model covariates. Candidate predictors included the activity of the target virus during the previous two weeks (14 
autoregressive terms) and 1-, 7-, and 14-day lags of cellphone mobility metrics, masking rates, NPI stringency, 
climatic variables, and co-circulation of other viruses. For each virus, we included behavioral metrics that were 
associated with daily transmissibility in univariate cross-correlation analyses. For hRV and AdV models, behavioral 
predictors included between-neighborhood movement, visitor inflow from other WA counties and US states, the 
percentage of devices leaving home, and foot traffic to religious organizations, child day cares, schools, and 
colleges. For SARS-CoV-2 models, behavioral predictors included visitor inflow from other WA counties and US 
states, the percentage of devices leaving home, foot traffic to restaurants and religious organizations, the proportion 
of individuals masking in public, and the Oxford Stringency Index. Climatic variables included daily records of 
precipitation, average wet bulb temperature, and average relative humidity in Seattle, Washington (station ID: 
72793024233), obtained from the National Centers for Environmental Information’s U.S. Local Climatological 
Database20. To approximate virus-virus interactions, we included SARS-CoV-2 𝑅! as a covariate in the hRV and 
AdV models, and hRV 𝑅! as a covariate in the SARS-CoV-2 models. 
 
We evaluated an additional model predicting SARS-CoV-2 𝑅! for dates spanning 2021-2022 that included 
covariates for cumulative COVID-19 vaccination coverage and variant circulation in King County, WA. We 
estimated daily cumulative vaccination coverage as the cumulative proportion of eligible King County residents 
(people at least 5 years of age) who were fully vaccinated for COVID-19, defined as having received one Johnson & 
Johnson (Janssen) vaccine dose or at least two mRNA vaccine doses. COVID-19 vaccination data were obtained 
from the Public Health – Seattle & King County COVID-19 Vaccination dashboard21.  
 
To estimate daily SARS-CoV-2 variant frequencies, we downloaded Nextstrain-curated SARS-CoV-2 sequence 
metadata22, which is created using the GISAID EpiCoV database23. We filtered the dataset to sequences collected in 
King County, WA during February 2020 to June 2022 with “good” quality control (QC) scores (N = 9,626 
genomes). We used multinomial logistic regression to model the daily frequencies of SARS-CoV-2 clades 
circulating in King County, including the ancestral virus and major variants of concern (VOCs), based on the 
observed frequencies of Nextstrain clades in the dataset and the number of days since the first detection (Fig. S22).  
 
First, we drew the number of clade-specific genomes from a multinomial distribution: 

𝑌3,!	~	Multinomiali𝑆! , 𝜋3,!k, (15) 

where 𝑌3,! is the number of sequences on day t belonging to clade c, 𝑆! is the total number of sequences collected on 
day t, and 𝜋3,! is the probability of a sequence on day t belonging to clade c. 
 
𝜋3,! is equal to the observed frequency of clade c on day t: 

𝜋3,! =	
𝑋3,!
𝑆!

(16) 

We estimated the sample probability of clade c on day t as the predicted number of sequences belonging to clade c 
divided by the total number of sequences collected on day t: 

𝑃3,! =	
𝑌3,!
𝑆!

(17) 

To capture the effects of variant emergence on 𝑅!, the 2021-2022 model included the daily predicted frequencies of 
sequences belonging to the Alpha variant, Delta variant, or Omicron BA.1 variant. 
 
Model evaluation. For each virus, we evaluated the predictive power of cellphone derived mobility metrics, the co-
circulation of other viruses, and climatic variables, in combination with past activity of the target virus during the 
previous two weeks (14 autoregressive terms), against a baseline model that included only the past activity of the 
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target virus (14 AR terms). For each model at each forecast date, we calculated the percentage error as the difference 
between the predicted and observed values of 𝑅!, divided by the observed value of 𝑅!. Positive values of percentage 
error indicate overprediction, and negative values indicate underprediction. We evaluated overall model 
performance by comparing the root-mean-squared-error (RMSE) and mean absolute error (MAE) scores of model 
predictions against the observed 𝑅! values (Tables S3-S5). We estimated the benefit of including variables related to 
mobility, climate, or viral interactions by calculating the percent difference in RMSE and MAE relative to the 
baseline model, wherein negative values indicate models with additional covariates are more accurate, and positive 
values indicate the baseline model is more accurate (Tables S3-S5). Model performance across the whole study 
period is reported in Table S3, model performance during Seattle’s COVID-19 stay-at-home orders and the initial 
lifting of restrictions is reported in Table S4, and model performance for SARS-CoV-2 𝑅! during 2021-2022 is 
reported in Table S5. 

Supplementary Results 

Short-term forecasts of rhinovirus (hRV), adenovirus (AdV), and SARS-CoV-2 transmission 
 
For all three viruses, models including mobility and AR terms produced generally accurate forecasts over the entire 
study period (RMSE: hRV: 0.013; AdV: 0.04; SARS-CoV-2: 0.03; Table S3), and especially during Seattle’s stay-
at-home (SAH) orders and the initial lifting of restrictions (RMSE: hRV: 0.006; AdV: 0.02; SARS-CoV-2: 0.02; 
Table S4). For models predicting SARS-CoV-2 𝑅! during 2021-2022, including covariates for vaccination and 
variant emergence did not improve prediction accuracy, but models with mobility had a 13% improvement in 
prediction RMSE relative to the baseline model (Table S5). Among candidate mobility predictors, the percentage of 
devices leaving home, between-neighborhood movement, and visitor inflow had the highest mean (absolute) 
coefficient values and were the most frequently retained variables across moving training windows. In models 
predicting SARS-CoV-2 𝑅!, masking and NPI stringency were also frequently retained and had high mean 
coefficient values. 
 
When comparing model accuracy over the entire study period, models including covariates for mobility, climate, or 
viral interference did not outperform baseline models for hRV and AdV (Figs. S19-S21; Table S3). For SARS-CoV-
2, the model including prior information on precipitation, temperature, and relative humidity performed similarly to 
the baseline model (< 1% difference in prediction RMSE; Table S3) yet moving training windows did not frequently 
retain climatic variables (< 110 out of 758 windows), and climatic variables had the smallest model coefficient 
values among candidate predictors (range: 0.0000013 – 0.00017, compared to 0.002 – 0.003 for the Oxford 
Stringency Index). Thus, we did not find definitive evidence that meteorological information improves forecasts of 
𝑅! for any virus, potentially because non-enveloped viruses and pandemic SARS-CoV-2 do not exhibit strong 
seasonality. Although models with mobility and AR terms were 46% (AdV), 52% (hRV), and 26% (SARS-CoV-2) 
more accurate during Seattle’s SAH orders compared to the entire study period, models for hRV and AdV still 
underperformed in comparison to baseline models during these months (Table S3). 
 
Overall, we found that prior disease activity alone is most beneficial for accurately projecting future transmission 
dynamics. Tracking mobility behavior is not essential for forecasting respiratory virus transmission, and the 
inclusion of mobility data can even be detrimental to prediction accuracy, depending on the pathogen and time 
period (Tables S3-S5). Monitoring major changes in mobility could still be helpful for general situational awareness 
and planning purposes in the early stages of an emerging disease outbreak, when testing capacity is low and the true 
incidence of the disease is unknown. However, prior information on mobility trends is unlikely to provide a net 
benefit to prediction accuracy when an epidemic is widely established in a population. This finding is consistent 
with another study that used a different modeling approach and set of mobility metrics to forecast COVID-19 cases 
and deaths in Europe24. 
  



 9 

Supplementary Figures 
 

Fig. S1. The weekly age distribution of respiratory specimens collected from community and hospital settings, 
November 2018 – June 2022. Bar colors show the proportion of samples collected from individuals aged <5 (light 
blue) or ≥5 years (dark blue). Sample sources for community-based testing include swab-and-send at-home testing 
programs, kiosks in high foot traffic areas, outpatient clinics, and Public Health – Seattle & King County COVID-19 
drive-through testing sites.  
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Fig. S2. The weekly number of samples testing positive for respiratory pathogens in A. hospitals and B. 
community settings. Colored bars represent the number of samples testing positive for each pathogen. The gray 
dashed line is the number of respiratory specimens tested on the OpenArray (OA) platform. The left y-axis 
corresponds to the number of positive samples collected each week, and the right y-axis corresponds to the total 
number of specimens collected each week and tested on OA. Sources for community-based samples include swab-
and-send at-home testing programs, kiosks in high foot traffic areas, outpatient clinics, and Public Health – Seattle 
& King County COVID-19 drive-through testing sites. 
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Fig. S3. Reconstructed daily incidences of individual respiratory pathogens, adjusted for testing volume over 
time, age, clinical setting, and local syndromic respiratory illness rates. Community and hospital-based 
incidences (orange and purple lines, respectively) were rescaled to fall between 0 and 1 and summed (green lines) to 
aid in comparing relative changes in incidence between pathogens over time. To reduce noise, we applied centered 
two-week moving averages to incidences. The vertical dashed line indicates the date of Washington’s State of 
Emergency declaration (February 29, 2020).
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Fig. S4. Mobility metrics derived from SafeGraph mobile device location data for the greater Seattle region, 
November 2018 – June 2022. For each mobility indicator, we summed daily or weekly visits for each point of 
interest (POI) category and measured the percent change in movement over time relative to the average movement 
observed in all of 2019 (excluding national holidays). We applied a centered two-week moving average to each 
metric to reduce noise. In each facet, the vertical blue shaded panel indicates the timing of a major snowstorm in 
Seattle (February 3-15, 2019), the vertical dashed line indicates the date of Washington’s State of Emergency 
declaration (February 29, 2020), and the vertical orange shaded panel indicates Seattle’s stay-at-home period (March 
23 – June 5, 2020). 
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Fig. S5. Daily incidences and transmissibility of respiratory viruses circulating in the greater Seattle region, 
December 2018 – May 2019. Daily time-varying effective reproduction numbers (𝑅!, thick lines, left y-axis) and 
reconstructed incidences of respiratory viruses (thin lines, right y-axis). Daily 𝑅! time series show the posterior 
median (thin dark line) and 90% credible interval (shaded band). We applied centered two-week moving averages to 
daily incidences to reduce noise. The vertical blue shaded panel indicates the timing of a major snowstorm 
(February 3 – 15, 2019).  
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Fig. S6. Time series cross-correlations and optimal lags between respiratory pathogen transmissibility (daily 
effective reproduction numbers, 𝑹𝒕) and cell phone mobility in the greater Seattle region, December 2018 – 
May 2019. Points are individual mobility indicators derived from SafeGraph mobile device location data. Daily 
cross correlations in rolling 1-month windows were averaged by calendar month. Horizontal error bars are the 95% 
confidence intervals of optimal lags within each calendar month. Spearman correlation coefficients are on the y-axis, 
and temporal lags (in days) between 𝑅! and mobility are on the x-axis. Negative temporal lags indicate behavior 
leads 𝑅!, and positive temporal lags indicate 𝑅! leads behavior. A lag of 0 indicates the time series are in phase (i.e., 
synchronous). The yellow shaded panel in each facet includes mobility indicators that have a leading, positive 
relationship with transmission, and hence would be considered predictive of transmission. 
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Fig. S7. A. Daily effective reproduction numbers (𝑹𝒕) of respiratory viruses circulating in the greater Seattle 
region, and B. Rolling daily cross-correlations between pathogen transmissibility and cell phone mobility 
during January – February 2019. Daily 𝑅! time series show the posterior median (thin dark line) and 90% 
credible interval (shaded band). Points represent the maximum (absolute) coefficient values for 1-month rolling 
Spearman cross-correlations between daily effective reproduction numbers (𝑅!) and individual mobility metrics, 
when constraining the analysis to leading or synchronous relationships between mobility and 𝑅!. Point color and the 
number within each point indicate the lag in days corresponding to the maximum cross-correlation coefficient value 
for each 1-month window (“optimal lag”). Negative values indicate that mobility leads 𝑅!, and a lag of 0 indicates 
the time series are in phase (i.e., synchronous). Point transparency indicates statistical significance based on 1000 
block bootstrap permutations (yes: solid, no: transparent). The vertical blue shaded panel indicates the timing of a 
major snowstorm (February 3 – 15, 2019). 
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Fig. S8. A. Weekly effective reproduction numbers (𝑹𝒕) of respiratory viruses circulating in the greater 
Seattle region, and B. Rolling cross-correlations between pathogen transmissibility and cell phone mobility 
during the 2019-2020 winter season prior to the start of the COVID-19 pandemic, August 2019 – December 
2020. Weekly 𝑅! time series show the posterior median (thin dark line) and 90% credible interval (shaded band). 
Points represent the maximum (absolute) coefficient values for 5-month rolling Spearman cross-correlations 
between weekly effective reproduction numbers (𝑅!) and individual mobility metrics, after constraining the analysis 
to leading or synchronous relationships between mobility and 𝑅!. Point color and the number within each point 
indicate the lag in weeks corresponding to the maximum cross-correlation coefficient value for each 5-month period 
(“optimal lag”). Negative values indicate that mobility leads 𝑅!, and a lag of 0 indicates the time series are in phase 
(i.e., synchronous). Point transparency indicates statistical significance based on 1000 block bootstrap permutations 
(yes: solid, no: transparent). 
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Fig. S9. Generalized additive model (GAM) plots showing the partial effects of selected mobility indicators 
and time trends on the daily effective reproduction numbers (𝑹𝒕) of endemic respiratory viruses during the 
2019-2020 winter season prior to the start of the COVID-19 pandemic, September 2019 – February 2020. 
GAMs were fit to the exponential growth phase of each wave, when 𝑅! exceeds 1. Tick marks on the x-axis indicate 
observed data points. The y-axis represents of the partial effect of each variable. Gray shaded bands are the 95% 
confidence intervals of partial effects. The blue points are partial residuals. 
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Fig. S10. Time series cross-correlations and optimal lags between respiratory virus transmissibility (time-
varying effective reproduction numbers, 𝑹𝒕) and cell phone mobility in the greater Seattle region, September 
2019 – May 2020. Points are individual mobility indicators derived from aggregated mobile device location data. 
Spearman correlation coefficients are on the y-axis, and temporal lags (in weeks) between 𝑅! and mobility are on the 
x-axis. Negative lags indicate behavior leads 𝑅!, positive lags indicate 𝑅! leads behavior, and a lag of 0 indicates the 
two time series are in phase (i.e., synchronous). The yellow shaded panel in each facet includes mobility indicators 
that have a leading, positive relationship with transmission, and hence would be considered predictive of 
transmission. 
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Fig. S11. A. Weekly effective reproduction numbers (𝑹𝒕) of respiratory viruses circulating in the greater 
Seattle region, and B. Rolling cross-correlations between pathogen transmissibility and cell phone mobility 
during the early months of the COVID-19 pandemic, December 2019 – June 2020. Weekly 𝑅! time series show 
the posterior median (thin dark line) and 90% credible interval (shaded band). Points represent the maximum 
(absolute) coefficient values for 5-month rolling Spearman cross-correlations between weekly effective reproduction 
numbers (𝑅!) and individual mobility metrics, after constraining the analysis to leading or synchronous relationships 
between mobility and 𝑅!. Point color and the number within each point indicate the lag in weeks corresponding to 
the maximum cross-correlation coefficient value for each 5-month period (“optimal lag”). Negative values indicate 
that mobility leads 𝑅!, and a lag of 0 indicates that the time series are in phase. Point transparency indicates 
statistical significance based on 1000 block bootstrap permutations (yes: solid, no: transparent). The vertical dashed 
line indicates the date of Washington’s State of Emergency declaration (February 29, 2020), and the vertical orange 
shaded panel indicates Seattle’s stay-at-home period (March 23 – June 5, 2020).  
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Fig. S12. Generalized additive model (GAM) plots showing the partial effects of selected mobility indicators 
and time trends on the daily effective reproduction numbers (𝑹𝒕) of SARS-CoV-2 during four COVID-19 
waves in Seattle: the winter 2020-2021 wave, the Alpha wave in Spring 2021, the Delta wave in Summer 2021, 
and the Omicron BA.1 wave during late 2021 to early 2022. GAMs were fit to the exponential growth phase of 
each wave, when 𝑅! exceeds 1. Tick marks on the x-axis indicate observed data points. The y-axis represents of the 
partial effect of each variable. Gray shaded bands are the 95% confidence intervals of partial effects. The blue points 
are partial residuals.  
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Fig. S13. A. Weekly effective reproduction numbers (𝑹𝒕) of three non-enveloped viruses – rhinovirus, 
enterovirus, and adenovirus – circulating in the greater Seattle region, and B. Rolling cross-correlations 
between pathogen transmissibility and cell phone mobility during the COVID-19 pandemic, January 2020 – 
March 2022. Weekly 𝑅! time series show the posterior median (thin dark line) and 90% credible interval (shaded 
band). Points are the maximum (absolute) coefficient values for 5-month rolling Spearman cross-correlations 
between weekly effective reproduction numbers (𝑅!) and individual behavioral metrics, after constraining the 
analysis to leading or synchronous relationships between mobility and 𝑅!. Point color and the number within each 
point indicate the lag in weeks corresponding to the maximum cross-correlation coefficient value for each 5-month 
period (“optimal lag”). Negative values indicate that behavior leads 𝑅!, and a lag of 0 indicates that the time series 
are in phase (i.e., synchronous). Point transparency indicates statistical significance based on 1000 block bootstrap 
permutations (yes: solid, no: transparent). The vertical dashed line indicates the date of Washington’s State of 
Emergency declaration (February 29, 2020), the vertical orange shaded panel indicates Seattle’s stay-at-home period 
(March 23 – June 5, 2020), and the vertical blue shaded panel indicates the timing of the Omicron BA.1 wave 
(November 2021 – January 2022). 
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Fig. S14. Generalized additive model (GAM) plots showing the partial effects of selected mobility indicators 
and time trends on the daily effective reproduction numbers (𝑹𝒕) of three non-enveloped respiratory viruses – 
rhinovirus, enterovirus, and adenovirus – during their first six months of rebound, June 2020 – November 
2020. GAMs were fit to the exponential growth phase of each wave, when 𝑅! exceeds 1. Tick marks on the x-axis 
indicate observed data points. The y-axis represents of the partial effect of each variable. Gray shaded bands are the 
95% confidence intervals of partial effects. The blue points are partial residuals.  
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Fig. S15. A. Weekly effective reproduction numbers (𝑹𝒕) of enveloped viruses circulating in the greater 
Seattle region, and B. Rolling cross-correlations between pathogen transmissibility and cell phone mobility 
during the COVID-19 pandemic, January 2021 – March 2022. Weekly 𝑅! time series show the posterior median 
(thin dark line) and 90% credible interval (shaded band). Points are the maximum (absolute) coefficient values for 5-
month rolling Spearman cross-correlations between weekly effective reproduction numbers (𝑅!) and individual 
mobility and behavioral metrics, after constraining the analysis to leading or synchronous relationships between 
behavior and 𝑅!. Point color and the number within each point indicate the lag in weeks corresponding to the 
maximum cross-correlation coefficient value for each 5-month period (“optimal lag”). Negative values indicate that 
behavior leads 𝑅!, and a lag of 0 indicates that the time series are in phase (i.e., synchronous). Point transparency 
indicates statistical significance based on 1000 block bootstrap permutations (yes: solid, no: transparent). The 
vertical dashed line indicates when Washington state required public schools to offer at least two days of partial in-
person instruction to all grades (April 19, 2021), and the vertical blue shaded panel indicates the timing of the 
Omicron BA.1 wave (November 2021 – January 2022). 
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Fig. S16. Generalized additive model (GAM) plots showing the partial effects of selected mobility indicators 
and time trends on the daily effective reproduction numbers (𝑹𝒕) of enveloped respiratory viruses during 
their initial months of rebound, January – August 2021. GAMs were fit to the exponential growth phase of each 
wave, when 𝑅! exceeds 1. Tick marks on the x-axis indicate observed data points. The y-axis represents of the 
partial effect of each variable. Gray shaded bands are the 95% confidence intervals of partial effects. The blue points 
are partial residuals. 
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Fig. S17. Mobility and masking trends in the greater Seattle region during November 2021 – April 2022. In 
each panel, the vertical blue shaded panel indicates the timing of the Omicron BA.1 wave in Seattle (November 
2021 – February 2022). A. The percent change from baseline for large-scale population movements: within-
neighborhood movement (purple), between-neighborhood movement (dark green), inflow of visitors from other 
Washington counties (red), and inflow of out-of-state visitors (light blue). B. The percent change from baseline in 
foot traffic to various categories of points of interest (POIs): transit stations (purple), religious organizations (green), 
colleges and universities (light green), full-service restaurants (dark yellow), groceries and pharmacies (pink), and 
elementary and high schools (blue). C. The percentage of devices staying completely at home (purple, left y-axis) 
and the percentage of individuals masking in public in King County, WA (dark green, right y-axis).   
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Fig. S18. Generalized additive model (GAM) plots showing the partial effects of selected mobility indicators 
and time trends on the daily effective reproduction numbers (𝑹𝒕) of endemic respiratory viruses during the 
beginning of the Omicron BA.1 wave, November 2021 – January 2022. GAMs were fit to the exponential 
growth phase of each wave, when 𝑅! exceeds 1. Tick marks on the x-axis indicate observed data points. The y-axis 
represents of the partial effect of each variable. Gray shaded bands are the 95% confidence intervals of partial 
effects. The blue points are partial residuals. 
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Fig. S19. Predictive model of daily SARS-CoV-2 transmission (time-varying effective reproduction numbers, 
𝑹𝒕), March 2020 – May 2022. The vertical yellow shaded area indicates the initial model training period, and the 
vertical orange shaded area indicates Seattle’s stay-at-home period. A. Estimated daily transmissibility (𝑅!) (left y-
axis) from the full model with autoregressive (AR) terms and mobility, climatic, and rhinovirus (hRV) interaction 
covariates (red), contrasting with observed 𝑅! (thick light green line: posterior median; light green shaded band: 
90% credible interval) and estimates from a model with only AR terms (orange), a model with AR and mobility 
terms (light blue), a model with AR and climatic terms (dark blue), and a model with AR, mobility, and climatic 
terms (purple). Daily COVID-19 cases are shaded dark green (right y-axis). B. Model percentage error in predicting 
𝑅!. Positive values indicate overprediction, and negative values indicate underprediction.  
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Fig. S20. Predictive model of daily human rhinovirus (hRV) transmission (time-varying effective 
reproduction numbers, 𝑹𝒕), February 2019 – May 2022. The vertical yellow shaded area indicates the initial 
model training period, and the vertical orange shaded area indicates Seattle’s stay-at-home period. A. Estimated 
daily transmissibility (𝑅!) (left y-axis) from the full model with autoregressive (AR) terms and mobility, climate, 
and SARS-CoV-2 interaction covariates (red), contrasting with observed 𝑅! (thick light green line: posterior median; 
light green shaded band: 90% credible interval) and estimates from a model with only AR terms (orange), a model 
with AR and mobility terms (light blue), a model with AR and climatic terms (dark blue), and a model with AR, 
mobility, and climatic terms (purple). Daily hRV incidence is shaded dark green (right y-axis). B. Model percentage 
error in predicting 𝑅!. Positive values indicate overprediction, and negative values indicate underprediction. 
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Fig. S21. Predictive model of daily adenovirus (AdV) transmission (time-varying effective reproduction 
numbers, 𝑹𝒕), February 2019 – May 2022. The vertical yellow shaded area indicates the initial model training 
period, and the vertical orange shaded area indicates Seattle’s stay-at-home period. A. Estimated daily 
transmissibility (𝑅!) (left y-axis) from the full model with autoregressive (AR) terms and  mobility, climate, and 
SARS-CoV-2 interaction covariates (red), contrasting with observed 𝑅! (thick light green line: posterior median; 
light green shaded band: 90% credible interval) and estimates from a model with only AR terms (orange), a model 
with AR and mobility terms (light blue), a model with AR and climatic terms (dark blue), and a model with AR, 
mobility, and climatic terms (purple). Daily AdV incidence is shaded dark green (right y-axis). B. Model percentage 
error in predicting 𝑅!. Positive values indicate overprediction, and negative values indicate underprediction. 
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Fig. S22. Daily predicted frequencies of SARS-CoV-2 clades circulating in King County, Washington during 
February 2020 – June 2022, based on 9,626 genomes. The predicted probabilities of a given sequence belonging 
to each clade were determined by a multinomial logistic regression model, with SARS-CoV-2 Nextstrain clades as 
the dependent variable and the number of days since the first detection as the predictor. 
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Fig. S23. The weekly proportion of emergency department visits coded as COVID-like illness (CLI), 
influenza-like illness (ILI), or broad respiratory illness among patients seeking care at emergency 
departments in King County, Washington. Data are disaggregated by age group: < 5 (top) and ≥ 5 years of age 
(bottom). We applied centered two-week moving averages to syndromic respiratory illness rates to reduce noise. 
Respiratory syndromic surveillance data were obtained from the Rapid Health Information Network (RHINO) 
program at the Washington Department of Health. Syndrome criteria are defined by the Electronic Surveillance 
System for the Early Notification of Community-Based Epidemics (ESSENCE). 
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Fig. S24. Combining SafeGraph and Meta Data for Good mobility datasets to create a custom “percentage 
staying home” metric for King County, Washington. A. Daily data on the percentage of devices staying home in 
King County from SafeGraph’s Social Distancing Metrics (purple) and Meta Data for Good’s Movement Range 
Maps (green). SafeGraph social distancing metrics are available from January 1, 2019, to April 16, 2021, and Meta 
Movement Range Maps are available from March 1, 2020, to May 22, 2022. Trends in the percentage of devices 
staying home are almost identical across the two data sources, though the percentage of devices staying home in the 
Meta dataset is lower than that observed in the SafeGraph dataset. B. We added a scaling factor of 14 to the Meta 
indicator, and C. Joined the two time series to create a single metric for our study period (blue). Because the Meta 
data are much noisier than the SafeGraph data, we smoothed the joint time series with a centered 7-day moving 
average. 
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Fig. S25. Flow chart showing the three steps for reconstructing pathogen incidences from virologic and 
syndromic respiratory surveillance data. To properly reconstruct pathogen incidences through time, we 
considered the different populations sampled by the Seattle Flu Study (SFS), particularly regarding age group (≥ 5 
years or < 5 years) and clinical setting (hospital or community). Dark blue boxes correspond to data collected by 
SFS, light blue boxes correspond to external data sources, purple boxes correspond to derived estimates, and the 
green box is the final output: reconstructed incidence. 
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Fig. S26. Daily proportions of respiratory specimens testing positive for each pathogen during November 
2018 - June 2022. Proportion positive values are disaggregated by clinical setting (community or hospital) and age 
group (≥ 5 years, green or < 5 years, purple). Raw proportion positive values are overlaid with centered two-week 
moving averages. 
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Fig. S27. Comparison of SCAN estimated daily COVID-19 incidence (green) to daily confirmed COVID-19 
cases (purple) reported in King County, Washington. Comparisons are split into two time periods: pre-Omicron 
(before December 2021) and Omicron, due to high case counts during the Omicron BA.1 wave in winter 2021-2022. 
We applied a centered two-week moving average to each time series to reduce noise. 
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Fig. S28. An overview of statistical analyses and their various inputs. Dark blue boxes correspond to inputs 
derived from Seattle Flu Study (SFS) data, light blue boxes correspond to inputs from external data sources, and 
purple boxes correspond to statistical analyses.  
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Supplementary Tables 
 
Table S1. TaqMan OpenArray panel probe sets over time. Columns V1-V5 represent different probe sets. Date 
ranges correspond to when each probe set was in use and not specimen collection dates. Respiratory specimen 
collection began in November 2018, and laboratory testing of specimens began in March 2019. 
 

Pathogen type Probe 
V1 
Start: 3/12/19 
End: 4/16/19 

V2 
Start: 5/5/19 
End: 2/20/20 

V3 
Start: 2/21/20 
End: 5/1/20 

V4 
Start: 5/29/20 
End: 11/20/20 

V5 
Start: 11/23/20 
End: ongoing 

Influenza virus 

Flu_A_pan      
Flu_A_H1      
Flu_A_H3      
Flu_B_pan      
Flu_C      

Parainfluenza 
virus 

hPIV1      
hPIV2      
hPIV3      
hPIV4      
hPIV1_hPIV2      
hPIV3_hPIV4      

Enterovirus EV_pan      
EV_D68      

Rhinovirus RV_1of1      
RV_1of2      

Adenovirus AdV_1of1      
AdV_1of2      

Coronavirus 

CoV_HKU1_CoV_NL63      
CoV_229E_CoV_OC43      
hCoV_HKU1      
hCoV_NL63      
hCoV_229E      
hCoV_OC43      
SARS_CoV-2_Orf1B      
SARS-CoV-2_S      

Respiratory 
syncytial virus 

RSVA      
RSVB      

Metapneumovirus hMPV      
Parechovirus hPeV      
Bocavirus hBoV      
Measles Measles      
Mumps Mumps      

Pneumoniae 
M. pneumoniae      
C. pneumoniae      
S. pneumoniae      

Total unique pathogens 24 26 26 24 24 
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Table S2. Number of samples by recruitment type and site. 

Recruitment Type Site Sample size 
Clinic (Kiosk) ChildrensHospitalSeattle 944 
Clinic (Kiosk) ChildrensHospitalSeattleOutpatientClinic 246 
Clinic (Kiosk) UWHallHealth 196 
Clinic (Kiosk) ChildrensHospitalBellevue 94 
Clinic (Kiosk) UWSeaMar 88 
Clinic (Kiosk) PioneerSquare 58 
Clinic (Kiosk) ChildrensSeaMar 37 
Clinic (Flu VE Network) Kaiser Permanente 3604 
Community (swab-and-send) SCAN 42840 
Community (swab-and-send) swabNSend 2901 
Community (Residual) RetrospectivePHSKC 7956 
Community (Kiosk) WestlakeMall 392 
Community (Kiosk) CapitolHillLightRailStation 32 
Community (Kiosk) SeattleCenter 23 
Community (Kiosk) SeaTacDomestic 12 
Community (Kiosk) SeaTacInternational 9 
Community (Kiosk) PICAWA 6 
Community (Kiosk) KingStreetStation 4 
Community (Kiosk) WestlakeLightRailStation 1 
College Campus (Kiosk) UWSuzzalloLibrary 177 
College Campus (Kiosk) HUB 135 
Workplace (Kiosk) HarborviewLobby 254 
Workplace (Kiosk) FredHutchLobby 171 
Workplace (Kiosk) Costco 34 
Workplace (Kiosk) ColumbiaCenter 18 
Hospital (Residual) RetrospectiveChildrensHospitalSeattle 16042 
Hospital (Residual) RetrospectiveHarborview 2483 
Hospital (Residual) RetrospectiveNorthwest 1426 
Hospital (Residual) RetrospectiveUWMedicalCenter 708 

Total samples 80891 
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Table S3. Comparison of different models forecasting daily effective reproduction numbers (𝑹𝒕) of human 
rhinovirus (hRV), adenovirus (AdV), and SARS-CoV-2 over the course of the study period. The accuracy of 7-
day ahead forecasts were measured using the root-mean-squared error (RMSE) and mean absolute error (MAE). The 
benefit of including variables related to mobility, climate, or viral interactions was calculated as the percent 
difference in RMSE and MAE relative to the baseline AR model, wherein negative values indicate models with 
additional covariates are more accurate, and positive values indicate the baseline model is more accurate. 
 
 

Human rhinovirus (hRV) 
First training window: 2019 February 6 – 2019 March 7 
Testing period: 2019 March 8 – 2022 May 16 

RMSE 
RMSE 
Percent 

difference 
from baseline 

MAE 
MAE 
Percent 

difference 
from baseline 

AR 0.0069 0 0.0051 0 
AR + Climate 0.0091 32.7 0.0059 15.5 
AR + Mobility 0.0133 93.9 0.0092 81.4 
AR + Mobility + Climate 0.0135 97.4 0.0094 85.3 
AR + Mobility + Climate + SARS-CoV-2 𝑅! 0.0136 97.6 0.0094 85.6 

 
 

Adenovirus (AdV) 
First training window: 2019 February 6 – 2019 March 7 
Testing period: 2019 March 8 – 2022 May 16 

RMSE 
RMSE 
Percent 

difference 
from baseline 

MAE 
MAE 
Percent 

difference 
from baseline 

AR 0.0290 0 0.0205 0 
AR + Climate 0.0313 8.0 0.0221 7.9 
AR + Mobility 0.0402 38.7 0.0301 46.7 
AR + Mobility + Climate 0.0414 43.0 0.0310 51.4 
AR + Mobility + Climate + SARS-CoV-2 𝑅! 0.0424 46.4 0.0315 53.8 

 
 

SARS-CoV-2 
First training window: 2020 March 14 – 2020 April 12  
Testing period: 2020 April 13 – 2022 May 16 

RMSE 
RMSE 
Percent 

difference 
from baseline 

MAE 
MAE 
Percent 

difference 
from baseline 

AR 0.0291 0 0.0175 0 
AR + Climate 0.0292 0.4 0.0179 2.5 
AR + Mobility 0.0295 1.4 0.0194 11.2 
AR + Mobility + Climate 0.0298 2.4 0.0197 12.7 
AR + Mobility + Climate + hRV 𝑅! 0.0302 3.9 0.0199 14.1 
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Table S4. Comparison of different models forecasting daily effective reproduction numbers (𝑹𝒕) of human 
rhinovirus (hRV), adenovirus (AdV), and SARS-CoV-2 during COVID-19 stay-at-home orders and the initial 
lifting of restrictions. The accuracy of 7-day ahead forecasts were measured using the root-mean-squared error 
(RMSE) and mean absolute error (MAE). The benefit of including variables related to mobility, climate, or viral 
interactions was calculated as the percent difference in RMSE and MAE relative to the baseline AR model, wherein 
negative values indicate models with additional covariates are more accurate, and positive values indicate the 
baseline model is more accurate. 
 

Human rhinovirus (hRV) 
Testing period: 29 February 2020 – 15 June 2020 RMSE 

RMSE 
Percent 

difference 
from baseline 

MAE 
MAE 
Percent 

difference 
from baseline 

AR 0.0057 0 0.0042 0 
AR + Climate 0.0062 8.4 0.0049 16.6 
AR + Mobility 0.0064 11.8 0.0050 19.7 
AR + Mobility + Climate 0.0066 16.9 0.0052 24.3 
AR + Mobility + Climate + SARS-CoV-2 𝑅! 0.0067 17.4 0.0052 24.9 

 

Adenovirus (AdV) 
Testing period: 29 February 2020 – 15 June 2020 RMSE 

RMSE 
Percent 

difference 
from baseline 

MAE 
MAE 
Percent 

difference 
from baseline 

AR 0.0193 0 0.0141 0 
AR + Climate 0.0192 -0.5 0.0138 -2.2 
AR + Mobility 0.0216 12.2 0.0168 19.5 
AR + Mobility + Climate 0.0236 22.7 0.0181 28.5 
AR + Mobility + Climate + SARS-CoV-2 𝑅! 0.0252 30.7 0.0194 37.5 

 

SARS-CoV-2 
Testing period: 13 April 2020 – 15 June 2020 RMSE 

RMSE 
Percent 

difference 
from baseline 

MAE 
MAE 
Percent 

difference 
from baseline 

AR 0.0256 0 0.0162 0 
AR + Climate 0.0264 3.0 0.0167 3.6 
AR + Mobility 0.0218 -14.8 0.0170 5.4 
AR + Mobility + Climate 0.0218 -14.9 0.0170 5.5 
AR + Mobility + Climate + hRV 𝑅! 0.0268 4.5 0.0192 19.1 
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Table S5. Comparison of different models forecasting daily effective reproduction numbers (𝑹𝒕) of SARS-
CoV-2 during the period of COVID-19 vaccination and SARS-CoV-2 variant emergence, 2021 - 2022. The 
accuracy of 7-day ahead forecasts were measured using the root-mean-squared error (RMSE) and mean absolute 
error (MAE). The benefit of including variables related to mobility, climate, or viral interactions was calculated as 
the percent difference in RMSE and MAE relative to the baseline model (model with only AR terms), wherein 
negative values indicate models with additional covariates are more accurate, and positive values indicate the 
baseline model is more accurate. 
 

SARS-CoV-2 
First training window: 2021 January 29 – 2021 February 27 
Testing period: 2021 February 28– 2022 May 16 

RMSE 
RMSE 
Percent 

difference 
from baseline 

MAE 
MAE 
Percent 

difference 
from baseline 

AR 0.0334 0 0.0191 0 
AR + Climate 0.0323 -3.3 0.0182 -4.9 
AR + Mobility 0.0290 -13.2 0.0176 -7.6 
AR + Mobility + Climate 0.0291 -13.0 0.0178 -6.5 
AR + Mobility + Climate + hRV 𝑅! 0.0293 -12.5 0.0179 -6.1 
AR + Mobility + Climate + hRV 𝑅! + 
Vaccination + Variants 0.0330 -1.3 0.0191 0.1 
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Table S6. Data sources for adjusting the age distributions of pathogen presence/absence data. 

Pathogen Source Description Proportion 
< 5 years 

Proportion 
≥ 5 years 

Community samples 
Influenza A/H3N2, 
A/H1N1, B 

6 Age group distribution of influenza 
positive specimens reported by public 
health laboratories in WA state 

Time varying 
(weekly) 

Time varying 
(weekly) 

AdV, hCoV, hMPV, 
hPIV, RSV, hRV, EV 

6 Age group distribution of influenza-like 
illness cases in WA state 

Time varying 
(weekly) 

Time varying 
(weekly) 

SARS-CoV-2 25 Age group distribution of COVID-19 
positive specimens in King County, WA 

Time varying 
(daily) 

Time varying 
(daily) 

Hospital residuals 
Influenza A/H3N2, 
A/H1N1, B 

26 National age group distribution of 
laboratory-confirmed influenza-associated 
hospitalizations 

Time varying 
(weekly) 

Time varying 
(weekly) 

RSV 27 Age distribution of RSV detections among 
186,155 positive patients hospitalized for 
ARI, cardiorespiratory disease, or sepsis, 
United States, 1997-2009 

0.54 0.46 

hRV, EV 28 
 

Age distribution of hRV detections among 
76 positive patients hospitalized for ARI, 
Taiwan, 2013-2014 

0.64 0.36 

AdV 29 Age distribution of AdV detections among 
1302 positive patients referred to the 
Institute for Infectious Diseases for 
diagnostic testing, Bern, Switzerland, 
1998-2017 

0.57 0.43 

hCoV 30 Age distribution of hCoV detections 
among 2958 positive patients in secondary 
care, NHS Greater Glasgow and Clyde, 
Scotland, UK, 2005-2017 

0.29 0.71 

hMPV 31 Age distribution of hMPV detections 
among 331 positive patients hospitalized 
for SARI, Mexico, 2009-2018 

0.575 0.425 

hPIV 32 Age distribution of hPIV detections 
among 17,717 positive patients in primary 
or secondary care, England and Wales, 
UK, 1998-2013  

0.64 0.36 

SARS-CoV-2 25 Age group distribution of laboratory 
confirmed COVID-19 hospitalizations in 
Washington state 

Time varying 
(daily) 

Time varying 
(daily) 
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Table S7. Pathogen-specific incubation periods, generation or serial intervals, and basic reproduction 
numbers obtained from published literature. Incubation periods and generation or serial intervals include the 
mean and standard deviation (SD) in days. The probability distribution family used to estimate each parameter is 
listed below the mean and SD. 

Pathogen Incubation Period  
(days) 

Generation or Serial 
Interval (days) 

Basic Reproduction 
Number, 𝑹𝒐 

Source 

SARS-CoV-2 Mean = 6.3, SD = 3.6 
Lognormal 

Mean = 5.2, SD = 1.2 
Gamma 

3 33-35 

hCoV* Mean = 5.1, SD = 2.2 
Lognormal 

Mean = 5.2, SD = 1.2 
Gamma 

3 34,36 

Influenza Mean = 1.9, SD = 1.22  
Lognormal 

Mean = 3.6, SD = 1.6  
Weibull 

1.2 (A/H3N2 and B) 
1.5 (A/H1N1) 

37-39 

RSV† Mean = 4.5, SD = 0.9 
Lognormal 

Mean = 7.5, SD = 2.1 
Gamma  

2 36,40-42 

hMPV†‡ Mean = 4.5, SD = 0.9 
Lognormal 

Mean = 5.2, SD = 1.5 
Gamma 

2 36,42,43 

hPIV†§ Mean = 2.6, SD = 1.35 
Lognormal 

Mean = 7.5, SD = 2.1 
Gamma 

2 37,40,41 

hRV† Mean = 2.36, SD = 1.1 
Lognormal 

Mean = 4.4, SD = 2.7  
Gamma 

2 36,41,44 

EV¶ Mean = 2.36, SD = 1.1 
Lognormal 

Mean = 4.4, SD = 2.7  
Gamma 

2 36,41,44 

AdV† Mean = 5.6, SD = 1.26 
Lognormal 

Mean = 7.8, SD = 2.4 
Gamma 

2 37,41,45 

* Generation interval and 𝑅" for SARS-CoV-2. 
† Serial interval reanalyzed using time intervals of disease onset for infectors and infectees from the published 
study. 
‡ Incubation period and 𝑅" for RSV. 
§ Serial interval for RSV. 
¶ Incubation period, serial interval, and 𝑅" for hRV. 
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Table S8. International Classification of Diseases, Tenth Revision (ICD-10) codes used to designate 
hospitalized patients as symptomatic for respiratory illness. 

Condition ICD-10 Code 
Acute upper respiratory infections J00-J06 
Influenza and pneumonia J10-J18 
Other acute lower respiratory infections J20-J22 
Other diseases of upper respiratory tract J30-J39 
Chronic lower respiratory diseases J40-J47 
Other respiratory diseases principally affecting 
the interstitium 

J80-J84 

Suppurative and necrotic conditions of the 
lower respiratory tract 

J85-J86 

Other diseases of the pleura J90-J94 
Other diseases of the respiratory system J96-J99 
COVID-19 U07.1 
Otitis media H65-H66 
Hemorrhage from respiratory passages R04 
Cough R05 
Abnormalities in breathing R06 
Pain in throat and chest R07 
Hypoxemia R09.02 
Nasal congestion or postnasal drip R09.8 
Fever, unspecified R50.9 
Respiratory tuberculosis A15 
Viral infection of unspecified site B34 
Viral conjunctivitis B30 
Streptococcus, Staphylococcus, and 
Enterococcus as the cause of diseases classified 
elsewhere 

B95 

Adenovirus as the cause of diseases classified 
elsewhere 

B97.0 

Enterovirus as the cause of diseases classified 
elsewhere 

B97.1 

Coronavirus as the cause of diseases classified 
elsewhere 

B97.2 

Respiratory syncytial virus as the cause of 
diseases classified elsewhere 

B97.4 

Human metapneumovirus as the cause of 
diseases classified elsewhere 

B97.81 
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