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Abstract: In 2022, mpox clade IIb disseminated around the world, causing outbreaks in 
more than 117 countries. Despite the decay of the 2022 epidemic and the expected 
accumulation of immunity within queer sexual networks, mpox continues to persist at 
low incidence in North America without extinction, raising concerns of future outbreaks. 
We combined phylodynamic inference and microsimulation modeling to understand the 
heterogeneous dynamics governing local mpox persistence in Los Angeles County 
(LAC) from 2023-2024. Our Bayesian phylodynamic analysis revealed a time-varying 
pattern of viral importations into the county that seeded a heavy-tailed distribution of 
mpox outbreak clusters that display a “stuttering chains” dynamic. Our 
phylodynamics-informed microsimulation model demonstrated that the persistent 
number of mpox cases in LAC can be explained by a combination of waves of viral 
introductions and a return to near-baseline sexual behaviors that were altered during 
the 2022 epidemic. Finally, our counterfactual scenario modeling showed that public 
health interventions that either promote increased isolation of symptomatic, infectious 
individuals or enact behavior-modifying campaigns during the periods with the highest 
viral importation intensity are both actionable and effective at curbing mpox cases. Our 
work highlights the heterogeneous factors that maintain present-day mpox dynamics in 
a large, urban US county and describes how to leverage these results to design timely 
and community-centered public health interventions. 
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Significance Statement: 
 
Despite the drop in cases following the 2022 epidemic, mpox continues to circulate at 
low, but persistent levels. Understanding the factors that maintain mpox incidence is 
crucial to stopping future cases. We combine phylodynamic analysis of mpox genomes 
with microsimulations of mpox dynamics to understand transmission in Los Angeles 
County in 2023-2024. Our models reveal that the persistent transmission of mpox can 
be explained by a combination of sexual behaviors that were modified during the 2022 
epidemic returning to baseline and waves of viral importations seeding new clusters of 
cases. Our results show that improving isolation for symptomatic individuals as well as 
targeting public health campaigns around periods of high travel can be effective 
interventions to curb future mpox spread.  
 
 
Introduction: 
Mpox is a viral infection caused by the monkeypox virus (MPXV), an orthopoxvirus 
closely related to smallpox (1). In 2022, mpox spread globally, largely via queer sexual 
networks, causing tens of thousands of cases (2). Mpox clade IIb was introduced into 
humans in approximately 2014 in Nigeria (3), and was the causative genetic clade of 
the 2022 outbreak. Mpox clade IIb continues to spread around the world, including in 
the United States (US) (4–6). Additionally, a current outbreak of clade I in Central Africa 
also raises concern of international spread (7,8) .  
 
In 2022, clade IIb mpox cases in the US reached over one hundred per day. Mpox 
infections in the US have since remained at low, but persistent, levels (9,10). While 
sporadic larger mpox outbreaks have occurred, they have neither grown to a large-scale 
epidemic nor been eradicated, as would be expected if the effective reproduction 
number (Rt) were above or below zero, respectively (11). The mechanisms maintaining 
sporadic mpox incidence locally could include viral introductions via travel (12), small 
local clusters where Rt is larger than one (e.g. heavy-tailed infection dynamics) (13), a 
combination of these factors, or other undescribed mechanisms. If either travel or 
limited local clusters cause a majority of mpox transmission in a specific geographical 
location, targeted public health interventions that respond to the dynamics of the 
epidemic could potentially prevent a large proportion of mpox cases.  
 
Disentangling the contribution of travel-related and local transmission on infectious 
disease dynamics is difficult from case counts alone. Alternatively, phylodynamics 
allows for tracking of viral movement across time and space via analysis of viral 
genomes (14). Prior work has employed phylodynamics to understand global, regional, 
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and local mpox spread by leveraging global sequencing efforts to examine mpox 
transmission prior to widespread testing availability and to understand the interplay 
between viral introductions and local spread (6,15,16). Phylodynamics works in a 
retrospective fashion to model viral evolution and transmission. To simulate 
counterfactual scenarios, microsimulations can elucidate the mechanistic factors that 
drive and curb spread. Prior microsimulation work on mpox dynamics has been used at 
a local level to both understand factors that promoted the decline of the 2022 epidemic 
and to test the effectiveness of public health interventions (17). Microsimulation models 
are, however, often limited by data availability and model assumptions.  
 
To address these shortcomings, we combine phylodynamics and microsimulation 
modeling to understand mpox spread in Los Angeles County (LAC) in 2023 and 2024. 
We employ Bayesian phylodynamics to estimate mpox importation dynamics into LAC, 
and use our phylodynamic results to parameterize a microsimulation model of mpox 
with a force of viral importations. Through our combined approach, we estimate the role 
of various factors in promoting mpox persistence in 2023-2024, such as the return of 
baseline sexual behaviors, rates of isolation for those with diagnosed mpox, and the 
role of importation versus local mpox transmission. We then use our mpox 
microsimulation model to evaluate the public health impact of interventions that target 
the identified dynamics of local spread. 
 
Results:  
 
Microsimulation shows local cases in LAC die out in 2023-2024 without viral 
importations 
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Figure 1: Mpox epidemiology and microsimulation modeling among men who have sex with men 
(MSM) in Los Angeles County. (A) Main figure shows the weekly number of diagnosed mpox cases in 
LAC from June 2022 through December 2024 (blue) with the number of diagnosed mpox cases simulated 
via our microsimulation model without viral importations overlaid in orange. Panel B shows the daily 
number of diagnosed mpox cases (blue) with the daily number of mpox sequences collected in LAC 
overlaid (purple). Panel C shows the weekly number of mpox vaccinations that were administered in Los 
Angeles County from June 2022 through October 2024 divided between the number of first doses (pink) 
and second doses (teal) given. (D) Scenario analysis of the impact of a constant force of viral 
introductions on our microsimulation model from March 2023 onwards. The empirical mpox case counts 
are represented by the gray bar chart while the simulated cases are represented by the blue point and 
line charts with an increasing number of viral importations per week.  
 
 
After mpox was initially detected in May 2022, the number of diagnosed mpox cases in 
LAC grew sharply, peaking in mid-August 2022 (Fig. 1A, main figure). By November of 
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that year, cases had dropped rapidly, with only 31 cases being reported that month 
compared to 1033 in August alone. Since the start of 2023, mpox cases in LAC have 
been sporadic, mostly characterized by periods of low incidence followed by small 
clusters of infections usually found from May-July or December-January (Fig.1A) (18). 
Similar patterns can be seen in the number of third-generation mpox vaccinations 
administered whereby the majority of first and second doses were given in the summer 
and fall of 2022 followed by small increases in 2023 and 2024 surrounding early 
summer (Fig. 1C). 
 
In order to understand these low-incidence dynamics, we extended our previously 
described microsimulation model of mpox tailored to the epidemiology and population 
structure of men who have sex with men (MSM) in LAC (17) to simulate the years 2023 
and 2024. Specifically, our microsimulation model tracked mpox dynamics by age, 
race/ethnicity, and HIV status, and was calibrated and validated against LAC 
surveillance data (See Methods). While mpox affected more than just MSM (19,20), the 
majority of mpox cases in the US have been among MSM (21), leading our model to be 
focused on this population. 
 
Our model was able to accurately capture the number of diagnosed mpox cases in LAC 
through the beginning of 2023 (Fig. 1A, orange line). It showed, however, that without 
viral introductions into the county, mpox incidence would have been expected to drop to 
zero by March 2023, indicating that introductions are necessary for maintaining low 
mpox incidence (Fig. 1A). In order to test the impact of introductions in maintaining low, 
but not zero, incidence, we conducted a scenario analysis by simulating constant viral 
introductions every week into a randomly-selected demographic strata. With the same 
model parameters calibrated after August 2022, the model required a large number of 
mpox introductions (> 5 per week) to maintain ongoing transmission similar to the 
empirical number of cases (Fig. 1B). This demonstrates that importations could be a key 
mechanism for maintaining ongoing, low-level prevalence. 
 
Periods of high viral introduction promote heavy-tailed transmission clusters that 
maintain low-level incidence 
 
Estimating the empirical number of introductions into a region is difficult with case 
counts alone. Instead, we can leverage pathogen genomes to estimate the lower bound 
of the number of introductions. Since the start of the epidemic, the LAC Department of 
Public Health has sequenced a high volume of confirmed cases, leading to the number 
of sequences collected increasing as more cases were detected (Fig. 1B). While a low 
percentage of estimated cases were sequenced at the beginning of the 2022 epidemic, 
the majority of the months in 2023-2024 had more than 50% of the estimated mpox 
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cases sequenced, allowing for local-scale phylodynamic investigation into ongoing local 
mpox transmission (Fig. S1).  
 

 
Figure 2: Genomic diversity, source of introduction, and location of exportation of mpox clusters 
in Los Angeles County. We analyzed more than 7,500 publicly available mpox clade IIb genomes from 
around the world via maximum likelihood phylogenetics using Nextstrain (A) Here, we show an exploded 
tree view of the maximum likelihood phylogeny that only includes the local outbreak clusters inferred to be 
in LAC via ancestral trait reconstruction (using Nextstrain’s augur traits functionality). Only clusters with 
more than three sequences are shown for clarity. The colors represent the assigned lineage of each 
cluster, showing the changes in mpox lineages circulating over time. (B) The plots on the right represent 
the inferred source of these imported clusters (top) as well as the location of viral exportations from LAC 
(bottom). The colors are shared between the two graphs and were constructed to focus on large 
metropolitan US cities and areas that have the highest level of mpox sequencing effort. The exportations 
and importations per month are normalized to 100% to highlight relative changes over time.  
 
To investigate transmission dynamics into LAC, we analyzed 497 mpox genomes 
sampled in LAC alongside all available contextual sequences from around the world by 
creating a time-resolved phylogeny using Nextstrain (Fig. S2) (22). We also analyzed 
the inferred ancestral locations over time (Fig. 2) via discrete trait analysis focusing on 
the sequences from LAC (See Methods). The majority of LAC clusters in 2023-2024 
were found to be part of lineage B.1.20 with one outbreak cluster consisting of lineage 
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B.1.22 (Fig. 2A). While a large part of introductions into LAC in 2022 was inferred to 
come from global regions outside of North America, we found that in 2023-2023, 
introductions from within North America, primarily New York City and other parts of 
California dominate (Fig. 2B). By inferring the location of viral exports from LAC, we 
found that, of the sequenced areas and viruses, about half of the viral exports from 
2023-2024 were to other California regions, while the other half were mostly into Cook 
County, Illinois, and New York City.  
 
We then split the sequences into local outbreak clusters using parsimony-based 
clustering to identify groups of sequences whose ancestral states were inferred to be in 
LAC (see Methods, Fig. 3A). In total, we identified 287 clusters with the majority of them 
being of size 1 (n = 131). The size of our identified outbreak clusters follows the 
heavy-tailed sexual network distribution that was characteristic of the 2022 mpox 
epidemic (Fig. 3A top inset) (13). While we expected the total number of clusters 
identified to be affected by the sequencing both within and outside of LAC, we saw a 
very limited impact in our sample due to the high amount of sequencing worldwide and 
within LAC (Fig. S3). 
 
We modeled the local mpox dynamics via a multi-tree coalescent phylodynamic 
approach conditioned on the a prior identified outbreak clusters (see Methods). In order 
to inform our estimates of transmission dynamics using both genomic and 
epidemiological data, we also developed a correlated case-based prior on the effective 
population size estimates using the weekly number of diagnosed cases smoothed using 
a 3-week moving average (see Methods). 
 
Our case-informed phylodynamic estimates of viral effective population size (Ne) were 
able to capture the temporal trends of empirical case data better than phylodynamic 
models informed by sequences alone (Fig. 3B, S4). We found time periods with higher 
Ne than expected by case counts alone, such as during the winter of 2023 or summer of 
2024 where our Ne showed an increase in viral population size while case counts 
remained relatively constant, suggesting underdetected transmission (Fig. 3B).   
 
Through our phylodynamic analysis, we were also able to estimate the date of 
importation for each identified LAC local transmission cluster, based on the most recent 
common ancestor time of each cluster, which provides a lower bound on the 
introduction time (Fig. 4A). The majority of introductions occurred during the summer of 
2022, at the height of the 2022 mpox epidemic. In addition to this peak, we also saw the 
rate of viral introductions increase between February and June and August through 
October of each subsequent year (Fig. 4B, C).  
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Figure 3: Local Los 
Angeles County dynamics 
estimated via Bayesian 
phylodynamics. (A) 
Maximum clade credibility 
(MCC) tree summary from 
local outbreak clusters of 
497 sequences showing 
clusters with more than two 
sequences. Top inset 
represents the size 
distribution of the identified 
outbreak clusters by year; 
the middle inset is the 
number of identified 
outbreak clusters by month; 
and the bottom inset 
represents the mean size of 
local outbreak clusters over 
time. The month is 
determined by the date of 
the earliest sequence in 
each cluster. (B) Estimates 
of effective population sizes 
(Neτ in years) from May 
2022 through December 
2024 (dark purple) plotted 
on top of the weekly number 
of diagnosed mpox cases 
(light blue). The coalescent 
time scale depends on both 
effective population size Ne 
(number of effective 
individuals) and on 
generation time τ (years per 
generation), resulting in Neτ 
being a measure of 
coalescent time scale in 
years. The blue and orange 
bands represent estimates 
of Rt (time-varying effective 
reproductive number) 
highlighting the contribution 
of local transmission only 
(blue) and that of viral 
introductions (orange).  The 
inner area denotes the 50% 
HPD interval, and the outer 
area denotes the 95% HPD 
interval. Dashed line 
highlights an Rt value of 1, 

above which denotes an exponentially growing epidemic. Rt estimates were smoothed using a 14-day rolling 
average. 
 
While the majority of introductions resulted in singletons (lead to only one sequenced 
genome), we found evidence of large transmission clusters introduced in both 2023 and 
2024 during those months with a high force of introduction (Fig. 4B). Given the 
presence of these large transmission clusters, we subsequently estimated the 
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persistence time of each cluster (estimated as the time, in days, between the inferred 
date of introduction and the sampling date of the latest sequence in the cluster). The 
persistence times for the largest clusters showed a maintenance of low-level case 
counts, often extending from one peak of introductions until the subsequent increase 
(Fig. S5A).  
 
We found that initial introductions mainly constitute no more than 20% of new cases in 
LAC, showing that local transmission dominates the transmission dynamics (Fig. 4D, 
dark bands). In periods of low case counts, we see a wide uncertainty (Fig. 4D, light 
bands), highlighting the potentially increased impact of introductions during those time 
periods. Of note, the percentage of cases that are due to introductions only counts 
direct introductions and not local spread after introduction. The rates of introduction and 
the percentage of cases from introduction were highest at the times closely prior to the 
two larger outbreaks in 2023 and 2024 (such as in March 2024), suggesting that 
outbreaks elsewhere and subsequent introductions in LAC were strong drivers of these 
outbreaks. 
 
To better understand the interplay between viral introductions and cases acquired via 
local transmission, we used our effective population size estimates to calculate Rt, the 
time-varying effective reproductive number (Fig. 3B, 4D). We combined our estimates of 
Rt together with our quantifications of the percentage of new cases due to introductions 
to separate out the individual contributions of introductions and local transmission on Rt. 
Doing so, we found that locally acquired transmission plays the dominant role in driving 
Rt in LAC. We also found that increases in Rt often follow increases in the percentage 
of cases due to introductions (Fig. 4D). While changes in the mean infectious period 
used to calculate the percentage of cases that are due to introductions and Rt (see 
Methods) impacted the variability and magnitude of our results, the patterns of interplay 
between introductions and local transmission remain the same (Fig. S6). Comparison of 
Rt estimated from our phylodynamic analysis with Rt from empirical case counts alone 
for 2023-2024 showed similar dynamics when considering the combined impact of both 
importations and local transmission (Fig. S7B). Removing the influence of viral 
importations dropped the mean Rt estimate closer to 1 with high variability. 
 
Additionally, given that the probability to observe a cluster of a given size is determined 
by the effective reproduction number R across a time period, transmission 
heterogeneity as estimated via the dispersion parameter k, and the fraction of infections 
sequenced (23,24), we explored how the probability to observe a cluster of size 16  
(knowing we observed 64 clusters from 2023-2024) is impacted by R and k (Fig S7A), 
assuming that 5.5% of infections were sequenced (6). We find that for a value of k 
around 0.36, which is similar to what was estimated for previous mpox outbreaks and 
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during the 2022 epidemic (6,25,26), it is highly probable to observe our max cluster size 
of 16 even with R values as low as 0.7, suggesting that the true R could be lower than 
1. We estimated the reproduction number R from the distribution of sequenced cluster 
sizes (Fig 3A, top inset) from the same time period and found an R lower than, but close 
to, one (Fig S7B), further suggesting that the true R for the time period is lower than one 
and that accounting for introductions can help partially correct the overestimation of 
local Rt. 
 
We tested the ability of our approach to correctly estimate our parameters of interest via 
simulations (See Phylodynamic Simulations under Methods). After simulating a local 
mpox outbreak with a constant force of introduction and superspreading with two 
different sequencing schemes (assuming all or 50% of cases sequenced), we found that 
our case-based prior approach is better at capturing temporal trends than analyses 
using sequences alone (Fig. S8-9). While the scenario with a Skygrowth prior on the 
growth rate analyzing sequences alone had the highest R2 value when comparing 
estimated Rt and the percentage due to introductions with simulated values, the 95% 
HPD intervals often failed to include the true value, while the Skyline prior of the Ne 
informed by case counts had a similarly high R2 while more often containing the true 
parameter value within the 95% HPD intervals. The case-informed Skyline prior was 
also found to be more robust to having 50% fewer genomes available when compared 
to the same model with a Skyline prior but without any case information. Ultimately, all 
three specifications of our model are able to capture the simulated dynamics, showing 
the utility of genomic information to inform investigations into local mpox dynamics as 
well as the added benefit of incorporating epidemiological information into our 
phylodynamic analyses. Our phylodynamic results are robust to differences in 
substitution model specification (Fig. S4).  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 15, 2025. ; https://doi.org/10.1101/2025.03.14.25323999doi: medRxiv preprint 

https://doi.org/10.1101/2025.03.14.25323999
http://creativecommons.org/licenses/by/4.0/


 

 
Figure 4: Patterns of viral introductions into Los Angeles County. (A) Here we plot the time of 
introduction for each local outbreak cluster estimated via our multitree coalescent approach, colored by 
the size of the resulting transmission cluster. The dashed line coming out of each point represents the 
time from the estimated date of introduction to the date of the last sequence sampled in the cluster (i.e. 
persistence). The yellow plot represents the time-varying rate of viral introductions estimated directly via 
the multitree coalescent, with the dashed line representing the median value and the upper and lower 
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bounds representing the 95% highest posterior density (HPD). (B) Total number of viral importations into 
LAC per month since January 2023. Number of importations are adjusted by the number of observations 
in the sample. (C) The persistence times of downstream clusters by month of introduction since January 
2023 with the boxplot plot representing the interquartile ranges, and the half violin plot representing the 
distribution of values. Scatter points are colored based on the size of the resulting transmission cluster. 
(D) The percentage of new cases due to introductions was estimated as the relative contribution of 
introductions to the overall number of infections in the region. The blue and orange dashed bands 
represent estimates of Rt highlighting the contribution of local transmission only (blue) as well as that of 
viral introductions (orange). The inner area denotes the 50% HPD interval, and the outer area denotes the 
95% HPD interval. The dashed line highlights an Rt value of 1. Rt estimates were smoothed using a 
14-day rolling average. 

 
Combining phylodynamics and epidemiological microsimulation suggests a return to 
baseline sexual behavior in 2023-2024  
 
From our phylodynamic results, we estimated the absolute number of viral importations 
into LAC over time (Fig. S5B). This allowed us to reparameterize our microsimulation 
model to incorporate an estimated force of introduction.  
 
Briefly, our microsimulation model includes a dimensionless calibration parameter, here 
referred to as the Infectivity Scalar ( ), which we vary over time (See Microsimulation α
Model, under Methods). The Infectivity Scalar was designed to modify the transmission 
impact of infected individuals on the susceptible population within their respective 
demographic group. Given that our model accounts for assortative mixing patterns 
between demographic groups as well as for the development and waning of 
vaccination-induced immunity, the Infectivity Scalar largely serves to capture changes in 
behavior throughout time, representing the relative risk of disease spread.  
 
For the first five weeks since mpox was introduced into LAC in 2022, the  was α
calibrated to be 2.2, establishing a baseline for the impact of sexual behavior on mpox 
transmission (See (17), visually represented in Fig. S10). Following those first five 
weeks, the  was lowered to 0.7 so the model could match empirically observed case α
estimates, representing a significant reduction in the risk of disease spread via changes 
in sexual behavior, in concordance with previously-documented reports (27,28).  
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Figure 5: Factors maintaining mpox prevalence and modeling counterfactual public health 
interventions. After parameterizing our microsimulation model with the number of viral importations 
estimated via phylodynamics, (A, B) we explored the  that best explains the empirical weekly number of α
diagnosed mpox cases (gray bars). Line graphs represent the mean weekly number of mpox diagnoses 
simulated using increasing . Given the non-constant pattern of viral introductions seen in the α
phylodynamic analysis, we tested different counterfactual scenarios of public health interventions during 
specific time periods (C, D) represented by lowering the  to 0.7 while keeping the  at 2.2 during the α α
remaining time. The bold yellow, red, and purple lines represent the simulated weekly number of 
diagnosed mpox cases under phylodynamic-informed interventions. In D, we also compared the impact of 
lowering the  for the same random number of weeks as each specified intervention. The green area α
represents the upper and lower bounds of the “No Intervention” scenario. We also tested the effect of 
increasing the probability of isolating upon a symptomatic individual receiving a positive mpox diagnosis 
on the simulated number of diagnosed mpox cases (E, F). In F,  the light blue area represents the bounds 
of the base model scenario with an  of 2.2. In A, C, E, the grey bars represent the empirical number of α
mpox diagnoses in LAC. We calculate the uncertainty of our microsimulation results via bootstrapping to 
estimate 95% uncertainty intervals for each weekly simulated estimate. For B, D, and F, the dashed line 
represents the total empirical number of diagnosed mpox cases from April 2023 through September 2024.  
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After adding the time-varying weekly number of estimated introductions into our model, 
we find that our model is able to recapitulate a similar number of diagnosed mpox cases 
in LAC as in the empirical data (Figs 5A-B, S11A). To do so, however, required 
increasing the  starting in March 2023. We tested different  levels from 0.7 to 2.2, α α
whereby 0.7 represents the decreased sexual activity following the peak of the 2022 
mpox outbreak in LAC, 2.2 represents the baseline  during the beginning of the 2022 α
outbreak. By comparing the simulated number of mpox diagnoses with the empirical 
case counts from LAC, we find that the optimal  lies between 1.8 and 2.0, which α
represents a significant return in sexual behavior when compared to late 2022 (Fig. 
5A-B, dark blue lines). Given that phylogenies only capture successful introductions and 
that only a number of these introductions are sequenced, the phylodynamic-estimated 
number of introductions into LAC is expected to be an underestimation. Our results, 
however, are robust even when doubling the number of estimated importations, adding 
further support to our conclusion (Fig. S12).  
 
We also calculate Rt from our microsimulation model by tracking the weekly number of 
secondary cases per each infectious individual using an  of both 1.8 and 2.0 (Fig S7B). α
We find a mean Rt around 0.65 to 0.75, which is lower than the mean Rt estimated from 
other methodologies but with overlapping uncertainty intervals. This finding, together 
with the R calculated from the distribution of cluster sizes, suggests that the true mean 
Rt during 2023-2024 is below one.  
 
Counterfactual scenario modeling reveals the potential impact of public health 
interventions in curbing mpox case counts 
 
We employed our phylo-informed microsimulation model to explore the impact of 
various potential public health interventions on mpox spread in LAC from 2023 through 
2024. Given the time-varying nature of viral introductions seen in the phylodynamic 
analysis (Fig. 4), we tested the impact of uniformly lowering transmission pressure 
during the months of highest viral introductions (April through June and September 
through October in 2023) by lowering the  to 0.7 (Fig. 5C-D). We lower the  to α α
simulate significantly reduced sexual behavior prompted via an unspecified public 
health intervention. During the months without public health intervention, we kept the  α
at the baseline of 2.2. We tested the specificity of our proposed counterfactuals by 
lowering the  to 0.7 for the same number of weeks but selected at random (Fig. 5D,  α
S11B-D). Our analyses showed that lowering the  during both periods of highest viral α
introductions resulted in a lower number of cases than a public health intervention that 
targeted only one of these time periods independently or the same number of weeks at 
random (Fig. 5C-D, dark purple line).  
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 15, 2025. ; https://doi.org/10.1101/2025.03.14.25323999doi: medRxiv preprint 

https://doi.org/10.1101/2025.03.14.25323999
http://creativecommons.org/licenses/by/4.0/


 

We also analyzed the impact of increasing the probability of isolation given an infected 
individual was symptomatic and subsequently diagnosed with mpox (Figs 5E-F, S11E). 
To do so, we fixed the  to the baseline of 2.2 and increased the probability of isolation α
starting at 0.2 which represents the baseline model. We found that increasing the 
probability of isolation even by 0.1 resulted in fewer mpox diagnoses than seen 
empirically.  
 
Discussion 
 
After decades as a predominantly regional infection, the mpox virus spread globally in 
2022, mostly via queer sexual networks. While the epidemic in 2022 has been 
extensively studied (5,6,15,16), very few studies have investigated the dynamics of 
mpox clade IIb in 2023-2024, when cases remain low and sporadic, but resist 
elimination (18). Here, we combine phylodynamic and microsimulation modeling 
approaches to describe the 2023-2024 dynamics of mpox transmission in Los Angeles 
County, a diverse, metropolitan US County. We show both the impact of imported mpox 
cases and the heavy-tailed pattern of local transmission define the sporadic nature of 
mpox cases in this large population center and how the return of typical sexual 
behaviors might explain the current case trends.  
 
A major strength of our study is the combination of Bayesian phylodynamics inference 
and microsimulation modeling to help address these knowledge gaps. Both 
phylodynamic analysis and mathematical modeling have played a crucial role in 
understanding infectious disease dynamics as well as in informing public health 
decision-making (29). Independently, however, both methods have limitations: 
understanding the interplay of local transmission and viral importations is difficult via 
case counts alone (11,30), limiting the power of the microsimulation to capture these 
dynamics; while phylodynamics works to understand shared ancestry as it relates to 
transmission, making it difficult to simulate counterfactual scenarios. Prior work has 
helped highlight the utility of combining these two approaches (31,32) but has been 
limited by the use of deterministic compartmental models and maximum-likelihood 
phylogenetic methods that are sensitive to differential sampling.  
 
Here, we jointly model both the rate of importation into LAC and local mpox dynamics 
using Bayesian coalescent phylodynamics as well as adapt a stochastic microsimulation 
model to simulate mpox transmission within the county. Our work is tailored to the local, 
heterogeneous demographic and epidemiological landscape of LAC and models the 
interplay between local transmission and introductions to understand local mpox 
dynamics. Ultimately, our study serves as a model for understanding factors that 
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maintain low-level viral disease prevalence in a diverse, heterogeneous metropolitan 
US region.  
 
Our analysis demonstrates that both local transmission and mpox importation contribute 
to the ongoing sporadic pattern of mpox spread in a large urban center. In alignment 
with other studies (13,15,33), we show a heavy-tailed sexual transmission network, 
wherein most mpox importations lead to a singleton (one case without onward 
transmission), but a small number of importations transmit to more than ten downstream 
cases. This pattern suggests that identification and intervention, either via vaccination or 
behavior change, in the small proportion of mpox importations that lead to a large 
number of local cases could have an outsized impact on the overall dynamics of mpox 
spread. Local public health efforts to promote vaccination among communities 
disproportionately impacted by mpox that are community-centered and located in 
community settings through the use of mobile vaccination teams have encouraged 
vaccine uptake and provided education regarding sexual behavior harm reduction 
strategies to prevent mpox transmission (34,35).   
 
Our results further show that importations of mpox in Los Angeles County varied over 
time, with a large number of importations occurring in mid-fall and -spring in 2023 and 
2024. These insights may be particularly useful for the formulation and deployment of 
public health campaigns that promote vaccination and sexual behavior harm reduction 
strategies. Our counterfactual modeling showed that targeting both of these time 
periods has the potential to consistently reduce the number of mpox cases, even 
months after the interventions are lifted (Fig. 5B), allowing for more precise targeting of 
public health resources. Our results showed, however, that this form of public health 
action is most effective when both time periods are targeted, suggesting the need for 
continual, periodic implementation of public health action rather than just singular, 
one-off interventions. Additionally, we see the strongest impact of introductions at times 
when case counts are lowest, suggesting that during these periods, public health efforts 
directed at limiting the impact of importations may be more beneficial. Timing social 
marketing campaigns (36,37) and vaccine clinics based on patterns of mpox seasonality 
are promising, as are strategies that focus on raising awareness for travelers and their 
sexual networks (12). 
 
We found that the largest increases in Rt are often preceded by an increase in the 
impact of viral introductions into LAC (Fig. 4D). For example, when we saw a peak in 
the percentage of cases due to introductions in March-April, we often saw a subsequent 
rise of Rt in May-July; a similar pattern was seen with viral introductions increasing in 
Sept-October followed by a rise in Rt in November-December. We also estimated mean 
Rt using diverse methodologies and data sources. While methods that only used case 
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counts tended to estimate a mean Rt above one, our phylodynamic estimates of local Rt 
brought the mean Rt down very close to one, showing that traditional case-based 
methods that fail to account for introductions will result in an overestimation of Rt (30).  
 
Given that the estimates from both the distribution of cluster sizes and the 
microsimulation model show a mean Rt below one, our results suggest that the true 
mean Rt of mpox in LAC during this time period is most likely below one (which is highly 
probable as seen in Fig S7A). This is in concordance with the observation that our 
microsimulation model needs viral importations to maintain a low case incidence 
following the 2022 epidemic. The Rt results suggest a “stuttering chains” dynamic 
whereby viral importations result in a heterogeneous distribution of secondary cases but 
eventually go extinct, which is what we observed in Fig. 4A. Therefore, a consistent 
inflow of viral introductions is needed to maintain the low case counts. Due to the 
limitations of passive public health surveillance, stuttering chains can often become 
“entangled”, resulting in persistent case counts that result in an overestimation of the 
effective reproductive number as previously shown (26). This phenomena can be seen 
in Fig S5A where the majority of clusters go extinct quickly, but some often overlap, 
giving the impression of constant incidence without exponential growth. We also expect 
our estimates of R from the distribution of cluster sizes to be artificially elevated as 
sequencing and phylogenetics is more likely to capture successful and larger clusters 
than introductions with no secondary cases, artificially increasing the mean cluster size 
and resulting in an overestimation of R (26). We note that there is high variability in the 
estimates of mean Rt regardless of the methodology used, highlighting the difficulty of 
estimating these epidemiological parameters at periods with low incidence (38). 
Together, our evidence suggests that the time-varying peaks of importations in LAC 
often lead mpox to establish stuttering chains in a densely-connected sexual network 
that can last until the next peak of introductions. 
 
We used our phylo-informed microsimulation model to uncover factors maintaining the 
observed low-level mpox prevalence and to test actionable public health interventions. 
Since our microsimulation model, despite being informed with viral importation 
estimates, required a recalibration of the  parameter, our modeling suggested the α
low-level, but persistent number of mpox cases in LAC can be explained by a 
combination of waves of viral introductions and a return to near-baseline sexual 
behavior in 2023-2024. Previous work using online surveys of MSM in North America 
have shown that more than 78.4% of surveyed individuals who had modified their 
sexual behavior in response to the 2022 epidemic had reversed their adaptations by 
May of 2023, showing the plausibility of our results (28). Of note, both sexual behavior 
and travel vary by season (6,39,40), often peaking in summer months with large 
LGBTQ+ events, when the 2022 outbreak in LAC began; therefore the baseline  of 2.2 α
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may represent an upper bound of sexual activity since it was established using only five 
weeks between June-July 2022 (17). While our results offer a mechanistic explanation 
for present-day transmission dynamics and reveal potential avenues for public health 
interventions, other factors such as heterogeneity in immunity duration post vaccination 
or infection (41,42), or turnover of susceptibles potentially from younger individuals 
reaching sexual primacy might still be impactful. Future work that combines line-level 
metadata regarding each infection that contains information regarding age, infection 
history, and vaccination status, and is matched to viral genomic information could 
further elucidate the nuanced mechanisms promoting mpox transmission.  
 
Given the potential return of baseline sexual behavior, the infection control strategies 
during the ongoing mpox outbreaks might be different than those during the 2022 
epidemic (12,25,28). For example, we tested the impact of increasing the probability of 
isolation after a symptomatic, infected individual receives a positive diagnosis. We 
found that even increasing the probability from 20% to 30% resulted in a lower number 
of diagnosed mpox cases than seen in empirical case counts, highlighting a potential 
target for public health intervention. Prior modeling work that accounts for the length of 
viral shedding has shown that isolating three additional days after mpox lesion 
resolution is sufficient to eliminate more than 95% of post-diagnosis transmission (43). 
The authors of that work also note that individual viral shedding kinetics are 
heterogeneous and that a testing-based isolation strategy could reduce the total time of 
isolation. Researchers have found, however, that individuals who have previously 
experienced mpox-like symptoms show a lower willingness to self-isolate after a 
positive diagnosis, suggesting the need for a more tailored approach for 
previously-infected individuals (44). Further work is needed to determine the most 
effective method of isolation that balances the risk of transmission with the desire for 
social contact. For example, prior research has shown that, after adjusting for relevant 
covariates, engaging in condomless receptive anal sex with an individual with mpox 
symptoms had the highest association with increased risk of mpox transmission (45), 
suggesting that a modification of sexual behavior rather than complete abstention could 
be a potential harm-reduction strategy. The authors found a potential association 
between sharing bedding or clothing and the risk of transmission in an unadjusted 
analysis but the association was lowered toward the null and nonsignificant when 
adjusted for relevant covariates, highlighting the need for further work on the risk of 
non-intimate contact in mpox transmission.  
 
Our results have limitations to note. First, despite our use of all publicly available mpox 
genomes from LAC, the changing proportion of cases successfully sequenced and 
uploaded from LAC (Fig. S1) will impact the chance that a case shows up in our data 
through the period studied. Our phylodynamic analyses are conditioned on the inferred 
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sequence clusters from LAC which are dependent on the integration of contextual 
sequences from US and global regions into a temporally-resolved phylogeny. It is 
possible that differential sampling from other locations could impact our identified 
clusters, and ultimately our estimates on the rate of introduction. Our simulation analysis 
where we downsample different proportions of contextual sequences, however, shows a 
limited impact on the number of clusters identified as well as the mean cluster size (Fig. 
S3A). Limited mpox sequence diversity, especially during periods of rapid transmission 
such as at the beginning of the 2022 epidemic, could affect our ability to break up larger 
clusters. This might lead to collapsing multiple introductions into LAC into shared 
clusters, although prior work has shown that APOBEC3 editing associated with 
human-to-human transmission of mpox results in a mutation rate similar to RNA viruses 
(6,46,47). While it would be optimal to explicitly account for locations outside of LAC, 
ideally through a GLM approach that would also help ameliorate the limited sequence 
diversity, prior work has shown the high computational cost of these approaches (6). 
Our approach allows for Bayesian analysis of mpox dynamics within LAC in less than a 
day, while phylodynamic approaches with a GLM and explicit modeling of different 
contextual locations have been shown to take upwards of a month. Bayesian coalescent 
models assume random sampling of infected individuals, meaning that targeted 
sampling, such as superspreader events or contact tracing, could bias our 
phylodynamic estimations, although our simulation results show that our models are 
able to robustly capture complex simulated dynamics that incorporate superspreading 
(Fig. S8-9). Additionally, phylogenies only capture successful introductions into LAC that 
were ultimately sequenced, meaning that parameterizing our model with the estimated 
absolute number of introductions inherently underestimates the number of true viral 
introductions. While informing our model with the estimated absolute number of 
introductions was necessary due to the underlying microsimulation model structure, our 
results were robust even when we doubled the number of importations estimated (Fig. 
S12). Future work should focus on parameterizing models with the rate of introductions 
or the percentage of cases due to introductions.  
 
While we calibrated our microsimulation model using vaccination data from the LAC 
Department of Public Health (48), the model does not explicitly account for seasonal 
variations in mpox vaccination rates, such as the observed increases from May to 
September 2023 and from July to September 2024 (Fig. 1C). Despite this, the 
microsimulation model successfully captures the overall vaccination trends by dosage 
and subgroups, including HIV status, as illustrated in Figure S13. Given the low 
possibility of reinfection after infection (49), our model only allows for waning 
vaccine-induced immunity, which might slightly reduce the number of susceptible 
individuals in our population. Of note, the Infectivity Scalar ( ) is a global parameter and α
does not capture heterogeneity in sexual behaviors or other mechanisms that might 
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modify the risk of transmission. While the model incorporates age- and race-stratified 
mixing patterns, individual-level transmission risk variation within those demographic 
groups is not accounted for, and nor is variation over time within those groups, although 
prior work has shown the applicability and validity of mainly accounting for collective, 
rather than individual, behavior in modeling mpox dynamics (50). Additionally, the  α
changes in our model were found through calibration and are not directly observed; as 
such, an unobserved, time-varying effect that modified transmission rates during the 
analysis period could lead to bias in our  calibration. To mitigate this possibility, we α
account for as many known modifiers of mpox incidence as possible given the available 
data (the model includes testing, diagnosis, treatment, disease progression, and 
recovery rates; see (17) for details).  Additionally, our counterfactual scenarios simulate 
only a generalized increase in the  during specified periods, which may not fully reflect α
the true dynamics of disease campaigns. 
 
In conclusion, our results suggest that the persistent transmission of mpox in 2023-2024 
in a large urban US county can be explained by a combination of time-varying viral 
importations and the return of baseline sexual behaviors that were altered during the 
2022 mpox epidemic. Our modeling supports that education and support for mpox 
patients such that they can maintain isolation from sexual networks while infectious and 
symptomatic may decrease the number of mpox cases in large urban centers. Further, 
messaging and targeted vaccination around travel, especially in mid-fall and -spring, 
may decrease the number of clusters generated by mpox importations during this time. 
Our combined phylodynamic and microsimulation approach can reveal factors in 
ongoing mpox dynamics that lead to significant local spread and can be leveraged by 
local health departments for specific health interventions.  
 
 
Methods 
 
Data Sources 
 
Data on the number of diagnosed mpox cases in Los Angeles County were downloaded 
from the Los Angeles County mpox data dashboard 
(http://publichealth.lacounty.gov/media/monkeypox/data/index.htm/ ; last accessed on 
01-20- 2025).  
 
Estimation of mpox incidence, prevalence, and effective reproduction number via case 
counts 
To jointly estimate mpox case incidence, prevalence, and effective reproduction number, 
we used the renewal equation framework from Figgins and Bedford (51). Similar to 
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Paredes et al (6), the time-varying effective reproduction number (i.e. the average 
number of secondary cases infected by a single primary case) was modeled using a 4th 
order spline with 5 evenly spaced knots assuming a discretized gamma-distributed 
generation time with mean 12.6 days and standard deviation 5.7 days (52). Case counts 
were modeled using a Poisson distribution. This model produces posterior estimates of 
daily incidence (defined as the number of newly infected individuals in absolute counts) 
and effective reproduction number.  
 
Models were fit to aggregated case counts for each region using full-rank stochastic 
variational inference. Optimization was performed using the ADAM optimizer with 
learning rate 4e-3 and for 50,000 iterations and 500 samples were drawn from the 
approximate posterior. 
 
As an additional comparison, we also independently estimate Rt using case counts 
alone via EpiFilter, which has been found to be more robust during periods of low case 
incidence (38). To calculate the Rt, we assume a gamma-distributed serial interval of 
8.7 days estimated by Ponce et al (53). 
 
To estimate the proportion of cases that were sequenced, mpox incidence estimated by 
the above renewal equation framework was aggregated into monthly estimates for year; 
the same was done for the number of sequences from LAC. The monthly incidence was 
then divided by the number of monthly LAC sequences. Due to the limitations of the 
renewal equation framework (not accounting for overdispersion, strong smoothing) as 
well as the stochastic nature of genomic sequencing, some months were found to have 
more sequences than estimated cases. In this situation, we created a ceiling of 100% 
as a way to bound the variance of estimates.  
 
Microsimulation Model  
In this study, we utilized an individual-based Markovian microsimulation with a weekly 
cycle to project the dynamics of the 2022 mpox outbreak among MSM in LAC (17). 
Initially calibrated and validated against data from July 2022 to March 2023, which 
included diagnosed cases and vaccination uptake disaggregated by age, race/ethnicity, 
and HIV status as detailed in Liang et al. (17). Unless specified below, the original 
model parameter values can also be found in Liang et al (17). The model was further 
refined to account for vaccination uptake by dosage and PWH from March 2023 to 
October 2024 (see Fig. S13). Additionally, we adjusted the model to reflect the potential 
waning efficacy of the vaccine, assuming a linear decline to half its initial efficacy one 
year post-vaccination (41,42,54). The enhanced model then tracked disease dynamics 
comprehensively over an 85-week period, spanning from March 12, 2023, to October 
27, 2024. 
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Briefly, in our model, the probability that an individual would be infected, denoted as 

, was derived from the interaction of several factors that reflected the 𝑃(𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛)
demographic diversity and behavioral patterns of the population as follows: 
 

  𝑃(𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) =  1 −  
𝑑

𝑝
∈𝐷
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Where: 

: set of possible demographic groups 𝐷
 demographic of the susceptible population 𝑑

𝑝
:

 infected group that can transit in demographic group of partners (exclude those who 𝐼:
are isolated) 

  Infectivity Scalar ( ) α: α
: calibration parameter for race/ethnicity group d, where d = Black, Hispanic, White β

𝑑

: calibration parameter for age groups a, where a = 15-24, 25-34, 35-44, 45-100 γ
𝑎

number of people in partner demographic group 𝑁
𝑑

𝑝

:  

: number of partners an individual in the demographic group d have 𝑃
𝑑

 probability of susceptible individual mixing with partner demographic group 𝑀
𝑑

𝑝

:

 
The microsimulation uses a calibration parameter we refer to as the 'Infectivity Scalar' (α
) to adjust the probability of infection and fine-tune transmission dynamics. In the initial 
setup of our model, the  was determined through a grid search across a range of α
potential values, ultimately setting it at 2.2. This value was chosen based on its 
alignment with the empirical trends observed during the early phase of the mpox 
outbreak in LAC, indicating a high transmission rate prior to August 2022. Subsequently, 
using similar methodologies, the  was recalibrated to 0.7 in response to a noticeable α
decline in mpox cases. This adjustment likely reflects the impact of enhanced public 
health guidelines and changes in public behaviors and allowed the model to effectively 
capture the decline in transmission. By December 2022, the model accurately reflected 
the trend, with the seven-day average number of cases dropping to fewer than two. By 
March 2023, it predicted new cases approached zero, suggesting the potential 
cessation of local mpox transmission in LAC in the absence of external cases. Details 
on calibration, validation, and model inputs can be found in Liang et al (17).  
 
The occurrence of sporadic cases and slight surges observed after March 2023 
underscores the need to include external importations to more accurately mirror 
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real-world dynamics. We introduced scenarios where 5, 10, or 15 symptomatic cases, 
randomly selected from the simulation demographic, are added to the model weekly. To 
refine the ongoing disease dynamics further, we integrated viral importation data from 
the phylodynamic analysis, enabling precise simulation of the timing and number of 
imported cases and thereby enhancing the model's accuracy. This integration allowed 
us to replicate the dynamics of mpox case occurrences. We treated imported cases as 
diagnosed upon their introduction into the model, ensuring they were not counted as 
new diagnoses within LAC.  
 
Due to the stochastic nature of our model, we ran it through ten iterations to adequately 
capture inherent variability. To estimate uncertainty intervals for critical metrics, such as 
the number of incident cases, we employed a bootstrap approach with 500 samples. 
Each sample consisted of a resampled set of the ten iterations, conducted with 
replacement. We calculated weekly averages for each sample, forming the data into a 
500 x 85 matrix, where each row represents a bootstrap sample, and each column 
corresponds to a week. Subsequently, we determined the mean, lower bound (2.5th 
percentile), and upper bound (97.5th percentile) of these averages. This methodology 
robustly captures the model’s predictions and the associated uncertainties, ensuring 
reliable estimations of the simulated outcomes. Rt was estimated by tracking the 
average weekly number of secondary infections per infected individual multiplied by the 
time that individuals remain infectious. 
 
All simulations were programmed in MATLAB and executed on the high-performance 
computing facilities at the Center for Advanced Research Computing (CARC) (55), with 
each iteration requiring approximately 13 minutes to complete. 
 
Genomic data and maximum likelihood tree generation 
All available MPXV sequences were downloaded from GenBank on 01-20-2024. 
Sequences with ambiguous date of collection in the month column, with a sample 
collection earlier than January 2022, and flagged as being low quality by Nextclade 
https://docs.nextstrain.org/projects/nextclade/en/stable/user/algorithm/07-quality-control.
html) (56) were excluded. Given that mpox transmission in the United States is driven 
by clade IIb viruses, sequences from other clades were also excluded, resulting in 7859 
genome sequences included in our analysis.  
 
A temporally-resolved phylogeny was created using a modified version of the Nextstrain 
(22) mpox workflow (https://github.com/nextstrain/mpox), which aligns sequences 
against the MK783032 (collection date: Nov. 2017) reference using nextalign (56), infers 
a maximum-likelihood phylogeny using IQ-TREE (57) with a GTR nucleotide 
substitution model, and estimates molecular clock branch lengths using TreeTime (58). 
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The resulting phylogeny specific to this dataset can be found at 
https://nextstrain.org/groups/blab/mpox/allcladeIIseqs 
 
 
Geographic scales 
Due to the low number of sequences from various countries, we analyzed mpox spread 
with a focus on large metropolitan US cities and areas that have the highest level of 
mpox sequencing effort. Our focus areas were: Los Angeles County, California; 
Washington State; Cook County, Illinois; New York City, New York; California without 
Los Angeles County; North America excluding the areas previously mentioned; and 
Global regions outside of North America.  
 
Given that Los Angeles County Department of Public Health (LA DPH) sequences the 
mpox cases for LAC, we assume that any genome labelled as being sequenced by LA 
DPH was sampled in LAC, while those sampled by the California Department of Health 
(CDPH) were sampled in locations within California but outside of LAC. From these 719 
genomes, the dataset was filtered down to 497 by LA DPH to remove duplicated 
sequences from the same individual and samples that were collected outside of LA 
DPH. Despite this, there is always a small chance that CDPH might have received and 
sequenced a LAC case, but we expect this to be small and should result in a 
conservative bias as misclassification of an LAC sequence as non-LAC would result in 
smaller clusters and less intense transmission dynamics.  
 
Phylogeographic reconstruction of mpox spread was conducted using the same 
Nextstrain workflow via ancestral trait reconstruction (59) of the aforementioned focus 
areas. This was done using the “augur traits” function (60) . 
 
Clustering 
To identify local outbreak groups in Los Angeles County, we clustered all LAC 
sequences based on inferred internal node location. Following Müller et al (61) and 
Paredes et al (62), we used a parsimony-based approach to reconstruct the locations of 
internal nodes. Briefly, using the Fitch parsimony algorithm, we inferred internal node 
locations by considering only two sequence locations: LAC and then anywhere else. We 
then identified local outbreak clusters by selecting groups of sequences in which all their 
ancestral nodes were inferred to be from LAC, up until there was a change in location. 
 
We then plotted the mean cluster size and the number of local clusters per month by 
using the month of collection for the first collected sequence of each identified outbreak 
cluster over time.  

Estimating population dynamics jointly from multiple local outbreak clusters 
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To analyze the local transmission dynamics of mpox in LAC from 2022-2024, we used a 
multi-tree coalescent model to jointly model mpox dynamics from the inferred outbreak 
clusters, originally described in Müller et al (61). Briefly, we assumed that each identified 
cluster was the result of a single introduction into LAC and that the sequences that 
make up each cluster were the result of local transmission. Doing so allowed us to 
model mpox transmission as a structured coalescent process where the migration 
history is conditional on the clustering done a priori. The model allows mpox lineages to 
coalesce within LAC but can also originate from outside the sampled area. The 
migration history of the coalescent process is conditioned on the identified transmission 
clusters whereby we assume that the introduction event into LAC occurred prior to the 
most recent common ancestor of the sequences in each cluster. This time of 
introduction is explored via an MCMC run. We used a skyline approach to estimate both 
the effective population size (Ne) and rates of introduction throughout time using 
predefined change points (every 7 days), assuming exponential growth or decline 
between each change point. We ran two independent chains, and employed a strict 

molecular clock with a uniform distribution from 0 to 1 and a fixed value of  6 × 10−5

(6,22) and an HKY+Γ nucleotide substitution model with an estimated . We also repeat κ
the analysis to test the sensitivity of our results with the following specifications: with a 
GTR+Γ substitution model with the same fixed clock rate and estimated frequencies and 
transitions; and with an eight-category discrete Γ prior instead of four (63).  
 
Similar to Müller et al (61), we apply an exponential coalescent model with time-varying 
growth rates by accounting for correlations between adjacent Nes via the skyride 
approach, which assumes the log of adjacent Ne are normally distributed with a mean 
of 0 and an estimated variance. We also assumed the differences in growth rates were 
normally distributed with a mean of 0 and estimated variance. This formulation was 
validated in Supplementary Figure 3 of Müller et al (61).  
 
Additionally, we also conduct a separate analysis by allowing the Ne to be informed by 
the total number of diagnosed mpox cases in each month. In a standard formulation of 
the coalescent model of infectious diseases parameterized by 
Susceptible-Infected-Recovered (SIR) dynamics (64),  

 , 𝑁𝑒 τ =  𝐼(𝑡)
2β𝑆(𝑡)

 
where  refers to the generation time,  and ) to the time varying prevalence and τ 𝐼(𝑡) 𝑆(𝑡
number of susceptibles in the population, respectively, and  to the transmission rate. β
We represent the scaler  via  so that, 1

2β𝑆(𝑡) θ(𝑡)

 
(t) 𝑁𝑒 τ =  𝐼(𝑡)θ
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If we assume that the number of diagnosed mpox cases can approximate the 
prevalence I(t), then we can rewrite the above equation as 
 

 𝑙𝑜𝑔(𝑁𝑒) =  𝑙𝑜𝑔(Θ) +  𝑙𝑜𝑔(𝑐𝑎𝑠𝑒𝑠) 
 

To account for time-varying observation noise and variability in the above assumptions, 
we can add an error term so that,  

 𝑙𝑜𝑔(𝑁𝑒) =  𝑙𝑜𝑔(Θ) +  𝑙𝑜𝑔(𝑐𝑎𝑠𝑒𝑠) +  ϵ
 

By rearranging the terms we get 
 

.  ϵ =  𝑙𝑜𝑔(𝑁𝑒)  −  𝑙𝑜𝑔(Θ) −  𝑙𝑜𝑔(𝑐𝑎𝑠𝑒𝑠) 
 

We then account for correlations between adjacent errors by assuming that the 
difference in errors is normally distributed with a mean of 0 and an estimated variance.  
 
We implemented and ran these models as an extension to BEAST2 software version 
2.6.2 (65) and can be found on https://github.com/miparedes/mab .We performed 
effective population size and migration rate inference using an adaptive multivariate 
Gaussian operator (66) and ran the analyses using an adaptive Metropolis-coupled 

MCMC (67) using two chains with a length of . We repeat our analysis without 2. 5 × 108

the rolling mean smoothing as well as without any cases to test the sensitivity of our 
results.  
 
Posterior processing  
Parameter traces were visually evaluated for convergence using Tracer (68), tree 
distributions were visually inspected using IcyTree (69), and 20% burn-in was applied 
for all phylodynamic analyses. All tree plotting was performed with baltic 
(https://github.com/evogytis/baltic) and data plotting was done using Altair (70), 
matplotlib (71) and seaborn (72).  
 
The absolute number of viral importation events into LAC was estimated by calculating 
the number of transitions walking from tips to root in the posterior set of trees and 
calculating the median as well as the 50% and 95% highest posterior density estimates 
(HPD).  
 
Following Bedford et al. (73), persistence time was measured by calculating the 
average number of days for a lineage to leave LAC, walking backwards up the 
phylogeny from the tip up until the node location was outside of LAC. We also cycled 
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through the posterior set of trees to find the median time of importation into LAC for 
each identified local outbreak cluster 
 
Estimating percentage of new cases due to introductions 
We estimated the percentage of new cases due to introductions for each global region 
by adapting the methods previously described (6). Briefly, the percentage of cases due 
to introductions  at time t can be calculated by dividing the number of introductions at π
time t by the total number of new cases at time t. We first represented the total number 
of new cases in a region as the sum of the number of introductions and the number of 
new local infections due to local transmission, resulting in the following equation: 
 

. π(𝑡) = # 𝑜𝑓 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑡)
# 𝑜𝑓 𝑛𝑒𝑤 𝑙𝑜𝑐𝑎𝑙 𝑐𝑎𝑠𝑒𝑠(𝑡) + # 𝑜𝑓 𝑖𝑛𝑡𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠(𝑡) 

 
We estimated the number of new local cases at time t by assuming the local epidemic in 
each global region follows a simple transmission model, in which we derived the 
number of new cases at time t as the product of the transmission rate  (new infections β
per day per individual) multiplied by the number of people already infected in that region 
I. For the number of introductions, we similarly assumed that the number of 
introductions equals the product of the rate of introduction (introductions per day per 
infectious individual, which we refer to as migration rate m) and the number of people 
already infected in that region I. We use the number of infected individuals in the 
destination region rather than the origin region for calculating the number of 
introductions since the approximate structured coalescent approach models epidemic 
processes as backwards-in-time, resulting in the equation containing only information 
about the number of infected individuals in the destination region (more information on 
backwards migration rates below). We then rewrote the above equation as 
 

,  π(𝑡) = 𝑚(𝑡) 𝐼(𝑡)
β(𝑡) 𝐼(𝑡) + 𝑚(𝑡) 𝐼(𝑡) 

where I(t) denotes the number of infected people in that region at time t. Given the 
presence of I(t) in every element, we factored out I(t) to arrive at 
 

. π(𝑡) = 𝑚(𝑡)
β(𝑡) + 𝑚(𝑡) 

 
For each region, we considered introductions at time t to be the sum of the introductions 
coming into LA Country from outside the region. We define the percentage of new 
cases due to introductions  at time t for LAC as π
 

 ,  π
𝐿𝐴

(𝑡) =
𝑚𝑏

𝐿𝐴 →𝑖
(𝑡)

β
𝐿𝐴

(𝑡) + 𝑚𝑏
𝐿𝐴 →𝑖

(𝑡) 
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where  denotes the backwards migration rate per lineage per day into LAC from 𝑚𝑏
𝐿𝐴 →𝑖

outside and is estimated directly via our multi-tree coalescent model. 
 
In a SEIR transmission modeling framework (employed due to the incubation period of 
MPXV), the transmission rate  is a function of the infectious period , the incubation β γ
period , and the exponential growth rate r (as adapted from Example 4 in Ma 2020 (74) σ
): 
 

 β =  (2𝑟+γ +σ)2− (σ−γ)2

4σ  

 
To compute the growth rate in region y, we assumed that differences in effective 
population size between adjacent time intervals can approximate the growth rate r and 

thus . In addition, we assumed that  is independent from the rate of 
𝑑(𝑙𝑜𝑔(𝑁𝑒

𝑦
)

𝑑𝑡  ≈  𝑟 𝑑𝑁𝑒
𝑑𝑡

introduction. We calculated the growth rate of the effective population size  as  𝑑𝑁𝑒
𝑑𝑡

      

 = ,  𝑑(𝑙𝑜𝑔(𝑁𝑒))
𝑑𝑡

𝑙𝑜𝑔(𝑁𝑒(𝑡+Δ𝑡)) − 𝑙𝑜𝑔(𝑁𝑒(𝑡))

Δ𝑡

where denotes the effective population size of a region at time t. We ran our 𝑁𝑒(𝑡)

analysis using weekly time intervals but averaged over three week intervals (  = 3) for Δ𝑡
the growth rate in order to reduce noise and account for the long generation time for 
mpox.  
 
We calculated the transmission rate  at time t in LAC as β

 β
𝐿𝐴

(𝑡) =  
(2(

𝑑(𝑙𝑜𝑔(𝑁𝑒
𝐿𝐴

)

𝑑𝑡 )+γ +σ)2− (σ−γ)2

4σ  

 
 

Incubation and infectious period estimates 
 

For the incubation period, we used a mean of 8 days based on prior literature (53,75). 
The infectiousness period for mpox has yet to be definitively characterized (76), as such 
we used the estimates of the infectious period (10.9 days) from Jeong et al (43) for our 
main analysis as they were defined via analysis of viral load and viral shedding in more 
than 90 mpox cases. To account for variability in this estimate, we also repeated our 
percentage of cases due to introductions and Rt analyses using a mean infectious 
period of 4.5 days and 21 days (Fig. S5). The mean infectious period of 4.5 days was 
estimated from the comparison of the generation time of 12.5 days (77) and the 
aforementioned incubation period through the formulation of the generation time in 
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Wallinga and Lipsitch (78). This lower estimate of the infectious period is in 
concordance with the infectious period estimations from Zhang el at (79). The mean 
estimate of 21 days refers to the average time of resolution of symptoms (80) and has 
been previously used as a mainly-clinical proxy for infectiousness (81). 

 
Estimating the effective reproductive number Rt from pathogen genomes  

 

We calculated the effective reproductive number Rt , the time-varying average of 
secondary infections from a primary infected individuals, in LAC, assuming an 
exponentially distributed infectious and incubation period of mean respectively and 1/γ 
1/ , yielding  (78) . Additionally, we sought to separate out the σ 𝑅𝑡 =  (1 + 𝑟

γ )(1 + 𝑟
σ )

contributions of introductions versus local transmission to Rtt. To do so, we modified the 
Rt equation to include the percent of new cases from introductions as an estimate of 
local community spread so that , where  refers to the 𝑅𝑡 =  (1 + 𝑟

γ )(1 + 𝑟
σ )(1 − π) π

percentage of new cases due to introductions as described above. 
 
Of note, our Rt calculations assume that the change in Ne over time is proportional to 
the change in the number of infected individuals over time.  
 
To further validate our estimates of Rt, we fit the estimate cluster distributions taken 
from the sizes of the identified sequenced outbreak clusters to the formulation in 
Tran-Kiem & Bedford (24) which allows for the estimation of R and the dispersal 
parameter k and accounts for the probability of a case being detected and sequenced 
(similar to (26,82)). Given that we use all available sequences and not just identical 
sequences, we set the probability that a transmission event occurs before a substitution 
event p as 1. We also assume a range of case detection rates from 5% to 100% of all 
cases detected and then sequenced. We report the results assuming a 5% case 
detection rate as the most conservative estimate. Similarly, we also explored the 
probability to observe at least a cluster of size 16 (the largest size found in 2023-2024) 
among 64 total clusters as a function of the effective reproduction number R across a 
time period, transmission heterogeneity as estimated via the dispersion parameter k, 
and the fraction of infections sequenced. This estimation has been previously derived in 
other work (23,24). We explore this probability among R values ranging from 0.1 to 1.6 
and k values from 0 to 10, assuming a probability of case detection of 5.5% which was 
estimated to be the average case sequencing rate throughout the 2022 mpox epidemic 
(6). While we expect the fraction of infections sequenced to be higher in LAC for 
2023-2024 (Fig S1), we use 5.5% as a conservative estimate, as increasing the fraction 
sequenced is likely to make even lower R values more likely.  
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Phylodynamic Simulations  
 
To test the applicability of our multitree coalescent model both with the standard 
implementation as well as our cases-informed Ne, we simulated phylogenetic trees 
under an SEIR model with superspreading (61). We also assumed a constant force of 
introduction per unit time into the region. We assumed the number of newly infected 
individuals to be negatively binomially distributed such that the mean number of 
introductions at any point in time t was equal to Rt and the dispersion parameter k = 0.3 
as previously estimated (6,25). To approximate real-life sampling dynamics, we 
parameterized the sampling rate based on the estimated time to present to healthcare 
in the UK in 2022 (83). We next simulated a structured phylogenetic tree from this 
approach and then simulated genetic sequences on top of this phylogenetic tree using 
Seq-Gen (84) assuming an HKY substitution model,  a genome size of 197,000bps and 

a clock rate of , similar to our main analysis above. To understand the impact 6 × 10−5

of undersampling, we also randomly subsampled 50% of the simulated sequences and 
ran all the simulations via our multi-tree coalescent models. We then compared the 
estimated Ne, Rt, and percentage of cases due to introductions with the same values 
calculated from the SEIR dynamics.  
 
Data and Code Availability: 
Nextstrain builds, BEAST2 XMLs, scripts, sequence information, and de-identified data 
for the phylogenetic and phylodynamic analyses can be found at 
https://github.com/blab/mpox-la . All sequences are available on GenBank with 
accession numbers found in the supplementary information. The code for the 
microsimulation model developed to study mpox incidence and dynamics is available at 
https://github.com/citina/microsimulation-mpox-LAC, which includes all scripts, 
parameter files, and usage instructions necessary to replicate the study findings. 
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Supplementary Material: 
 

 

Figure S1: Estimated proportion of mpox cases sequenced in Los Angeles County. The proportion 
of cases sequenced was calculated by dividing the total number of mpox sequences from LAC found on 
GenBank by the monthly mpox incidence estimated from case counts using a renewal equation 
framework. The dark black horizontal line refers to the median estimates with the grey bars representing 
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the 95% CI based on uncertainty in the incidence estimates. Months where the estimated proportion was 
greater than 100% (due to uncertainty incidence estimation due to low case counts or sample collection at 
dates different than diagnosis) were bounded at 100%.  

 
 
 
 
 
 

Figure S2: Time-resolved maximum likelihood phylogenies for mpox clade IIb sample collection 
dates between January 1 2022 and December 12, 2024 Tip color represents the focus areas in North 
America with high sequencing effort. Branches are colored based on inferred ancestry. The full tree can 
be explored interactively at https://nextstrain.org/groups/blab/mpox-la/allcladeIIseqs?c=focus_areas   
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Figure S3: The impact of subsampling on the number and size of transmission clusters identified. 
We randomly subsampled different proportions of background sequences (A) and sequences from LA (B) 
and ran our clustering algorithm to show the impact of increasing the proportion sequences relative to the 
full dataset on the total number of clusters identified (Top row) and the mean size of those clusters 
(bottom row).  
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Figure S4: Sensitivity analysis of phylodynamic results: We tested the robustness of our 
phylodynamic results by repeating our main analyses under different model specifications. The left 
column shows the empirical case counts in blue and the estimated effective population size (Ne) in 
magenta (50% HPD). The right columns the inferred immigration rate of mpox into LAC, with the dark 
blue band representing the 50% HPD and the lighter blue representing the 95% HPD. The first row 
represents the same case-informed estimates as our main result but with a GTR substitution model 
instead of HKY. Second row represents 8 category discretization of the gamma distribution prior instead 
of 4 categories. The third row is our main model but without the cases being smoothed prior to being 
inputted into the model. The fourth row is a skyline prior represented by having zero case information in 
the case prior. The final row is a skygrowth prior with no case information instead of the skyline 
case-informed prior.  
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Figure S5: Mpox importation dynamics in LA County estimated via Bayesian Phylodynamics. 
Panel A shows the persistence time of each identified local outbreak cluster according to the date of its 
inferred introduction time. Each dot represents an inferred introduction into LA County, the radius of the 
dot is proportional to the size of the resulting transmission cluster. The yellow streamgraph is the rate of 
introduction (events/lineage/year) into LA county and the purple streamgraph represents the estimated 
effective population size, both inferred by our phylodynamic model. The dashed line represents the 
median and the bands represent the 95% HPD. Panel B shows the absolute number of viral introductions 
inferred via our phylodynamic model for each week that was calculated by analyzing the entire posterior 
set of phylogenetic trees after burn in. The error bars represent the 95% CI and these estimates were 
used to parameterize our microsimulation model.  
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Figure S6: Percentage of new cases due to introductions and Rt with infectious period of (A) 4.5 
and (B) 21 days. The inner area denotes the 50% HPD interval, and the outer area denotes the 95% 
HPD interval. The blue and orange bands lines represent estimates of Rt highlighting the contribution of 
local transmission only (blue) as well as that of viral introductions (orange).  Dashed line highlights an Rt 
value of 1. Rt estimates were smoothed using a 14-day rolling average. 
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Figure S7: Reproductive number estimation for LAC from March 2023 through October 2024. A.  
Probability to observe a cluster of size 16 among 64 clusters as a function of the reproduction number R 
and the dispersion parameter k assuming 5.5% of infections are sequenced. The horizontal and vertical 
lines correspond to estimates obtained by Blumberg and Lloyd-Smith (26) from the analysis of 
epidemiological clusters during previous outbreaks. The dotted white lines correspond to contour lines for 
probabilities of 10−4, 10−2, and 10−1. B. The mean estimates of Rt (left) or R (right) for mpox showing 
the spread via a violin plot with the extremes and the median highlighted by the darker blue horizontal 
lines. The left panel plots the spread of weekly Rt estimations while the right panel shows the estimates of 
R with 95% CIs found from the distribution of cluster sizes for either 2023, 2024, or both years combined. 
The x axis of the left panel shows the methodology used and the dashed red line denotes an R or Rt of 1.  
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Figure S8: Estimation of Rt from simulations. We tested the ability of our multitree coalescent 
approach under different Ne priors to correctly estimate Rt from simulations. To do so, we simulated a 
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local outbreak using a constant rate of introduction. We then sampled cases based on the estimated time 
to seek care during the 2022 mpox epidemic, subsampled, simulated genetic sequences, and then used 
the local transmission cluster to estimate Rt. The left column shows the true Rt in blue with the estimated 
Rt in yellow (showing the 95% HPD intervals) with the grey line representing the median estimate. The 
right column shows the correlation between simulated and the estimated Rt with a linear regression fit 
and R2 calculated. The first two rows represent a skygrowth prior on growth rate, the second two 
represent a skyline prior on the Ne without cases, and the bottom set of two represent the main analysis 
of a skyline prior on the Ne informed by mpox cases. For each set of priors, the top analysis represents 
100% of the sampled genomes used while the bottom analysis represents only 50% of the genomes 
used. Estimates were smoothed using a 14 day rolling average.  
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Figure S9: Estimation of percentage of cases due to introductions from simulations. We tested the 
ability of our multitree coalescent approach under different Ne priors to correctly estimate the percentage 
of cases due to introductions from simulations. To do so, we simulated a local outbreak using a constant 
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rate of introduction. We then sampled cases based on the estimated time to seek care during the 2022 
mpox epidemic, subsampled, simulated genetic sequences, and then used the local transmission cluster 
to estimate percentage The left column shows the true percentage in blue with the estimated percentage 
in yellow (showing the 95% HPD intervals) with the grey line representing the median estimate. The right 
column shows the correlation between simulated and the estimated percentage with a linear regression fit 
and R2 calculated. The first two rows represent a skygrowth prior on growth rate, the second two 
represent a skyline prior on the Ne without cases, and the bottom set of two represent the main analysis 
of a skyline prior on the Ne informed by mpox cases. For each set of priors, the top analysis represents 
100% of the sampled genomes used while the bottom analysis represents only 50% of the genomes 
used. Estimates were smoothed using a 14 day rolling average.  
 
 
 
 

Figure S10:  Infectivity Scalar ( ) during 2022 mpox outbreak in Los Angeles County. Main figure α
shows the weekly number of diagnosed mpox cases in LAC from June 2022 through December 2024 
(blue) with the number of diagnosed mpox cases simulated via our microsimulation model without viral 
importations overlaid in orange. The bars in the top of the figure are a visual representation of the periods 
of time for which  was calibrated. The grey bars represent the initial model calibration for the epidemic α
period and the blue bar shows the period of interest for this study.  
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Figure S11: Factors maintaining mpox prevalence and modeling counterfactual public health 
interventions with statistical tests and without uncertainty intervals. (A) we explored the Infectivity 
Scalar  that best explains the empirical weekly number of diagnosed mpox cases (gray bars). Line α
graphs represent the mean weekly number of mpox diagnoses simulated using increasing . (B-D) Given α
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the non-constant pattern of viral introductions seen in the phylodynamic analysis, we tested different 
counterfactual scenarios of public health interventions during specific time periods represented by 
lowering the  to 0.7 while keeping the  at 2.2 during the remaining time. The bold yellow, red, and α α
purple solid lines represent the simulated weekly number of diagnosed mpox cases under 
phylodynamic-informed interventions. To test for non-specific effects, we also reran our microsimulation 
model by randomly selecting the same number of weeks as our phylodynamics-informed interventions to 
lower the  to 0.7 (brown dashed lines) as well as a simulation without any interventions. (green dashed α
lines) (C) We also tested the effect of increasing the probability of isolating upon a symptomatic individual 
receiving a positive mpox diagnosis on the simulated number of diagnosed mpox cases (blue line 
graphs). In all plots, the grey bars represent the empirical number of mpox diagnoses in LAC. We switch 
to line plots instead of step plots and remove the uncertainty intervals in A and E to allow easier 
visualization of overlapping lines. 

 

 

 

 

 

 

Figure S12: Infectivity Scalar  with twice as many phylodynamics-informed viral introductions. To α
test the impact of underestimating the number of viral introductions into LAC, we doubled the number of 
introductions, reran our microsimulation model, and explored the Infectivity Scalar  that best explains the α
empirical weekly number of diagnosed mpox cases (gray bars). Line graphs represent the mean weekly 
number of mpox diagnoses simulated using increasing . Each weekly estimate represents the average α
of 10 independent iterations of our model 
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Figure S13: Vaccination validation of microsimulation model. All three panels represent the 
comparison between the empirical number of vaccination doses given (dark blue) and the number of 
doses administered as simulated by our model (orange). The dashed orange line represents the mean; 
the bands represent the 95% uncertainty interval calculated via bootstrapping. The inset graphs for each 
panel represents the same data but only after March 2023 to allow for better visualization of smaller 
numbers. Panel A represents the comparison of the number of first doses of the mpox vaccine given, 
panel B is for the number of first doses among people living with HIV (PLWH), and panel C is the number 
of second doses given.  
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