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Abstract 

Background Long-term care facilities (LTCFs) are vulnerable to disease outbreaks. Here, we jointly analyze SARS-
CoV-2 genomic and paired epidemiologic data from LTCFs and surrounding communities in Washington state (WA) 
to assess transmission patterns during 2020–2022, in a setting of changing policy. We describe sequencing efforts 
and genomic epidemiologic findings across LTCFs and perform in-depth analysis in a single county.

Methods We assessed genomic data representativeness, built phylogenetic trees, and conducted discrete trait 
analysis to estimate introduction sizes over time, and explored selected outbreaks to further characterize transmission 
events.

Results We found that transmission dynamics among cases associated with LTCFs in WA changed over the course 
of the COVID-19 pandemic, with variable introduction rates into LTCFs, but decreasing amplification within LTCFs. 
SARS-CoV-2 lineages circulating in LTCFs were similar to those circulating in communities at the same time. Transmis-
sion between staff and residents was bi-directional.

Conclusions Understanding transmission dynamics within and between LTCFs using genomic epidemiology 
on a broad scale can assist in targeting policies and prevention efforts. Tracking facility-level outbreaks can help 
differentiate intra-facility outbreaks from high community transmission with repeated introduction events. Based 
on our study findings, methods for routine tree building and overlay of epidemiologic data for hypothesis generation 
by public health practitioners are recommended. Discrete trait analysis added valuable insight and can be considered 
when representative sequencing is performed. Cluster detection tools, especially those that rely on distance thresh-
olds, may be of more limited use given current data capture and timeliness. Importantly, we noted a decrease in data 
capture from LTCFs over time. Depending on goals for use of genomic data, sentinel surveillance should be increased 
or targeted surveillance implemented to ensure available data for analysis.
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Introduction
The COVID-19 pandemic disproportionately impacted 
residents of long-term care facilities (LTCFs), who have 
suffered higher mortality rates than the general popula-
tion; in Washington State (WA), LTCF-associated cases 
represent 3% of cases, but 30% of deaths due to SARS-
CoV-2 [1]. This impact materialized in WA and across 
the US despite early recognition of LTCFs as high-risk 
settings due to residents’ advanced age, chronic underly-
ing health conditions, congregate living, asymptomatic 
transmission, and movement of healthcare personnel 
[2–4].

Based on these concerns, Centers for Disease Control 
and Prevention (CDC) developed recommendations over 
the course of the pandemic for infection prevention and 
control (IPC) in LTCFs, including training, use of per-
sonal protective equipment (PPE) and hygiene measures, 
visitor restrictions, resident distancing and cohorting, 
environmental cleaning and disinfection, testing and 
reporting to public health jurisdictions, and provision of 
staff sick leave  [5].Similarly, WA’s governor, secretary of 
health, and Department of Health (DOH) developed and 
instituted regulations and guidance governing prevention 
efforts [6, 7]. Centers for Medicare and Medicaid Ser-
vices (CMS) outlined rules for testing staff and residents 
of LTCFs [8]. Changes in these rules, regulations, and 
guidance over time are expected to have impacted trans-
mission dynamics in LTCF settings.

One key tool for understanding transmission dynam-
ics in-place is pathogen genomic sequencing and 
analysis, particularly phylogeographic analysis. Under-
standing sampling methodology is important for describ-
ing potential bias in this type of analysis [9–11]. Systems 
for sequencing SARS-CoV-2 specimens have changed 
over time. Prior to March 2021, sampling for sequenc-
ing from WA residents was convenience- or research-
based. In March 2021, a sentinel surveillance system was 
implemented in WA to support representative sampling 
[9]. The population of WA LTCF-associated cases with 
genomic data available is as-yet undescribed. Addition-
ally, the utility of the existing surveillance system for add-
ing insight and actionable data for public health practice 
has not been completely explored.

Multiple examples of genomic epidemiology studies of 
single outbreaks or facilities exist in the literature, includ-
ing from WA. A previous study documented the utility of 
targeted genomic surveillance during two SARS-CoV-2 
outbreaks in LTCFs in WA [12]. Likewise, a study of 
a single LTCF-associated outbreak in WA early in the 
pandemic utilized genomic epidemiology to understand 
phylogenetic clustering of cases within the facility [13]. 
Fewer studies have leveraged pathogen genomic data to 
describe how transmission dynamics changed over the 

pandemic or describe the impact of sequence data avail-
ability on public health action. A review article assessing 
published genomic epidemiologic investigations during 
2020 documented the value of this type of analysis for 
identifying independent clusters of infections but found 
that large-scale sequencing of outbreaks added limited 
value after sequencing initial cases, focusing on indi-
vidual outbreak- or facility-level studies [14]. An analysis 
of all care-home linked cases in the east of England used 
genomic epidemiology to explore large-scale transmis-
sion dynamics in nearly 300 facilities; however, this anal-
ysis was limited to a 3-month study period [15].

Here, we aim to assess the utility of genomic data pro-
duced for LTCF-associated cases to add information for 
public health action over the course of the SARS-CoV-2 
pandemic, from 2020–2022. We pair patient-level epi-
demiological and pathogen genomic data to understand 
variations in transmission patterns over time. Specifi-
cally, we address the following questions of public health 
concern: is available genomic data obtained from LTCF-
associated cases representative of all LTCF-associated 
cases? Do temporal changes in guidance or policy appar-
ently impact intra-facility transmission patterns? Given 
available data, which genomic-epidemiologic methods 
are most applicable for ongoing or routine data analysis? 
And finally, what changes are needed to ensure the ongo-
ing use of genomic data to explore transmission in LTCF 
settings?

Methods
Data collection and cleaning
All confirmed COVID-19 cases reported among WA 
residents in the Washington Disease Reporting Sys-
tem (WDRS) as of December 19, 2022 were included, 
including reinfection cases [16]. Sequences uploaded 
to the GISAID EpiCoV database indicating WA in their 
geographic tag were linked to these cases using labora-
tory accession numbers or patient demographics [17]. 
For cases with multiple specimens sequenced, only the 
first specimen was used for analysis.  Long-term care 
facilities were defined as: nursing homes, assisted living 
facilities, adult family homes, enhanced services facilities, 
and intermediate care facilities for individuals with intel-
lectual disabilities. Cases in WDRS are categorized as 
LTCF-associated if association with a facility is noted in 
case interview, medical record, facility line list, address or 
telephone match to the facility or another measure indi-
cated by the Local Health Jurisdiction. LTCF-associated 
cases therefore include residents, employees, and visitors 
if association is noted.

Enhanced data obtained on October 24, 2022 from 
Yakima Health District tracking additional details 
related to LTCF cases and outbreaks were linked to 
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WDRS and GISAID data using name and date of birth 
and conducting probabilistic matching with manual 
review.

Representativeness analysis
All epidemiological data analysis was performed in R 
version 4.2.2 [18]. Representativeness of LTCF-asso-
ciated cases with sequencing performed was assessed 
by comparing to all LTCF-associated cases on: sex, age, 
race, ethnicity, language, outbreak association, symp-
tom status, hospitalization, death, and facility type. 
Sampling for sequencing over time in the full popula-
tion and in LTCFs was graphed.

Definition of study time‑periods
Information available from the WA Governor’s News 
Release Archive and WA DOH records was used to 
construct a timeline of key modifications to rules, 
regulations, or guidance for LTCFs. This timeline was 
used to divide the study period into six segments of 
approximately similar lengths, marked by key policy 
changes (Table 1). Events that impacted movement or 
visitation and sample selection for sequencing were 
prioritized in defining study time-periods.

Genomic subsampling
Full global data, restricted to those samples with com-
plete date information available, were downloaded from 
GISAID. Due to the challenges associated with the size 
of this dataset, we subsampled to include: all sequences 
from Washington State, 3,000 random sequences from 
North America, and 3,000 random sequences from 
regions outside North America to allow for both spa-
tiotemporal diversity and contextualization of LTCF-
associated samples in WA. Contextual data included in 
the phylogenetic analyses were selected from this down-
sampled dataset according to genetic proximity to the 
focal samples (LTCF-associated samples). We specified 
contextual data sampling to include up to 1,500 genomes 
per time-period from WA, sampled from all counties and 
months, ten genomes per month from other US states, 
and ten genomes per month from each of the global 
regions. Known duplicate samples were excluded from 
the contextual sampling.

Phylogenetic tree generation
Phylogenetic trees corresponding to the six study periods 
were constructed using Nextstrain SARS-CoV-2 work-
flow, which aligns sequences against the Wuhan Hu-1 
reference using nextalign (https:// github. com/ nexts train/ 
nextc lade), infers a maximum-likelihood phylogeny using 

Table 1 Dates and key events defining each study time-period, 1–6

Study Period Event Date Event Description

1 (Jan 20,2020-Mar 9, 2020) Jan 20, 2020 First COVID-19 case confirmed in WA

2 (Mar 10, 2020-Aug 11, 2020) Mar 10, 2020 Governor issues rules to restrict LTCF visitation, require visitor screening, and require isolation of residents 
testing positive for SARS-CoV-2

Mar 23, 2020 Stay home, stay healthy order

Jun 26, 2020 First statewide masking order takes effect

3 (Aug 12, 2020-Mar 9, 2021) Aug 12, 2020 Updated LTCF visitation guidance allows for increased visitation

Aug 25, 2020 Centers for Medicare & Medicaid Services (CMS) releases testing requirements for LTCF staff and residents

Nov 15, 2020 LTCF visitation restrictions re-instituted

Dec 20, 2020 LTCF vaccination campaign begins

Mar 1, 2021 Sentinel sampling for genomic sequencing initiated

4 (Mar 10, 2021-Aug 22, 2021) Mar 10, 2021 Masking and visitation restrictions lifted for fully vaccinated

Mar 17, 2021 Second phase of vaccine roll-out begins

Mar 19, 2021 Indoor LTCF visitation allowed if visitor or resident is fully vaccinated

Apr 1, 2021 LTCF vaccination campaign complete

Apr 15, 2021 Vaccines available for everyone aged 16 + 

Jul 1, 2021 Implemented the 10/70 rule for visitation in LTCFs: indoor visitation restricted only for unvaccinated 
residents in facilities located in areas with > 10% positivity and < 70% of residents vaccinated

5 (Aug 23, 2021-Mar 11, 2022) Aug 23, 2021 Statewide masking order takes effect

Oct 18, 2021 State deadline for healthcare workers to be vaccinated or have exemption

6 (Mar 12, 2022-Dec 19, 2022) Mar 12, 2022 Statewide masking order rescinded

Sept 23, 2022 CMS removes recommendation for routine asymptomatic LTCF staff testing

Oct 31, 2022 State of emergency ended

https://github.com/nextstrain/nextclade
https://github.com/nextstrain/nextclade
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IQ-TREE, and estimates molecular clock branch lengths 
using TreeTime. We specified the use of discrete trait 
analysis (DTA) within TreeTime [19, 20].

Data from Yakima LTCFs were separated into two time 
periods: January-August 2020 and August 2021-Decem-
ber 2022; phylogenetic trees corresponding to each of 
these time periods were constructed in Nextstrain as 
described above. These trees were used to select three 
facilities for further analysis.

Discrete trait analysis
Migration history was inferred for each of the time-peri-
ods using a LTCF-associated binary variable. We defined 
a migration event into a LTCF as occurring if a parent 
node had > 50% probability to be assigned the “non-LTCF 
discrete trait”, and the child node had > 50% probability to 
be assigned as “LTCF.” The Python library Baltic was used 
for parsing phylogenetic trees and estimating post-intro-
duction clade sizes (version downloaded from: https:// 
github. com/ allib lk/ ncov- humbo ldt/ blob/ main/ baltic. py). 
[21]. The introduction rate was calculated as the number 
of unique introduction events over time.

Genomic epidemiologic analysis
Agreement between clade designation and “outbreak-
association” status in the metadata was analyzed for clade 
sizes > 1. Statewide data were not available for type of 
association (staff/resident/visitor); age group was evalu-
ated as a proxy to understand possible staff versus visitor 
introductions. Microreact was used to visualize multiple 

data elements overlaid on the state-wide phylogenetic 
trees [22]. Sub-trees for each of the Yakima-specific 
facilities selected for further analysis were imported into 
MicrobeTrace for visualization and network analysis [23].

Transmission tree inference
Time trees from the January-August 2020 analysis for the 
three Yakima facilities were input into TransPhylo ver-
sion 1.3.2 to infer transmission trees and describe the 
role of staff versus resident introduction and transmis-
sion events [24, 25]. Previous analyses of SARS-CoV-2 
genomic data using TransPhylo were used as reference 
[26–28]. For this analysis, minimum branch distance 
was set to one day and viral generation times 1–14 days 
with a median of 5.5  days and equal sampling time 
were assumed, [26] along with a gamma distribution. 
Markov chain Monte Carlo (MCMC) analysis was per-
formed with 500,000 iterations. Convergence was visually 
inspected.

Results
Among 58,086 LTCF-associated COVID-19 cases, 
4,550 (7.8%) had sequencing performed on at least 
one specimen. This compares to an average of 9.6% 
of all reported WA cases with genomic data available. 
The proportion of cases with sequencing data available 
varies over time (Fig. 1), ranging from 5 to 30% across 
study periods. LTCF-associated cases were sequenced 
at higher frequencies than general-population cases 
prior to November 2021. During and after November 

Fig. 1 Number of reported cases (gray bars), percent of all cases (blue line) and LTCF-associated cases (red line) sequenced by month, Jan 2020-Dec 
2022. The dashed vertical lines indicate the start of each study-time period

https://github.com/alliblk/ncov-humboldt/blob/main/baltic.py).
https://github.com/alliblk/ncov-humboldt/blob/main/baltic.py).
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2021, LTCF-associated cases were sequenced at simi-
lar or lower frequency than all cases, with a notable 
drop-off in sampling beginning in May 2022. A com-
parison of difference in the percent of LTCF sequencing 
from the percent of total case sequencing is shown in 

Supplemental Fig. 1. Sequencing rates vary at the facil-
ity- and outbreak-level.

Table  2 compares LTCF-associated cases with 
sequences available to all LTCF-associated cases. Cases 
with sequences available were generally demographically 

Table 2 Comparison of the demographic characteristics between all reported LTCF-associated cases and the subset of those cases 
with genomic data available (sequenced cases)

ALL REPORTED CASES
(N = 58,086)

SEQUENCED CASES
(N = 4550)

Sex
 Female 37,705 (64.9%) 2970 (65.3%)

 Male 17,679 (30.4%) 1431 (31.5%)

 Other 39 (0.1%) 3 (0.1%)

 Missing 2663 (4.6%) 146 (3.2%)

Age Group
 0–4 105 (0.2%) 10 (0.2%)

 5–17 443 (0.8%) 26 (0.6%)

 18–44 15,274 (26.3%) 1062 (23.3%)

 45–64 11,177 (19.2%) 836 (18.4%)

 65–79 12,174 (21.0%) 1068 (23.5%)

 80 + 18,850 (32.5%) 1548 (34.0%)

 Unknown 61 (0.1%) 0 (0%)

Died Due To COVID‑19 4465 (7.7%) 508 (11.2%)

Hospitalized Due to COVID‑19 7564 (13.0%) 693 (15.2%)

Outbreak Associated 37,480 (64.5%) 2781 (61.1%)

Symptoms
 Yes 17,014 (29.3%) 1763 (38.7%)

 No 7415 (12.8%) 518 (11.4%)

 Unknown 33,655 (57.9%) 2269 (49.9%)

Ethnicity and Race
 Hispanic 3310 (5.7%) 363 (8.0%)

 Non-Hispanic American Indian Or Alaska Native 490 (0.8%) 63 (1.4%)

 Non-Hispanic Asian 2265 (3.9%) 191 (4.2%)

 Non-Hispanic Black 2494 (4.3%) 166 (3.6%)

 Non-Hispanic Multiracial 471 (0.8%) 43 (0.9%)

 Non-Hispanic Native Hawaiian Or Other Pacific Islander 372 (0.6%) 33 (0.7%)

 Non-Hispanic White 29,429 (50.7%) 2153 (47.3%)

 Non-Hispanic Other Race 319 (0.5%) 25 (0.5%)

 Unknown 1513 (33.3%) 18,934 (32.6%)

Language
 English 13,579 (23.4%) 1256 (27.6%)

 Spanish 294 (0.5%) 29 (0.6%)

 Other 295 (0.5%) 37 (0.8%)

 Unknown 1298 (2.2%) 88 (1.9%)

 Missing 42,620 (73.4%) 3140 (69.0%)

Facility type
 Adult family home 3764 (6.5%) 282 (6.2%)

 Assisted living facility 26,076 (44.9%) 1888 (41.5%)

 Facility for individuals with intellectual disability 34 (0.1%) 1 (0.0%)

 Nursing home 28,212 (48.6%) 2379 (52.3%)
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representative of all cases by age group, sex, race/ethnic-
ity, language, and facility type but were more likely fatal 
or hospitalized and were more likely to have symptom 
information available.

Figure  2 shows time-scaled (A) and divergence-scaled 
(B) phylogenetic trees of sequenced LTCF cases across all 
time periods outlined in Table 1. LTCF-associated cases 
are dispersed and intermixed with both LTCF-associated 
and non-LTCF cases; across each time-period the domi-
nant lineages match across these groups (Supplemental 
Fig.  2). Multiple epidemiological clusters within unique 
facilities are visualized, as well as linked cases from dif-
ferent facilities. Many visualized clusters reveal phylo-
genetic diversity with long branch lengths, indicating 
missing samples in the transmission chains consistent 
with known sampling patterns.

Age-group was evaluated as a proxy for resident status 
using supplemental data from Yakima County. The old-
est age groups, consisting of persons aged 65 and older 
were > 90% residents. Persons in the 45–64 age group 
were 43.3% residents; 95.5% of persons 18–44 were staff. 
Across all time periods, sequences from different age 
groups are interspersed.

Figure  3 shows the post-introduction clade sizes 
among LTCFs in each time-period. Most clusters are 
single introductions across all time-periods, with large 

outbreaks (> 10 sequences) becoming increasingly rare. 
The average number of introductions per day varied from 
1.6 during time-period 4 to 0.7 during time-period 3. 
Additional detail regarding post-introduction clade sizes, 
introductions per day, and information regarding sam-
pling during each time-period is provided in Supplemen-
tal Table 1.

Among cases inferred to be associated with introduc-
tion clades sized > 1, varying proportions were labeled as 
outbreak-associated in the epidemiologic dataset over 
time, ranging from 49.2%-97.4% (Table 3).

Yakima county long‑term care facility‑associated 
transmission
Yakima Health District reported supplemental data on 
1,725 cases associated with ten facilities; 1,452 (84%) of 
these case records were linked to WDRS data by proba-
bilistic matching. Genomic data were available for 667 
cases. Sequenced cases from Yakima were highly repre-
sentative based on age, sex, and race. Sequenced cases 
were more likely to be fatalities (11.1% of sequenced 
cases vs 8.1% of all facility cases).

Phylogenetic visualization spanned two time peri-
ods, which covered 98% of sequences: January-August 
2020 and August 2021-December 2022. Several large 
facility-associated outbreaks were visualized; three 

Fig. 2 Time-scaled (A) and divergence-scaled (B) Maximum Likelihood phylogenetic trees of sequence data from each study time-period. 
Divergence-scaled trees include indication of age group and outbreak status for LTCF-associated cases. Nodes are colored by individual facility; 
colored nodes are LTCF-associated cases, gray nodes are contextual samples
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Fig. 3 A Post-introduction clade sizes among LTCFs in each time period, 1–6*. *Footnote: Additional single observations outside of the figure scale 
were observed for the following time-periods. Time-period 2: 52, 64, 253, 303. Time-period 3: 51. Time-period 5: 57, 405. B Introduction rate (average 
number of introduction events per day) and percent of introduction events leading to large clade sizes, time-periods 1–6

Table 3 Agreement of genomic and epidemiologic datasets: proportion of cases marked as outbreak-associated in epidemiologic 
data among those inferred in LTCF post-introduction clades sized > 1

Time‑period Proportion of cases inferred in LTCF post‑introduction 
clades > 1 and marked as outbreak‑associated in epidemiologic 
datasets

1 56/63 (88.9%)

2 590/1050 (56.2%)

3 262/269 (97.4%)

4 323/382 (84.6%)

5 610/932 (65.5%)

6 223/453 (49.2%)
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facilities were selected for additional analyses (Sup-
plemental Fig.  3a-b). Facility A was selected due to 
identification of one prolonged cluster spanning April-
June 2020; a divergence tree of each selected outbreak 
is shown in Fig.  4. Facility B was selected due to two 
large overlapping outbreaks early in the pandemic with 
multiple introductions later in the pandemic. Facility 
C was selected due to apparent multiple introduction 
events over the course of the pandemic, including early 
in the pandemic. Resident and staff infections were 
interspersed across the tree and network visualizations. 
Trace diagrams resulting from the TransPhylo analy-
sis revealed uncertainty in the parameter values, likely 
due preponderance of identical consensus genomes, 
impacting Transphylo’s ability to resolve within- and 
between-case genetic diversity, as has been described 
previously for SARS-CoV-2 transmission reconstruc-
tion [27].

The Facility A transmission reconstruction inferred 
12% of cases as unsampled sources (Supplemental Fig. 4) 
and inferred a resident as source. During this period, 56% 
of known cases from Facility A were sequenced (Supple-
mental Table 2).

An outbreak spanning March 18, 2020 to April 15, 2020 
included 27 Facility B sequences; during this period, 58% 
of known Facility B cases were sequenced. Another 33 
sequences from this facility were associated with a sepa-
rate outbreak spanning April 19, 2020 to May 7 2020.

From April-August 2020, 69% of reported cases from 
Facility C were sequenced and at least 18 separate intro-
duction events were documented, only one of which 
apparently led to an outbreak of > 5 cases as visualized in 
the genomic data. This outbreak included 62 sequences 
and spanned April 15-May 14, 2020.

The proportion of staff amongst all cases was consist-
ent across these four outbreaks, ranging from 17%-22%. 
The ratio of observed to expected inferred transmission 
events attributed to staff ranged from 0.66–1.17, pro-
viding evidence that both staff and residents are driving 
transmission in these outbreaks (Supplemental Table 2).

Discussion
Here, we analyzed epidemiologic and genomic data asso-
ciated with LTCFs in WA to characterize transmission 
dynamics and inform ongoing data utilization. Trans-
mission dynamics in LTCFs changed over the course of 

Fig. 4 Divergences trees, Yakima County Facilities A-C. A Facility A, April-June 2020. B. Facility B-1, March-June 2020. C. Facility B-2, March-June 2020. 
D. Facility C, April-Aug 2020
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the COVID-19 pandemic, with variable introduction 
rates into LTCFs, but decreasing amplification within 
LTCFs. Particularly during March-August 2020, a period 
marked by little population immunity and initiation of 
non-pharmaceutical interventions, COVID-19 spread in 
LTCFs via high introduction rates and intra-facility trans-
mission. The number of introduction events and intra-
facility clade sizes decreased during August 2020-March 
2021; vaccination campaigns began in December 2020. 
Additionally, CMS released testing requirements for staff 
and residents in August 2020. Although the introduc-
tion rate more than doubled between this time-period 
and the subsequent two study periods, the percentage of 
introduction events leading to large clade sizes remained 
stable. This indicates that despite more frequent intro-
ductions during these time periods, post-introduction 
within-LTCF transmission was curbed, possibly due to 
vaccination and improved IPC. These study periods were 
marked by transmission of Delta and Omicron variants, 
with high levels of community transmission likely con-
tributing to introduction rates. While case counts were 
high, the genomic data show that incidence was largely 
driven by repeated introduction events rather than inten-
sive within-LTCF spread.

Over the course of the pandemic, LTCF-associated 
cases are dispersed throughout the trees and intermixed 
with both LTCF-associated and non-LTCF cases, indi-
cating that SARS-CoV-2 lineages circulating in LTCFs 
matched those circulating in surrounding communities. 
Dominant lineages in each time-period matched when 
comparing LTCF-associated cases to Washington cases 
included in the tree. This finding is consistent with a sim-
ilar study performed in the UK [15]. Similarly, sequences 
from different age groups are interspersed, indicating 
likely bi-directional transmission between staff and resi-
dents. This observation was validated for a small number 
of outbreaks, demonstrating proportional inferred trans-
mission from staff and residents.

Interpretation of these findings is limited by variable 
sequencing over time. For much of the pandemic, testing 
and sequencing from LTCFs occurred at higher propor-
tions than for the general population of COVID-19 cases. 
This over-sampling inflates the number of introductions 
and clade sizes when contextualized among other WA 
sequences. Changes in the relative proportion of LTCF 
cases sequenced and in sampling intensity are expected 
to impact findings of the DTA analysis and compari-
son across timepoints. However, when considering the 
direction of expected change, we anticipate the results 
identified herein are generally a conservative estimate. 
This conclusion was drawn after comparing the relative 
direction of change considering sampling proportion and 

sampling intensity across time-periods to the number of 
large clades identified. Overall, sequenced LTCF cases 
were found to be representative of COVID-19 cases in 
LTCFs.

The potential contribution of genomic data in defining 
outbreak-related cases was quantified. In the absence of 
genomic data, outbreak-association is determined using 
the current Council for State and Territorial Epidemi-
ologists (CSTE) case definition. However, this definition 
cannot differentiate between concurrent but independent 
introduction events or outbreaks and relies on epidemi-
ologic data capture. Analysis of the agreement between 
outbreak-tagged cases in the epidemiological data and 
cases identified in post-introduction clades sized > 1 
revealed that epidemiologic data is growing more dis-
parate from genomic data over time. Specifically, during 
periods 4–6, cases inferred within LTCF post-introduc-
tion clades were less likely to be recorded as outbreak-
associated in the epidemiologic datasets compared to 
during study periods 1–3. This finding suggests that 
genomic data could greatly inform outbreak definitions, 
especially in settings of decreased epidemiologic data 
capture. In the absence of genomic data, outbreaks may 
also be over-estimated as multiple introduction events 
are not considered.

Although we attempted transmission reconstruction 
of four outbreaks in Yakima County, uncertainty in the 
parameter values limits interpretation of results. Indeed, 
based on known sequencing rates, TransPhylo estimated 
fewer missing links than expected and epidemiological 
data including onset dates provided conflicting results. 
Methods that utilize additional epidemiological data in 
reconstruction, such as extension of the outbreaker2 
model, may be more useful in this setting [29, 30].

Visualization of this large genomic dataset over time 
provides insight into useful bioinformatic tools and 
methods for application in public health practice. Early 
in the pandemic, many clusters of cases with long persis-
tence were observed. Genomic epidemiology tools often 
rely on distance thresholds for defining clusters. These 
tools are difficult to apply in settings of prolonged trans-
mission, as evolution over time is expected. Application 
of tools requiring thresholds may result in inference of 
independent clusters in  situations of prolonged trans-
mission. This was observed when attempting to use one 
such tool, MicrobeTrace, in the analysis of outbreaks in 
Yakima County. In this study, the utilization of DTA anal-
ysis with paired epidemiologic data allowed observation 
of prolonged outbreaks without the need for thresholds.

This study faced several important limitations. First, 
genomic data captured for LTCF-associated cases were 
associated with more severe cases. The majority of 
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LTCF-associated outbreaks had no sequences available; 
this requires an assumption that the sampled LTCFs 
are representative of the unsampled facilities. Based on 
our case-level representativeness assessment, including 
proportional sampling by facility type, we believe this 
assumption is reasonable. The DTA analysis was per-
formed using a binary variable for LTCF-association; 
analysis at the facility level may reveal additional intro-
duction events and patterns of inter-facility spread. Dem-
onstrating the relative rarity of large outbreaks caused by 
a single introduction late in the pandemic is an impor-
tant finding; however, many guidance, policy, regulation, 
practice, immunity, and prevention method (including 
new availability of vaccines) changes occurred over the 
study period, prohibiting a causal analysis of which com-
ponent changes led to this impact and limiting our study 
to observational findings.

This study had several notable strengths. First, we 
assessed genomic sampling representativeness at the 
case-level, enabling DTA analysis and interpretation. Sec-
ond, paired epidemiologic and pathogen genomic data 
were available with additional detail available for Yakima 
County cases, facilitating in-depth analysis of transmis-
sion. In particular, the ability to de-duplicate sequences 
early in the pandemic impacted study findings; dur-
ing the first time-period there were an average of three 
(triplicative) genomes available among sequenced cases. 
Analysis in the absence of epidemiologic data will over-
represent these cases, inflating genomically-defined clus-
ters. Finally, genomic studies to understand a single or 
a few outbreaks are commonly performed and reported 
in the literature. By looking at data over time, we add 
important context regarding the changing transmission 
dynamics associated with LTCFs.

Paired genomic and epidemiologic data enable phy-
logenetic analysis to understand transmission patterns, 
identify apparent clusters, and form hypotheses regard-
ing transmission networks. However, metadata is not 
consistently available on some key variables, including 
type of LTCF association (staff/resident/visitor), dates of 
association, or travel history. Given currently available 
data, methods for tree building for hypotheses genera-
tion on a routine basis are recommended. Cluster detec-
tion tools for outbreak identification are likely of limited 
use, as most facilities do not have sequencing performed 
and data is not timely. However, cluster detection on 
available genomic data may help to identify temporal 
patterns of intra-facility spread versus repeated intro-
duction. The current data types and quality captured 
by routine surveillance data collection is inadequate for 
applying methods to infer transmission or identify intro-
duction sources with certainty. Although this data may 

be available through enhanced investigations in some 
counties, as with Yakima County, the general absence 
of this data limits broader analysis. Importantly, we 
noted a decrease in data capture from LTCFs over time. 
Depending on goals for use of genomic data, sentinel 
surveillance should be increased or targeted surveillance 
implemented to ensure available data for analysis; like-
wise, if cluster detection is a desired outcome, data time-
liness should be improved.

These findings reflect challenges facing many SARS-
CoV-2 genomic data capture systems presently. Anti-
gen-based testing is common but is not compatible with 
available specimen retrieval practices and sequencing 
capacity; advances compatible with ongoing genomic 
data capture are needed. With present patterns of 
sequencing, LTCFs are underrepresented; expansion to 
sentinel facilities or during outbreak investigation is rec-
ommended. Additionally, genomic epidemiologic work-
force capacity embedded within the teams that surveil for 
outbreaks in healthcare settings is required.

Conclusions
In conclusion, this analysis identified changing transmis-
sion dynamics in LTCFs over the course of the COVID-
19 pandemic, with smaller post-introduction clades 
noted later in the study period despite periods of high 
introduction rates. This finding is encouraging for the 
many control efforts that have been put in place in these 
facilities over time, including vaccination, infection pre-
vention, and testing and reporting to public health juris-
dictions, although causal theories could not be tested 
and natural immunity was also accumulating during this 
time. LTCFs are likely to remain vulnerable institutions 
in which ongoing respiratory pathogen monitoring and 
outbreak control is warranted. Genomic data have the 
potential to increase the specificity of outbreak detection 
and resulting public health actions. Ongoing genomic 
epidemiologic analysis of LTCF-associated data is 
encouraged to facilitate situational awareness, potential 
cluster detection, and hypothesis-generation for further 
targeted analysis.
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