
Dimensionality reduction distills complex evolutionary

relationships in seasonal influenza and SARS-CoV-2

Sravani Nanduri1, Allison Black2, Trevor Bedford2,3, John Huddleston2*

1 Paul G. Allen School of Computer Science and Engineering, University of Washington,

Seattle, WA, USA

2 Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA,

USA

3 Howard Hughes Medical Institute, Seattle, WA, USA

* jhuddles@fredhutch.org

Abstract

Public health researchers and practitioners commonly infer phylogenies from viral

genome sequences to understand transmission dynamics and identify clusters of

genetically-related samples. However, viruses that reassort or recombine violate

phylogenetic assumptions and require more sophisticated methods. Even when

phylogenies are appropriate, they can be unnecessary or difficult to interpret without

specialty knowledge. For example, pairwise distances between sequences can be enough

to identify clusters of related samples or assign new samples to existing phylogenetic

clusters. In this work, we tested whether dimensionality reduction methods could

capture known genetic groups within two human pathogenic viruses that cause

substantial human morbidity and mortality and frequently reassort or recombine,

respectively: seasonal influenza A/H3N2 and SARS-CoV-2. We applied principal

component analysis (PCA), multidimensional scaling (MDS), t-distributed stochastic

neighbor embedding (t-SNE), and uniform manifold approximation and projection

(UMAP) to sequences with well-defined phylogenetic clades and either reassortment

(H3N2) or recombination (SARS-CoV-2). For each low-dimensional embedding of
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sequences, we calculated the correlation between pairwise genetic and Euclidean

distances in the embedding and applied a hierarchical clustering method to identify

clusters in the embedding. We measured the accuracy of clusters compared to

previously defined phylogenetic clades, reassortment clusters, or recombinant lineages.

We found that MDS maintained the strongest correlation between pairwise genetic and

Euclidean distances between sequences and best captured the intermediate placement of

recombinant lineages between parental lineages. Clusters from t-SNE most accurately

recapitulated known phylogenetic clades and recombinant lineages. Both MDS and

t-SNE accurately identified reassortment groups. We show that simple statistical

methods without a biological model can accurately represent known genetic

relationships for relevant human pathogenic viruses. Our open source implementation of

these methods for analysis of viral genome sequences can be easily applied when

phylogenetic methods are either unnecessary or inappropriate.

Author summary

To track the progress of viral epidemics, public health researchers often need to identify

groups of genetically-related samples. A common approach to find these groups involves

inferring the complete evolutionary history of virus samples using phylogenetic methods.

However, these methods assume that new viruses descend from a single parent, while

many viruses including seasonal influenza and SARS-CoV-2 produce offspring through a

form of sexual reproduction that violates this assumption. Additionally, phylogenies may

be unnecessarily complex or unintuitive when researchers only need to find and visualize

clusters of related samples. We tested an alternative approach by applying widely-used

statistical methods (PCA, MDS, t-SNE, and UMAP) to create 2- or 3-dimensional maps

of virus samples from their pairwise genetic distances and identify clusters of samples

that place close together in these maps. We found that these statistical methods

without an underlying biological model could accurately capture known genetic

relationships in populations of seasonal influenza and SARS-CoV-2 even in the presence

of sexual reproduction. The conceptual and practical simplicity of our open source

implementation of these methods enables researchers to visualize and compare human

pathogenic virus samples when phylogenetic methods are unnecessary or inappropriate.
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Introduction 1

Tracking the evolution of human pathogenic viruses in real time enables epidemiologists 2

to respond quickly to emerging epidemics and local outbreaks [1]. Real-time analyses of 3

viral evolution typically rely on phylogenetic methods that can reconstruct the 4

evolutionary history of viral populations from their genome sequences and estimate 5

states of inferred ancestral viruses from the resulting trees including their most likely 6

genome sequence, time of circulation, and geographic location [2–4]. Importantly, these 7

methods assume that the sequence diversity of sampled tips accrued through clonal 8

evolution, that is, the occurrence of mutations on top of an inherited genomic 9

background, that is further inherited by descendent pathogens. In practice, the 10

evolutionary histories of many human pathogenic viruses violate this assumption 11

through processes of reassortment or recombination, as seen in seasonal influenza [5, 6] 12

and seasonal coronaviruses [7], respectively. Researchers account for these evolutionary 13

mechanisms by limiting their analyses to individual genes [8, 9], combining multiple 14

genes despite their different evolutionary histories [10], or developing more sophisticated 15

models to represent the joint likelihoods of multiple co-evolving lineages with ancestral 16

reassortment or recombination graphs [11,12]. However, several key questions in 17

genomic epidemiology do not require inference of ancestral relationships and states, and 18

therefore may be amenable to non-phylogenetic approaches for summarizing genetic 19

relationships. For example, genomic epidemiologists commonly need to 1) visualize the 20

genetic relationships among closely related virus samples [13,14], 2) identify clusters of 21

closely-related genomes that represent regional outbreaks or new variants of 22

concern [15–18], 3) place newly sequenced viral genomes in the evolutionary context of 23

other circulating samples [19–21]. Given that these common use cases rely on genetic 24

distances between samples, tree-free statistical methods that operate on pairwise 25

distances could be sufficient to address each case. As these tree-free methods lack a 26

formal biological model of evolutionary relationships, they make weak assumptions 27

about the input data and therefore should be applicable to pathogen genomes that 28

violate phylogenetic assumptions. Furthermore, methods that describe genetic 29

relationships with map-like visualizations may feel more familiar to public health 30

practitioners, and therefore more easily applied for public health action. 31
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Common statistical approaches to analyzing variation from genome alignments start 32

by transforming alignments into either a matrix that codes each distinct nucleotide 33

character as an integer or a distance matrix representing the pairwise distances between 34

sequences. The first of these transformations is the first step prior to performing a 35

principal component analysis (PCA) to find orthogonal representations of the inputs 36

that explain the most variance [22]. The second transformation calculates the number of 37

mismatches between each pair of aligned genome sequences, also known as the 38

Hamming distance, to create a distance matrix. Most phylogenetic methods begin by 39

building a distance matrix for all sequences in a given multiple sequence alignment. 40

Dimensionality reduction algorithms such as multidimensional scaling (MDS) [23], 41

t-distributed stochastic neighbor embedding (t-SNE) [24], and uniform manifold 42

approximation and projection (UMAP) [25] accept such distance matrices as an input 43

and produce a corresponding low-dimensional representation or “embedding” of those 44

data. Both types of transformation allow us to reduce high-dimensional genome 45

alignments (M ×N values for M genomes of length N) to low-dimensional embeddings 46

where clustering algorithms and visualization are more tractable. Additionally, 47

distance-based methods can reflect the presence or absence of insertions and deletions in 48

an alignment that phylogenetic methods ignore. 49

Each of the embedding methods mentioned above has been applied previously to 50

genomic data to visualize relationships between individuals and identify clusters of 51

related genomes. Although PCA is a generic linear algebra algorithm that optimizes for 52

an orthogonal embedding of the data, the principal components from single nucleotide 53

polymorphisms (SNPs) represent mean coalescent times and therefore recapitulate 54

broad phylogenetic relationships [26]. PCA has been applied to SNPs of human 55

genomes [26–29] and to multiple sequence alignments of viral genomes [30]. MDS 56

attempts to embed input data into a lower-dimensional representation such that each 57

pair of data points are as close in the embedding as they are in the original 58

high-dimensional space. MDS has been applied to multiple gene segments of seasonal 59

influenza viruses to visualize evolutionary relationships between segments [31] and to 60

individual influenza gene segments to reveal low-dimensional trajectories of genetic 61

clusters [32, 33]. Both t-SNE and UMAP build on manifold learning methods like MDS 62

to find low-dimensional embeddings of data that place similar points close together and 63
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dissimilar points far apart [34]. These methods have been applied to SNPs from human 64

genomes [35] and single-cell transcriptomes [36,37]. 65

Although these methods are commonly used for qualitative studies of evolutionary 66

relationships, few studies have attempted to quantify patterns observed in the resulting 67

embeddings, investigate the value of applying these methods to viruses that reassort or 68

recombine, or identify optimal method parameters for application to viruses. Recent 69

studies disagree about whether methods like PCA, t-SNE, and UMAP produce 70

meaningful global structures [34] or arbitrary patterns that distort high-dimensional 71

relationships [38]. To address these open questions, we tuned and validated the 72

performance of PCA, MDS, t-SNE, and UMAP with genomes from simulated 73

influenza-like and coronavirus-like populations and then applied these methods to 74

natural populations of seasonal influenza virus A/H3N2 and SARS-CoV-2. These 75

natural viruses are highly relevant as major causes of global human mortality, common 76

subjects of real-time genomic epidemiology, and representatives of reassortant and 77

recombinant human pathogens. For each combination of virus and embedding method, 78

we quantified the relationship between pairwise genetic and Euclidean embedding 79

distances, identified clusters of closely-related genomes in embedding space, and 80

evaluated the accuracy of clusters compared to genetic groups defined by experts. 81

Finally, we tested the ability of these methods to capture patterns of reassortment 82

between seasonal influenza A/H3N2 hemagglutinin (HA) and neuraminidase (NA) 83

segments and recombination in SARS-CoV-2 genomes. These results inform our 84

recommendations for future applications of these methods including which are most 85

effective for specific problems in genomic epidemiology and which parameters 86

researchers should use for each method. 87
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Results 88

The ability of embedding methods to produce global structures 89

for simulated viral populations varies little across method 90

parameters 91

To understand how well PCA, MDS, t-SNE, and UMAP could represent genetic 92

relationships between samples of human pathogenic viruses under well-defined 93

evolutionary conditions, we simulated influenza-like and coronavirus-like populations 94

and created embeddings for each population across a range of method parameters. We 95

maximized the local and global interpretability of each method’s embeddings by 96

identifying parameters that maximized a linear relationship between genetic distance 97

and Euclidean distance in low-dimensional space (see Methods). Specifically, we 98

selected parameters that minimized the median of the mean absolute error (MAE) 99

between observed pairwise genetic distances of simulated genomes and predicted genetic 100

distances for those genomes based on their Euclidean distances in each embedding. For 101

methods like PCA and MDS where increasing the number of components available to 102

the embedding could lead to overfitting, we selected the maximum number of 103

components beyond which the median MAE did not decrease by more than 1 nucleotide. 104

For influenza-like populations, the optimal parameters were 2 components for PCA, 105

3 components for MDS, perplexity of 100 and learning rate of 100 for t-SNE, and nearest 106

neighbors of 100 and minimum distance of 0.1 for UMAP. As expected, increasing the 107

number of components for PCA and MDS gradually decreased the median MAEs of 108

their embeddings (S1 Fig A and B). However, beyond 2 and 3 components, respectively, 109

the reduction in error did not exceed 1 nucleotide. This result suggests that there were 110

diminishing returns for the increased complexity of additional components. Both t-SNE 111

and UMAP embeddings produced a wide range of errors (the majority between 10 and 112

20 average mismatches) across all parameter values (S1 Fig C and D). Embeddings from 113

t-SNE appeared robust to variation in parameters, with a slight improvement in median 114

MAE associated with perplexity of 100 and little benefit to any of the learning rate 115

values (S1 Fig C). Similarly, UMAP embeddings were robust across the range of tested 116

parameters, with the greatest benefit coming from setting the nearest neighbors greater 117
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than 25 and no benefit from changing the minimum distance between points (S1 Fig D). 118

The optimal parameters for coronavirus-like populations were similar to those for the 119

influenza-like populations. The optimal parameters were 2 components for PCA, 3 for 120

MDS, perplexity of 100 and learning rate of 500 for t-SNE, and nearest neighbors of 50 121

and minimum distance of 0.1 for UMAP. As with influenza-like populations, both PCA 122

and MDS showed diminishing benefits of increasing the number of components (S2 Fig 123

A and B). Similarly, we observed little improvement in MAEs from varying t-SNE and 124

UMAP parameters (S2 Fig C and D). The most noticeable improvement came from 125

setting t-SNE’s perplexity to 100 (S2 Fig C). These results indicate the limits of t-SNE 126

and UMAP to represent global genetic structure from these data. 127

We inspected representative embeddings based on the optimal parameters above for 128

the first four years of influenza- and coronavirus-like populations. Simulated sequences 129

from the same time period tended to map closer in embedding space, indicating the 130

maintenance of “local” genetic structure in the embeddings (Fig. 1). Most embeddings 131

also represented some form of global structure, with later generations mapping closer to 132

intermediate generations than earlier generations. MDS maintained the greatest 133

continuity between generations for both population types (S3 Fig). In contrast, PCA, 134

t-SNE, and UMAP all demonstrated tighter clusters of samples separated by potentially 135

arbitrary space. These qualitative results matched our expectations based on how well 136

each method maximized a linear relationship between genetic and Euclidean distances 137

during parameter optimization (S1 Fig and S2 Fig). 138

Embedding clusters recapitulate phylogenetic clades for seasonal 139

influenza H3N2 140

Seasonal influenza H3N2’s hemagglutinin (HA) sequences provide an ideal positive 141

control to test embedding methods and clustering in low-dimensional space. H3N2’s HA 142

protein evolves rapidly, accumulating amino acid mutations that enable escape from 143

adaptive immunity in human populations [39]. These mutations produce distinct 144

phylogenetic clades that represent potentially different antigenic phenotypes. The 145

World Health Organization (WHO) Global Influenza Surveillance and Response System 146

regularly sequences genomes of circulating influenza lineages [40] and submits these 147
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Fig 1. Representative embeddings for simulated populations using optimal
parameters per pathogen (rows) and embedding method (columns). Each
panel shows the embedding for sequences from the first four years of a single replicate
population for the corresponding pathogen type. Each point represents a simulated viral
sequence colored by its generation with darker values representing later generations. S3
Fig shows the full MDS embedding for all components.

sequences to public INSDC databases like NCBI’s GenBank [41]. These factors, coupled 148

with HA’s relatively short gene size of 1,701 nucleotides, facilitate real-time genomic 149

epidemiology of H3N2 [42] and rapid analysis by the embedding methods we wanted to 150

evaluate. We analyzed H3N2 HA sequences from two consecutive time periods including 151

an “early” dataset from 2016–2018 and a “late” dataset from 2018–2020. For each 152

dataset, we created embeddings with all four methods, identified clusters in the 153

embeddings with HDBSCAN, and calculated the accuracy of clusters relative to 154

expert-defined genetic groups (see Methods). We used the early dataset to identify 155

cluster parameters that minimized the distance between clusters and known genetic 156

groups. We tested these optimal parameters with the late dataset. This approach 157

allowed us to maximize cluster accuracy against the background of embedding method 158

parameters that we already optimized to maximize interpretability of visualizations. 159

We first applied each embedding method to the early H3N2 HA sequences 160

(2016–2018) and compared the placement of these sequences in the embeddings to their 161

corresponding clades in the phylogeny. All four embedding methods qualitatively 162

recapitulated the 10 Nextstrain clades observed in the phylogeny (Fig 2 and S4 Fig). 163

Samples from the same clade generally grouped tightly together. Most embedding 164
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methods also delineated larger phylogenetic clades, placing clades A1, A2, A3, A4, and 165

3c3.A into separate locations in the embeddings. Despite maintaining local and broader 166

global structure, not all embeddings captured intermediate genetic structure. For 167

example, all methods placed A1b and its descendant clades, A1b/135K and A1b/135N, 168

into tight clusters together. The t-SNE embedding created separate clusters for each of 169

these clades, but these clusters all placed so close together in the embedding space that, 170

without previously defined clade labels, we would have visually grouped these samples 171

into a single cluster. These results qualitatively replicate the patterns we observed in 172

embeddings for simulated influenza-like populations (Fig 1). 173

To quantify the apparent maintenance of local and global structure by all four 174

embedding methods, we calculated the relationship between pairwise genetic and 175

Euclidean distance of samples in each embedding. All methods maintained a linear 176

pairwise relationship for samples that differed by no more than ≈10 nucleotides (Fig 3). 177

Only MDS consistently maintained that linearity as genetic distance increased 178

(Pearson’s R2 = 0.94). We observed a less linear relationship for samples with more 179

genetic differences in PCA (Pearson’s R2 = 0.67), t-SNE (Pearson’s R2 = 0.34), and 180

UMAP (Pearson’s R2 = 0.68) embeddings. While PCA and UMAP Euclidean distances 181

increased monotonically with genetic distance, t-SNE embeddings placed some pairs of 182

samples with intermediate distances of 30-40 nucleotides farther apart than pairs of 183

samples with much greater genetic distances. 184

Next, we found clusters in embeddings of early H3N2 HA data and calculated their 185

distance to previously defined genetic groups. We assigned cluster labels to each sample 186

with the hierarchical clustering algorithm, HDBSCAN [43]. We calculated distances 187

between clusters and known genetic groups with the normalized variation of information 188

(VI) metric [44] which produces a value of 0 for identical groups and 1 for maximally 189

different groups (see Methods). HDBSCAN does not require an expected number of 190

clusters as input, but it does provide a parameter for the minimum distance required 191

between clusters. We optimized this minimum distance threshold by minimizing the VI 192

distance between known genetic groups and clusters produced with different threshold 193

values (S1 Table). Clusters produced with the optimal distance threshold were generally 194

monophyletic (S2 Table), supported by cluster-specific mutations (S3 Table), and 195

corresponded to larger phylogenetic clades (Fig 4). Pairwise genetic distances between 196
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Fig 2. Phylogeny of early (2016–2018) influenza H3N2 HA sequences
plotted by nucleotide substitutions per site on the x-axis (top) and
low-dimensional embeddings of the same sequences by PCA (middle left),
MDS (middle right), t-SNE (bottom left), and UMAP (bottom right). Tips
in the tree and embeddings are colored by their Nextstrain clade assignment. Line
segments in each embedding reflect phylogenetic relationships with internal node
positions calculated from the mean positions of their immediate descendants in each
dimension (see Methods). Line colors represent the clade membership of the most
ancestral node in the pair of nodes connected by the segment. Line thickness scales by
the square root of the number of leaves descending from a given node in the phylogeny.
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Fig 3. Relationship between pairwise genetic and Euclidean distances in
embeddings of early (2016–2018) influenza H3N2 HA sequences by PCA
(upper left), MDS (upper right), t-SNE (lower left), and UMAP (lower
right). Each boxplot represents the distribution of pairwise Euclidean distances at a
given genetic distance. Panel titles include Pearson’s R2 values and linear regression
coefficients between the plotted distances.

sequences in the same MDS, t-SNE, or UMAP clusters matched the distances between 197

sequences within Nextstrain clades (S5 Fig). The 8 clusters from t-SNE most accurately 198

captured expert clade assignments (normalized VI=0.04) followed by UMAP’s 7 clusters 199

(normalized VI=0.09), MDS’s 9 clusters (normalized VI=0.11), and PCA’s 3 clusters 200

(normalized VI=0.19). Clusters from t-SNE, MDS, and UMAP captured broader 201

phylogenetic clades (A1, A1b, A2, A3, A4, 3c2.A, and 3c3.A) but failed to distinguish 202

between A1b and its descendants. PCA clusters corresponded to the most 203

distantly-related and ancestral clades (3c2.A, 3c3.A, and A2). These results indicate 204
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that nonlinear t-SNE embeddings could be better-suited for clustering and classification 205

than the more linear embeddings from PCA, MDS, and UMAP. 206

To understand whether these embedding methods and optimal cluster parameters 207

could effectively cluster previously unseen sequences, we applied each method to the 208

late H3N2 HA dataset (2018–2020), identified clusters per embedding, and calculated 209

the VI distance between clusters and previously defined clades. The late dataset 210

included 9 clades with at least 10 samples (S6 Fig). These clades had a greater average 211

between-clade distance than clades in the early dataset (S5 Fig). As with the early 212

dataset, clusters from the late dataset were largely monophyletic (S2 Table), supported 213

by cluster-specific mutations (S3 Table), and corresponded to larger phylogenetic clades 214

(Fig. 5 and S6 Fig) Pairwise genetic distances within clusters generally matched the 215

diversity within Nextstrain clades (S5 Fig). Clusters from PCA (N=6), MDS (N=6), 216

t-SNE (N=5), and UMAP (N=8) were similarly accurate, with normalized VI distances 217

of 0.09, 0.07, 0.08, and 0.06, respectively (Fig. 5 and S7 Fig). MDS split A3 samples into 218

two widely separated groups in its Euclidean space, indicating substantial within-clade 219

genetic differences. We found recurrent HA1 substitutions of 135K, 142G, and 193S in 220

multiple subclades of A3 that MDS could not effectively represent. Cluster accuracies 221

were robust to changes in sampling density under the same even geographic and 222

temporal sampling scheme, with PCA and MDS clusters producing the lowest median 223

distance to Nextstrain clades (S8 Fig A). However, biased sampling toward the USA and 224

clade 3c3.A decreased cluster accuracy for t-SNE and UMAP (S8 Fig B). These results 225

show that all four methods can produce clusters that accurately capture known genetic 226

groups when applied to previously unseen H3N2 HA samples with unbiased sampling. 227

Joint embeddings of hemagglutinin and neuraminidase genomes 228

identify seasonal influenza virus H3N2 reassortment events 229

Given that clusters from embedding methods could recapitulate expert-defined clades, 230

we measured how well the same methods could capture reassortment events between 231

multiple gene segments as detected by biologically-informed computational models. 232

Evolution of HA and NA surface proteins contributes to the ability of influenza viruses 233

to escape existing immunity [39] and HA and NA genes frequently reassort [5, 6, 45]. 234
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Fig 4. Phylogenetic trees (left) and embeddings (right) of early (2016–2018)
influenza H3N2 HA sequences colored by HDBSCAN cluster. Normalized VI
values per embedding reflect the distance between clusters and known genetic groups
(Nextstrain clades). Line segments in each embedding reflect phylogenetic relationships
with internal node positions calculated from the mean positions of their immediate
descendants in each dimension (see Methods). Line thickness scales by the square root
of the number of leaves descending from a given node in the phylogeny.

February 7, 2024 13/50

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.07.579374doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.07.579374
http://creativecommons.org/licenses/by/4.0/


Fig 5. Phylogenetic trees (left) and embeddings (right) of late (2018–2020)
H3N2 HA sequences colored by HDBSCAN cluster. Normalized VI values per
embedding reflect the distance between clusters and known genetic groups (Nextstrain
clades). Line segments in each embedding reflect phylogenetic relationships with
internal node positions calculated from the mean positions of their immediate
descendants in each dimension (see Methods). Line thickness scales by the square root
of the number of leaves descending from a given node in the phylogeny.
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Therefore, we focused our reassortment analysis on HA and NA sequences, sampling 235

1,607 viruses collected between January 2016 and January 2018 with sequences for both 236

genes. We inferred HA and NA phylogenies from these sequences and applied TreeKnit 237

to both trees to identify maximally compatible clades (MCCs) that represent 238

reassortment events [11]. Of the 208 reassortment events identified by TreeKnit, 15 (7%) 239

contained at least 10 samples representing 1,049 samples (65%). 240

We created PCA, MDS, t-SNE, and UMAP embeddings from the HA alignments 241

and from merged HA and NA alignments. We identified clusters in both HA-only and 242

HA/NA embeddings and calculated the VI distance between these clusters and the 243

MCCs identified by TreeKnit. We expected that clusters from HA-only embeddings 244

could only reflect reassortment events when the HA clade involved in reassortment 245

happened to carry characteristic nucleotide mutations. We expected that the VI 246

distances for clusters from HA/NA embeddings would improve on the baseline distances 247

calculated with the HA-only clusters. 248

All embedding methods produced more accurate clusters from the HA/NA 249

alignments than the HA-only alignments (Fig. 6 and S9 Fig). HA/NA clusters from 250

MDS reduced the distance to known reassortment events from a normalized VI value of 251

0.17 with HA only to 0.06. Similarly, HA/NA clusters from t-SNE reduced the distance 252

from 0.11 to 0.06. Adding NA to HA only modestly improved PCA and UMAP clusters, 253

reducing distances by 0.05 and 0.03, respectively. Embeddings with both genes 254

produced more clusters in PCA, MDS, and t-SNE than the HA-only embeddings with 1 255

additional cluster in PCA (S10 Fig), 9 in MDS (S11 Fig), 6 in t-SNE (S12 Fig), and 0 256

in UMAP (S13 Fig). With the exception of PCA, all embeddings of HA/NA alignments 257

produced distinct clusters for the known reassortment event within clade A2 [45] as 258

represented by MCCs 14 and 11. Other larger events like those represented by MCCs 9 259

and 12 mapped far apart in all HA/NA embeddings except PCA. We noted that some 260

of the additional clusters in HA/NA embeddings likely also reflected genetic diversity in 261

NA that was independent of reassortment between HA and NA. These results suggest 262

that a single embedding of multiple gene segments could identify biologically meaningful 263

clusters within and between all genes. 264
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Fig 6. Phylogeny of early (2016–2018) influenza H3N2 HA sequences
plotted by nucleotide substitutions per site on the x-axis (top) and
low-dimensional embeddings of the same HA sequences concatenated with
matching NA sequences by PCA (middle left), MDS (middle right), t-SNE
(bottom left), and UMAP (bottom right). Tips in the tree and embeddings are
colored by their TreeKnit Maximally Compatible Clades (MCCs) label which represents
putative HA/NA reassortment groups. The first normalized VI values per embedding
reflect the distance between HA/NA clusters and known genetic groups (MCCs). VI
values in parentheses reflect the distance between HA-only clusters and known genetic
groups. “A2” and “A2/re” labels indicate a known reassortment event [45].
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SARS-CoV-2 clusters recapitulate broad genetic groups 265

corresponding to Nextstrain clades 266

SARS-CoV-2 poses a greater challenge to embedding methods than seasonal influenza, 267

with an unsegmented genome an order of magnitude longer than influenza’s HA or 268

NA [46], a mutation rate in the spike surface protein subunit S1 that is four times 269

higher than influenza H3N2’s HA rate [47], and increasingly common 270

recombination [48,49]. However, multiple expert-based clade definitions exist for 271

SARS-CoV-2, enabling comparison between clusters from embeddings and known 272

genetic groups. These definitions span from broad genetic groups named by the WHO 273

as “variants of concern” (e.g., “Alpha”, “Beta”, etc.) [50] or systematically defined by 274

the Nextstrain team [51–53] to smaller, emerging genetic clusters defined by Pango 275

curators [19]. As with seasonal influenza, we defined an early SARS-CoV-2 dataset 276

spanning from January 2020 to January 2022, embedded genomes with the same four 277

methods, and identified HDBSCAN clustering parameters that minimized the VI 278

distance between embedding clusters and previously defined genetic groups as defined 279

by Nextstrain clades and Pango lineages (see Methods). To test these optimal cluster 280

parameters, we produced clusters from embeddings of a late SARS-CoV-2 dataset 281

spanning from January 2022 to November 2023 and calculated the VI distance between 282

those clusters and known genetic groups. Unlike the seasonal influenza analysis, we 283

counted insertion and deletion (“indel”) events in pairwise genetic distances for 284

SARS-CoV-2, to improve the resolution of distance-based embeddings. 285

All embedding methods placed samples from the same Nextstrain clades closer 286

together and closely related Nextstrain clades near each other (Fig. 7). For example, the 287

most genetically distinct clades like 21J (Delta) and 21L (Omicron) placed farthest from 288

other clades, while both Delta clades (21I and 21J) placed close together (Fig. 7, S14 289

Fig). MDS placed related clades closer together on a continuous scale, while PCA, 290

t-SNE, and UMAP produced more clearly separate groups of samples. We did not 291

observe the same clear grouping of Pango lineages. For example, the Nextstrain clade 292

21J (Delta) contained 11 Pango lineages that all appeared to map into the same 293

overlapping space in all four embeddings (S15 Fig). These results suggest that 294

distance-based embedding methods can recapitulate broader genetic groups of 295
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SARS-CoV-2, but that these methods lack the resolution of finer groups defined by 296

Pango nomenclature. 297

Fig 7. Phylogeny of early (2020–2022) SARS-CoV-2 sequences plotted by
number of nucleotide substitutions from the most recent common ancestor
on the x-axis (top) and low-dimensional embeddings of the same sequences
by PCA (middle left), MDS (middle right), t-SNE (bottom left), and
UMAP (bottom right). Tips in the tree and embeddings are colored by their
Nextstrain clade assignment. Line segments in each embedding reflect phylogenetic
relationships with internal node positions calculated from the mean positions of their
immediate descendants in each dimension (see Methods). Line thickness scales by the
square root of the number of leaves descending from a given node in the phylogeny.
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We quantified the maintenance of local and global structure in early SARS-CoV-2 298

embeddings by fitting a linear model between pairwise genetic and Euclidean distances 299

of samples. PCA produced the weakest linear relationship (Pearson’s R2 = 0.20, Fig. 8). 300

MDS created a strong linear mapping across the range of observed genetic distances 301

(Pearson’s R2 = 0.92). Both t-SNE and UMAP maintained intermediate degrees of 302

linearity (Pearson’s R2 = 0.63 and R2 = 0.61, respectively). These embeddings placed 303

the most genetically similar samples close together and the most genetically distinct 304

farther apart. However, these embeddings did not consistently place pairs of samples 305

with intermediate genetic distances at an intermediate distance in Euclidean space. The 306

linear relationship for genetically similar samples in t-SNE and UMAP remained 307

consistent up to a genetic distance of approximately 30 nucleotides. 308

We identified clusters in embeddings from early SARS-CoV-2 data using cluster 309

parameters that minimized the normalized VI distance between clusters and known 310

genetic groups. Since Nextstrain clades and Pango lineages represented different 311

resolutions of genetic diversity, we identified optimal distance thresholds per lineage 312

definition. However, we found that the optimal thresholds were the same for both 313

lineage definitions (S1 Table). Only clusters from t-SNE and UMAP represented 314

completely monophyletic groups (S2 Table). These two methods also produced the most 315

clusters supported by specific mutations (S3 Table). The 19 clusters from t-SNE were 316

closest to the 24 Nextstrain clades (normalized VI=0.07), while the other methods were 317

2-3 times farther away (Fig. 9) Clusters from t-SNE also had the most similar 318

within-group distances to Nextstrain clades (S16 Fig). Clusters from all methods were 319

farther from the 35 Pango lineages (S17 Fig), but t-SNE’s clusters were the closest 320

(normalized VI=0.12). PCA, MDS, and UMAP clusters were at least twice as far from 321

Pango lineages as t-SNE’s clusters. We found that within-cluster distances for t-SNE 322

were lower on average than within-lineage Pango distances, suggesting that Pango 323

lineages were not as tightly scoped as we originally expected (S16 Fig). These results 324

confirm quantitatively that these embeddings methods can accurately capture broader 325

genetic diversity of SARS-CoV-2, but most methods cannot distinguish between fine 326

resolution genetic groups defined by Pango lineage nomenclature. 327

To test the optimal cluster parameters identified above, we applied embedding 328

methods to late SARS-CoV-2 data and compared clusters from these embeddings to the 329
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Fig 8. Relationship between pairwise genetic and Euclidean distances in
embeddings for early (2020–2022) SARS-CoV-2 sequences by PCA (upper
left), MDS (upper right), t-SNE (lower left), and UMAP (lower right). Each
boxplot represents the distribution of pairwise Euclidean distances at a given genetic
distance. Panel titles include Pearson’s R2 values and linear regression coefficients
between the plotted distances.

corresponding Nextstrain clades and Pango lineages. Only t-SNE and UMAP clusters 330

were monophyletic (S2 Table). Only PCA and t-SNE had cluster-specific mutations for 331

more than half their clusters (S3 Table). Clusters from t-SNE had the lowest 332

within-group distances (S16 Fig). Compared to the 18 Nextstrain clades defined in this 333

time period, the closest clusters were from t-SNE (normalized VI=0.10) and UMAP 334

(normalized VI=0.09, Fig. 10). However, t-SNE produced 69 clusters, over five times 335

more than UMAP’s 13. We attributed these additional clusters to distinct recombinant 336

groups that all received the same Nextstrain clade label of “recombinant”. We observed 337
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Fig 9. Phylogenetic trees (left) and embeddings (right) of early (2020–2022)
SARS-CoV-2 sequences colored by HDBSCAN cluster. Normalized VI values
per embedding reflect the distance between clusters and known genetic groups
(Nextstrain clades). Line segments in each embedding reflect phylogenetic relationships
with internal node positions calculated from the mean positions of their immediate
descendants in each dimension (see Methods). Line thickness scales by the square root
of the number of leaves descending from a given node in the phylogeny.
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similar absolute and relative distances to Nextstrain clades across methods at different 338

sampling densities under an even geographic and temporal sampling scheme (S18 Fig). 339

However, the presence of geographic and genetic bias associated with randomly 340

sampling the late SARS-CoV-2 data produced less accurate t-SNE clusters and more 341

accurate PCA, MDS, and UMAP clusters. 342

All methods produced less accurate representations of the 137 Pango lineages (S19 343

Fig). However, t-SNE clusters were nearly as accurate with a normalized VI of 0.14, 344

suggesting that t-SNE’s numerous additional clusters likely did represent many of the 69 345

recombinant Pango lineages in the dataset that all received a “recombinant” Nextstrain 346

clade label. Clusters from other methods were at least twice as far from Pango lineages 347

as t-SNE’s clusters, suggesting that these other methods poorly captured recombinant 348

lineages. With the exception of t-SNE’s performance, these results replicate the 349

patterns we observed with early SARS-CoV-2 data where clusters from embeddings 350

more effectively represented broader genetic diversity than the finer resolution diversity 351

denoted by Pango lineages. Unlike the Pango lineages in the early SARS-CoV-2 data, 352

the lineages from the later data exhibited fewer pairwise genetic distances between 353

samples in each lineage than samples in Nextstrain clades or any embedding cluster 354

(S16 Fig). 355

Distance-based embeddings reflect SARS-CoV-2 recombination 356

events 357

Finally, we tested the ability of sequence embeddings to place known recombinant 358

lineages of SARS-CoV-2 between their parental lineages in Euclidean space. We 359

reasoned that each recombinant lineage, X, should always place closer to its parental 360

lineages A and B than the parental lineages place to each other. Based on this logic, we 361

calculated the average Euclidean distance between pairs of samples in lineages A and B, 362

A and X, and B and X for each embedding method (see Methods). We identified 363

recombinant lineages that mapped closer to both of their parental lineages and those 364

that mapped closer to at least one of the parental lineages. 365

We identified 66 recombinant lineages for which that lineage and both of its parental 366

lineages had at least 10 genomes (S4 Table). MDS embeddings most consistently placed 367
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Fig 10. Phylogenetic trees (left) and embeddings (right) of late (2022–2023)
SARS-CoV-2 sequences colored by HDBSCAN cluster. Normalized VI values
per embedding reflect the distance between clusters and known genetic groups
(Nextstrain clades).

recombinant lineages between the parental lineages with correct placement of 60 368

lineages (91%). The t-SNE, UMAP, and PCA embeddings correctly placed 54 (82%), 52 369

(79%), and 40 (61%) lineages, respectively. Additionally, all 66 recombinant lineages 370

February 7, 2024 23/50

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.07.579374doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.07.579374
http://creativecommons.org/licenses/by/4.0/


placed closer to at least one parent in all embeddings except for two lineages in the 371

PCA embeddings. 372

Discussion 373

We applied four standard dimensionality reduction methods to simulated and natural 374

genome sequences of two relevant human pathogenic viruses and found that the resulting 375

embeddings could reflect pairwise genetic relationships between samples and capture 376

previously identified genetic groups. From our analysis of simulated influenza- and 377

coronavirus-like sequences, we found that each method produced consistent embeddings 378

of genetic sequences for two distinct pathogens, more than 55 years of evolution, and a 379

wide range of practical method parameters. Of the four methods, MDS most accurately 380

reflected pairwise genetic distances between simulated samples in its embeddings. From 381

our analysis of natural populations of seasonal influenza H3N2 HA and SARS-CoV-2 382

sequences, we confirmed that MDS most reliably reflected pairwise genetic distances. 383

We found that clusters from t-SNE embeddings most accurately recapitulated 384

previously defined genetic groups at the resolution of WHO variants and Nextstrain 385

clades and consistently produced clusters that corresponded to monophyletic groups in 386

phylogenies. Clusters from both MDS and t-SNE embeddings of H3N2 HA and NA 387

sequences accurately matched reassortment clades identified by a biologically-informed 388

model based on ancestral reassortment graphs. MDS embeddings consistently placed 389

known recombinant lineages of SARS-CoV-2 between their parental lineages, while 390

t-SNE clusters most accurately captured recombinant lineages. These results show that 391

tree-free dimensionality reduction methods can provide valuable biological insights for 392

human pathogenic viruses through easily interpretable visualizations of genetic 393

relationships and the ability to account for genetic variation that phylogenetic methods 394

cannot use, including indels, reassortment, and recombination. 395

From these results, we can also make the following recommendations about how to 396

apply these methods to other viral pathogens. First, evenly sample the available 397

genome sequences across time and geography, to minimize bias in embeddings. Then, 398

choose which embedding method to use based on the question under investigation. For 399

analyses that require the most accurate low-dimensional representation of pairwise 400
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genetic distances across local and global scales, use MDS with 3 dimensions. For 401

analyses that need to find clusters of closely related samples, use t-SNE with a 402

perplexity of 100 (or less, if using fewer than 100 samples) and a learning rate that 403

scales with the number of samples in the data. In all cases, plot the relationship 404

between pairwise genetic distances and Euclidean distances in each embedding. These 405

plots reveal the range of genetic distances that an embedding can represent linearly and 406

act as a sanity check akin to plotting the temporal signal present in samples prior to 407

inferring a time-scaled phylogeny [4, 54]. Before finding clusters in the t-SNE 408

embedding, determine the minimum genetic distance desired between clusters, and use 409

the pairwise genetic and Euclidean distance plot to find the corresponding Euclidean 410

distance to use as a threshold for HDBSCAN. While HDBSCAN clusters require this 411

pathogen-specific tuning, the linear relationship between Euclidean and genetic distance 412

remains robust to changes in method parameters. 413

Despite the promise of these simple methods to answer important public health 414

questions about human pathogenic viruses, these methods and our analyses suffer from 415

inherent limitations. The lack of an underlying biological model is both a strength and 416

the clearest limitation of the dimensionality reduction methods we considered here. For 417

example, embeddings of SARS-CoV-2 genomes cannot capture the same fine-grained 418

genetic resolution as Pango lineage annotations. Each method provides only a few 419

parameters to tune its embeddings and these parameters have little effect on the 420

qualitative outcome. Each method also suffers from specific issues explored in our 421

analyses. PCA performs poorly with missing data and requires researchers to either 422

ignore columns with missing values or impute the missing values prior to analysis, as 423

previously shown for Zika virus [30]. Neither t-SNE nor UMAP maintain a linear 424

relationship between pairwise Euclidean and genetic distances across the observed range 425

of genetic distances. As a result, viewers cannot know that samples mapping far apart 426

in a t-SNE or UMAP embedding are as genetically distant as they appear. In 427

maintaining a linear relationship between Euclidean and genetic distances, MDS 428

sacrifices the ability to form more accurate genetic clusters for viruses with large 429

genomes like SARS-CoV-2. Given these limitations of these methods, we do not expect 430

them to replace biologically-informed methods that provide more meaningful 431

parameters to tune their algorithms. Instead, these methods provide an easy first step 432
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to produce interpretable visualizations and clusters of genome sequences, prior to 433

analysis with more sophisticated methods with biological models. 434

We note that our analysis reflects a small subset of human pathogenic viruses and 435

dimensionality reduction methods. We focused on analysis of two respiratory RNA 436

viruses that contribute substantially to seasonal human morbidity and mortality, but 437

numerous alternative pathogens would also have been relevant subjects. For example, 438

HIV represents a canonical example of a highly recombinant and bloodborne virus, 439

while Zika, dengue, and West Nile viruses represent pathogens with multiple host 440

species in a transmission chain. Similarly, we selected only four dimensionality 441

reduction methods from myriad options that are commonly applied to genetic data [55]. 442

We chose these methods based on their wide use and availability in tools like 443

scikit-learn [56] and to limit the dimensionality of our analyses. 444

Some limitations noted above suggest future directions for this line of research. We 445

provide optimal settings for each pathogen and embedding method in this study and 446

open source tools to apply these methods to other pathogens. Researchers can easily 447

integrate these tools into existing workflows for the genomic epidemiology of viruses and 448

visualize the results with Nextstrain. Alternately, researchers may choose to apply 449

similar existing tools developed for analysis of metagenomic or bacterial 450

populations [57–61] to the analysis of viral populations. In the short term, researchers 451

can immediately apply the methods we describe here to seasonal influenza and 452

SARS-CoV-2 genomes to identify biologically relevant clusters. Researchers can also 453

apply these methods to find relevant clusters for other viruses by evaluating the 454

pairwise Euclidean and genetic distances for each virus and tuning the Euclidean 455

distance thresholds for HDBSCAN to capture the desired granularity of genetic clusters. 456

In the long term, we expect researchers will benefit from expanding the breadth of 457

dimensionality reduction methods applied to viruses and the breadth of viral diversity 458

assessed by these methods. Additionally, the combination of dimensionality reduction 459

methods and clustering with HDBSCAN provides the foundation for future methods to 460

automatically identify reassortant and recombinant lineages. 461
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Conclusion 462

We showed that simple dimensionality reduction methods operating on pairwise genetic 463

differences can capture biologically-relevant clusters of phylogenetic clades, reassortment 464

events, and patterns of recombining lineages for human pathogenic viruses. The 465

conceptual and practical simplicity of these tools should enable researchers and public 466

health practitioners to more readily visualize and compare samples for human 467

pathogenic viruses when phylogenetic methods are either unnecessary or inappropriate. 468

Materials and methods 469

Embedding methods 470

We selected four standard and common dimensionality reduction (or “embedding”) 471

methods to apply to human pathogenic viruses: PCA, MDS, t-SNE, and UMAP. PCA 472

operates on a matrix with samples in rows, “features” in columns, and numeric values 473

in each cell [22]. To apply PCA to multiple sequence alignments, we transformed each 474

nucleotide value into a corresponding integer (A to 1, G to 2, C to 3, T to 4, and all 475

other values to 5) and applied scikit-learn’s PCA implementation to the resulting 476

numerical matrix with the “full” singular value decomposition solver and 10 477

components [56]. To minimize the effects of missing data on the PCA embeddings, we 478

dropped all columns with “N” or “-” characters from concatenated H3N2 HA/NA 479

alignments and SARS-CoV-2 alignments prior to producing PCA embeddings. 480

The remaining three methods operate on a distance matrix. We constructed a 481

distance matrix from a multiple sequence alignment by calculating the pairwise 482

Hamming distance between nucleotide sequences. By default, the Hamming distance 483

only counted mismatches between pairs of standard nucleotide values (A, C, G, and T), 484

ignoring other values including gaps. We implemented an optional mode that 485

additionally counted each occurrence of consecutive gap characters in either input 486

sequence as individual insertion/deletion (“indel”) events. 487

We applied scikit-learn’s MDS implementation to a given distance matrix, with an 488

option to set the number of components in the resulting embedding [56]. Similarly, we 489

applied scikit-learn’s t-SNE implementation, with options to set the “perplexity” and 490
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the “learning rate”. The perplexity controls the number of neighbors the algorithm uses 491

per input sample to determine an optimal embedding [24]. This parameter effectively 492

determines the balance between maintaining “local” or “global” structure in the 493

embedding [37]. The learning rate controls how rapidly the t-SNE algorithm converges 494

on a specific embedding [24, 62] and should scale with the number of input samples [63]. 495

We initialized t-SNE embeddings with the first two components of the corresponding 496

PCA embedding, as previously recommended to obtain more accurate global 497

structure [34,37]. Finally, we applied the umap-learn Python package written by 498

UMAP’s authors, with options to set the number of “nearest neighbors” and the 499

“minimum distance” [25]. As with t-SNE’s perplexity parameter, the nearest neighbors 500

parameter determines how many adjacent samples the UMAP algorithm considers per 501

sample to find an optimal embedding. The minimum distance sets the lower limit for 502

how close any two samples can map next to each other in a UMAP embedding. Lower 503

minimum distances allow tighter groups of samples to form. For both t-SNE and 504

UMAP, we used the default number of components of 2. 505

Simulation of influenza-like and coronavirus-like populations 506

Given the relative lack of prior application of dimensionality reduction methods to 507

human pathogenic viruses, we first attempted to understand the behavior and optimal 508

parameter values for these methods when applied to simulated viral populations with 509

well-defined evolutionary parameters. To this end, we simulated populations of 510

influenza-like and coronavirus-like viruses using SANTA-SIM [64]. These simulated 511

populations allowed us to identify optimal parameters for each embedding method, 512

without overfitting to the limited data available for natural viral populations. For each 513

population type described below, we simulated five independent replicates with fixed 514

random seeds for over 55 years, filtered out the first 10 years of each population as a 515

burn-in period, and analyzed the remaining years. 516

We simulated influenza-like populations as previously described with 1,700 bp 517

hemagglutinin sequences [65]. As in that previous study, we scaled the number of 518

simulated generations per real year to 200 per year to match the observed mutation rate 519

for natural H3N2 HA sequences, and we sampled 10 genomes every 4 generations for 520
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12,000 generations (or 60 years of real time). 521

We simulated coronavirus-like populations as previously described for human 522

seasonal coronaviruses with genomes of 21,285 bp [12]. For the current study, we 523

assigned 30 generations per real year to obtain mutation rates similar to the 8× 10−4
524

substitutions per site per year estimated for SARS-CoV-2 [66]. To account for the effect 525

of recombination on optimal method parameters, we simulated populations with a 526

recombination rate of 10−5 events per site per year based on human seasonal 527

coronaviruses for which recombination rates are well-studied [12,67]. We calibrated the 528

overall recombination probability in SANTA-SIM such that the number of observed 529

recombination events per year matched the expected number for human seasonal 530

coronaviruses (0.3 per year) [12]. To assist with this calibration of recombination events 531

per year, we modified the SANTA-SIM source code to emit a boolean status of “is 532

recombinant” for each sampled genome. This change allowed us to identify recombinant 533

genomes by their metadata in downstream analyses and calculate the number of 534

recombination events observed per year. For each replicate population, we sampled 15 535

genomes every generation for 1,700 generations (or approximately 56 years of real time). 536

Optimization of embedding method parameters 537

We identified optimal parameter values for each embedding method with time series 538

cross-validation of embeddings based on simulated populations [68]. To increase the 539

interpretability of embedding space, we defined parameters as “optimal” when they 540

maximized the linear relationship between pairwise genetic distance of viral genomes 541

and the corresponding Euclidean distance between those same genomes in an 542

embedding. This optimization approach allowed us to also determine the degree to 543

which each method could recapitulate this linear relationship. 544

For each simulated population replicate, we created 10 training and test datasets 545

that each consisted of 4 years of training data and 4 years of test data preceded by a 546

1-year gap from the end of the training time period. These settings produced 547

training/test data with 2000 samples each for influenza-like populations and 1800 548

samples each for coronavirus-like populations. For each combination of training/test 549

dataset, embedding method, and method parameters, we applied the following steps. 550
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We created an embedding from the training data with the given parameters, fit a linear 551

model to estimate pairwise genetic distance from pairwise Euclidean distance in the 552

embedding, created an embedding from the test data, estimated the pairwise genetic 553

distance for genomes in the test data based on their Euclidean distances and the linear 554

model fit to the training data, and calculated the mean absolute error (MAE) between 555

estimated and observed genetic distances in the test data. We summarized the error for 556

a given population type, method, and method parameters across all population 557

replicates and training/test data by calculating the median of the MAE. For all method 558

parameters except those controlling the number of components used for the embedding, 559

we selected the optimal parameters as those that minimized the median MAE for a 560

given embedding method. Since increasing the number of components used by PCA and 561

MDS allows these methods to overfit to available data, we selected the optimal number 562

of components for these methods as the number beyond which the median MAE did not 563

decrease by at least 1 nucleotide. This approach follows the same concept from the 564

MDS algorithm itself where optimization occurs iteratively until the algorithm reaches a 565

predefined error threshold [23]. 566

With the approach described above, we tested each method across a range of 567

relevant parameters with all combinations of parameter values. For PCA and MDS, we 568

tested the number of components between 2 and 10. For t-SNE, we tested perplexity 569

values of 15, 30, 100, 200, and 300, and we tested learning rates of 100, 200, and 500. 570

For UMAP, we tested nearest neighbor values of 25, 50, and 100, and we tested values 571

for the minimum distance that points can be in an embedding of 0.05, 0.1, and 0.25. 572

Selection of natural virus population data 573

We selected recent publicly available genome sequences and metadata for seasonal 574

influenza H3N2 HA and NA genes and SARS-CoV-2 genomes from INSDC 575

databases [41]. For both viruses, we divided the available data into “early” and “late” 576

datasets to use as training and test data, respectively, for identification of virus-specific 577

clustering parameters. 578

For analyses that focused only on H3N2 HA data, we defined the early dataset 579

between January 2016 and January 2018 and the late dataset between January 2018 to 580
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January 2020. These datasets reflected two years of recent H3N2 evolution up to the 581

time when the SARS-CoV-2 pandemic disrupted seasonal influenza circulation. For both 582

early and late datasets, we evenly sampled 25 sequences per country, year, and month, 583

excluding known outliers. With this sampling scheme, we selected 1,523 HA sequences 584

for the early dataset and 1,073 for the late dataset. For analyses that combined H3N2 585

HA and NA data, we defined a single dataset between January 2016 and January 2018, 586

keeping 1,607 samples for which both HA and NA have been sequenced. 587

For SARS-CoV-2 data, we defined the early dataset between January 1, 2020 and 588

January 1, 2022 and the late dataset between January 1, 2022 and November 3, 2023. 589

For the early dataset, we evenly sampled 1,736 SARS-CoV-2 genomes by geographic 590

region, year, and month, excluding known outliers. For the late dataset, we used the 591

same even sampling by space and time to select 1,309 representative genomes. In 592

addition to these genomes, we identified all recombinant lineages in the official Pango 593

designations as of November 3, 2023 (https://github.com/cov-lineages/ 594

pango-designation/raw/1bf4123/pango_designation/alias_key.json) for which 595

the recombinant lineage and both of its parental lineages had at least 10 genome records 596

each. We sampled at most 10 genomes per lineage for all distinct recombinant and 597

parental lineages for a total of 1,157. With these additional genomes, the late 598

SARS-CoV-2 dataset included 2,464 total genomes. 599

Evaluation of linear relationships between genetic distance and 600

Euclidean distance in embeddings 601

To evaluate the biological interpretability of distances between samples in 602

low-dimensional embeddings, we plotted the pairwise Euclidean distance between 603

samples in each embedding against the corresponding genetic distance between the same 604

samples. We calculated Euclidean distance using all components of the given embedding 605

(e.g., 2 components for PCA, t-SNE, and UMAP and 3 components for MDS). For each 606

embedding, we fit a linear model between Euclidean and genetic distance and calculated 607

the squared Pearson’s correlation coefficient, R2. The distance plots provide a 608

qualitative assessment of each embedding’s local and global structure relative to a 609

biologically meaningful scale of genetic distance, while the linear models and correlation 610
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coefficients quantify the global structure in the embeddings. 611

Phylogenetic analysis 612

For each natural population described above, we created an annotated phylogenetic tree. 613

For seasonal influenza H3N2 HA and NA sequences, we aligned sequences with MAAFT 614

(version 7.486) [69,70] using the augur align command (version 22.0.3) [71]. For 615

SARS-CoV-2 sequences, we used existing reference-based alignments provided by the 616

Nextstrain team 617

(https://docs.nextstrain.org/projects/ncov/en/latest/reference/remote inputs.html) and 618

generated with Nextalign (version 2.14.0) [21]. We inferred a phylogeny with IQ-TREE 619

(version 2.1.4-beta) [72] using the augur tree command and named internal nodes of the 620

resulting divergence tree with TreeTime (version 0.10.1) [4] using the augur refine 621

command. We visualized phylogenies with Auspice [73], after first converting the trees 622

to Auspice JSON format with augur export. To visualize phylogenetic relationships in 623

the context of each pathogen embedding, we calculated the mean Euclidean position of 624

each internal node in each dimension of a given embedding (e.g., MDS 1) based on the 625

Euclidean positions of that node’s immediate descendants and plotted line segments on 626

the embedding connecting each node of the tree with its immediate parent to represent 627

branches in the phylogeny. We only plotted these phylogenetic relationships on 628

embeddings for pathogen datasets that lacked reassortment and recombination including 629

early and late H3N2 HA and early SARS-CoV-2 datasets. 630

Definitions of genetic groups by experts or biologically-informed 631

models 632

We annotated phylogenetic trees with genetic groups previously identified by experts or 633

assigned by biologically-informed models. For seasonal influenza H3N2, the World 634

Health Organization assigns “clade” labels to clades in HA phylogenies that appear to 635

be genetically or phenotypically distinct from other recently circulating H3N2 samples. 636

We used the latest clade definitions for H3N2 maintained by the Nextstrain team as 637

part of their seasonal influenza surveillance efforts [42]. 638

As seasonal influenza clades only account for the HA gene and lack information 639
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about reassortment events, we assigned joint HA and NA genetic groups using a 640

biologically-informed model, TreeKnit (version 0.5.6) [11]. TreeKnit infers ancestral 641

reassortment graphs from two gene trees, finding groups of samples for which both 642

genes share the same history. These groups, also known as maximally compatible clades 643

(MCCs), represent samples whose HA and NA genes have reassorted together. TreeKnit 644

attempts to resolve polytomies in one tree using information present in the other tree(s). 645

Input trees for TreeKnit must contain the same samples and root on the same sample. 646

Because of these TreeKnit expectations, we inferred HA and NA trees with IQ-TREE 647

with a custom argument to collapse near-zero-length branches (‘-czb‘). We rooted the 648

resulting trees on the same sample that we used as an alignment reference, 649

A/Beijing/32/1992, and pruned this sample prior to downstream analyses. We applied 650

TreeKnit to the rooted HA and NA trees with a gamma value of 2.0 and the 651

‘–better-MCCs‘ flag, as previously recommended for H3N2 analyses [11]. Finally, we 652

filtered the MCCs identified by TreeKnit to retain only those with at least 10 samples 653

and to omit the root MCC that represented the most recent common ancestor in both 654

HA and NA trees. 655

For SARS-CoV-2, we used both coarser “Nextstrain clades” [51–53] and more 656

granular Pango lineages [19] provided by Nextclade as “Nextclade pango” annotations. 657

Nextstrain clade definitions represent the World Health Organization’s variants of 658

concern along with post-Omicron phylogenetic clades that have reached minimum 659

global and regional frequencies and growth rates. Pango lineages represent 660

expert-curated lineages (https://github.com/cov-lineages/pango-designation) and must 661

contain at least 5 samples with an unambiguous evolutionary event. Additionally, 662

Pango lineages produced by recombination receive a lineage name prefixed by an “X”, 663

while Nextstrain clades do not explicitly reflect recombination events. 664

Since Pango lineages can represent much smaller genetic groups than are practically 665

useful, we collapsed lineages with fewer than 10 samples in our analysis into their 666

parental lineages using the pango aliasor tool 667

(https://github.com/corneliusroemer/pango aliasor). Specifically, we counted the 668

number of samples per lineage, sorted lineages in ascending order by count, and 669

collapsed each lineage with a count less than 10 into its parental lineage in the 670

count-sorted order. This approach allowed small lineages to aggregate with other small 671
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parental lineages and meet the 10-sample threshold. We used these “collapsed 672

Nextclade Pango” lineages for subsequent analyses. 673

Clustering of samples in embeddings 674

To understand how well embeddings of genetic data could capture previously defined 675

genetic groups, we applied an unsupervised clustering algorithm, HDBSCAN [43], to 676

each embedding. HDBSCAN identifies initial clusters from high-density regions in the 677

input space and merges these clusters hierarchically. This algorithm allowed us to avoid 678

defining an arbitrary or biased expected number of clusters a priori. HDBSCAN 679

provides parameters to tune the minimum number of samples required to seed an initial 680

cluster (“min samples”), the minimum size for a final cluster (“min size”), and the 681

minimum distance between initial clusters below which those clusters are hierarchically 682

merged (“distance threshold”). We hardcoded the min samples to 5 to minimize the 683

number of spurious initial clusters and min size to 10 to reflect our interest in genetic 684

groups with at least 10 samples throughout our analyses. HDBSCAN calculates the 685

distance between clusters on the Euclidean scale of each embedding. To account for 686

variation in embedding-specific distances, we performed a coarse grid search of distance 687

threshold values for each virus type and embedding method. 688

We performed the grid search on the early datasets for both seasonal influenza H3N2 689

HA and SARS-CoV-2. For each dataset and embedding method, we applied HDBSCAN 690

clustering with a distance threshold between 0 and 7 inclusive with steps of 0.5 between 691

values. For a given threshold, we obtained sets of samples assigned to HDBSCAN 692

clusters from the embedding. We evaluated the accuracy of these clusters with variation 693

of information (VI) which calculates the distance between two sets of clusters of the 694

same samples [44]. When two sets of clusters are identical, VI equals 0. When the sets 695

are maximally different, VI is logN where N is the total number of samples. To make 696

VI values comparable across datasets, we normalized each value by dividing by logN , 697

following the pattern used to validate TreeKnit’s MCCs [11]. Unlike other standard 698

metrics like accuracy, sensitivity, or specificity, VI distances do not favor methods that 699

tend to produce more, smaller clusters. For each virus dataset and embedding method, 700

we identified the distance threshold that minimized the normalized VI between 701
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HDBSCAN clusters and genetic groups defined by experts or biologically-informed 702

models (“Nextstrain clade” for seasonal influenza and both “Nextstrain clade” and 703

“Pango lineage” for SARS-CoV-2). HDBSCAN allows samples to not belong to a cluster 704

and assigns these samples a numeric label of -1. We intentionally included all 705

unassigned samples in the normalized VI calculation thereby penalizing cluster 706

parameters that increased the number of unassigned samples by increasing their VI 707

values. Since Nextstrain clade assignments could include non-monophyletic labels like 708

“unassigned” and “recombinant” to represent samples that did not map into a single 709

clade, we ignored these labels in our VI distance calculations to avoid rewarding cluster 710

that placed such non-monophyletic samples into the same group. Finally, we used these 711

optimal distance thresholds to identify clusters in out-of-sample data from the late 712

datasets for both viruses and calculate the normalized VI between those clusters and 713

previously defined genetic groups. 714

Evaluating robustness of embedding cluster accuracy 715

The cluster accuracies we estimated for late H3N2 HA and SARS-CoV-2 datasets 716

represented a single VI measurement for a single pathogen dataset. To understand how 717

robust these accuracies were across different datasets, we generated alternate random 718

samples from both late pathogen datasets using two different sampling schemes and a 719

range of total sequences sampled. Specifically, we sampled 500, 1000, 1500, 2000, or 720

2500 total sequences for five replicates per pathogen (random seeds of 0, 1, 2, 3, and 4) 721

with either even sampling by geography and time or random sampling. For the 722

relatively smaller influenza data, we evenly sampled by country, year, and month. For 723

the larger SARS-CoV-2 data, we evenly sampled by region, year, and month. Even 724

sampling attempted to minimize geographic and temporal biases in the original data. 725

Random sampling uniformly selected samples in a way that reflected the bias in the 726

data. Influenza data were heavily biased toward samples from the USA and clade 3c3.A, 727

while SARS-CoV-2 data were biased toward Europe and North America and Nextstrain 728

clades 21K, 21L, and 22B. For each replicate from each sampling scheme and total 729

number of sequences, we embedded the corresponding sequences with each method, 730

identified clusters in embeddings, and calculated the VI distance between those clusters 731
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and Nextstrain clade assignments. We plotted the distribution of the resulting VI 732

distances, to estimate the variance of these values caused by sampling bias and density. 733

Evaluating the monophyletic nature of embedding clusters 734

To quantify the degree to which embedding clusters represented monophyletic groups in 735

a pathogen phylogeny, we counted the number of times clusters from each embedding 736

method appeared in different parts of the tree. Specifically, we applied augur traits with 737

TreeTime (version 0.10.1) [4, 71] to infer cluster labels for internal nodes of the 738

phylogeny for each pathogen dataset and embedding method. Using a preorder traversal 739

of the tree, we identified each transition between different cluster labels assigned to 740

pairs of ancestral and derived internal nodes. Since the “unclustered” cluster label of 741

“-1” produced by HBSCAN could occur in both ancestral and derived nodes and lead to 742

overcounting transitions, we only logged transitions with this label in the ancestral state 743

(e.g., transition from cluster -1 to cluster 0 but not cluster 0 to cluster -1). For each 744

embedding, we counted the number of distinct clusters, total transitions, and excess 745

transitions beyond the expected single transition between pairs of clusters. Embeddings 746

with no excess transitions between clusters represented monophyletic groups. 747

Identification of cluster-specific mutations 748

To better understand the genetic basis of embedding clusters, we identified 749

cluster-specific mutations for all HDBSCAN clusters. First, we found all mutations 750

between each sample’s sequence and the reference sequence used to produce the 751

alignment, considering only A, C, G, T, and gap characters. Within each cluster, we 752

identified mutations that occurred in at least 10 samples and in at least 50% of samples 753

in the cluster. We recorded the resulting mutations per cluster in a table with columns 754

for the embedding method, the position of the mutation, the derived allele of the 755

mutation, and a list of the distinct clusters the mutation appeared in. From this table, 756

we could identify mutations the only occurred in specific clusters and mutations that 757

distinguished sets of clusters from each other. 758
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Assessment of HA/NA reassortment in seasonal influenza 759

populations 760

To assess the ability of embedding methods to detect reassortment in seasonal influenza 761

populations, we applied each method to either HA alignments only or concatenated 762

alignments of HA and NA sequences from the same samples, performed HDBSCAN 763

clustering with the optimal distance threshold for the given method, and calculated the 764

normalized VI between the resulting clusters and TreeKnit MCCs. As mentioned above, 765

we dropped all columns with “N” or “-” characters from the HA and HA/NA 766

alignments prior to producing PCA embeddings. We used the original alignments to 767

calculate distance matrices for all other methods, since distance-based methods can 768

ignore N characters in pairwise comparisons. We compared normalized VI values for the 769

HA-only clusters of each method to the corresponding VI values for the HA/NA 770

clusters. Lower VI values in the HA/NA clusters than HA-only clusters indicated better 771

clustering of samples into known reassortment groups. 772

Assessment of recombination in SARS-CoV-2 populations 773

To assess the ability of embedding methods to detect recombination in late SARS-CoV-2 774

populations (2022-2023), we calculated the Euclidean distances in low-dimensional space 775

between the 10 known recombinant lineages and their respective parental lineages 776

described in “Selection of natural virus population data” above. Given that we 777

optimized each method’s parameters to maximize a linear relationship between genetic 778

and Euclidean distance, we expected embeddings to place recombinant lineages between 779

their parental lineages, reflecting the intermediate genetic state of the recombinants. For 780

a recombinant lineage X and its parental lineages A and B, we calculated the average 781

pairwise Euclidean distance, D, between samples in A and B, A and X, and B and X. 782

We identified lineages that mapped properly as those for which D(A,X) < D(A,B) and 783

D(B,X) < D(A,B). We also identified lineages for which the recombinant lineage 784

placed closer to at least one parent than the distance between the parents. Note that we 785

used the original uncollapsed Pango annotations to identify samples in each lineage, as 786

these were the lineage names used to include recombinant samples in the analysis and 787

define known relationships between recombinant and parental lineages. 788

February 7, 2024 37/50

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 8, 2024. ; https://doi.org/10.1101/2024.02.07.579374doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.07.579374
http://creativecommons.org/licenses/by/4.0/


Data and software availability 789

The entire workflow for our analyses was implemented with Snakemake [74]. We have 790

provided all source code, configuration files, and datasets at 791

https://github.com/blab/cartography. Interactive phylogenetic trees and corresponding 792

embeddings for natural populations are available at https://nextstrain.org/groups/blab/ 793

under the “cartography” keyword. The pathogen-embed Python package, available at 794

https://pypi.org/project/pathogen-embed/, provides command line utilities to calculate 795

distance matrices (pathogen-distance), calculate embeddings per method 796

(pathogen-embed), and apply hierarchical clustering to embeddings (pathogen-cluster). 797

Supporting information 798

S1 Fig. Distribution of mean absolute errors (MAE) between observed and 799

predicted pairwise genetic distances per embedding method parameters for 800

simulated influenza-like populations. Each panel shows boxplots of MAEs for a 801

specific embedding method (PCA, MDS, t-SNE, and UMAP) and a given combination 802

of method parameters. Boxplots reflect median, upper and lower quartiles, and the 803

range of values. 804

S2 Fig. Distribution of mean absolute errors (MAE) between observed and 805

predicted pairwise genetic distances per embedding method parameters for 806

simulated coronavirus-like populations. Each panel shows boxplots of MAEs for a 807

specific embedding method (PCA, MDS, t-SNE, and UMAP) and a given combination 808

of method parameters. Boxplots reflect median, upper and lower quartiles, and the 809

range of values. 810

S3 Fig. Representative MDS embeddings for simulated populations using 811

optimal parameters per pathogen (rows) and showing all three components. 812

S4 Fig. MDS embeddings for early (2016–2018) influenza H3N2 HA 813

sequences showing all three components. Line segments in each embedding reflect 814

phylogenetic relationships with internal node positions calculated from the mean 815

positions of their immediate descendants in each dimension (see Methods). Line colors 816
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represent the clade membership of the most ancestral node in the pair of nodes 817

connected by the segment. Line thickness scales by the square root of the number of 818

leaves descending from a given node in the phylogeny. 819

S5 Fig. Pairwise nucleotide distances for early (2016–2018) and late 820

(2018–2020) influenza H3N2 HA sequences within and between genetic 821

groups defined by Nextstrain clades and clusters from PCA, MDS, t-SNE, 822

and UMAP embeddings. 823

S6 Fig. Phylogeny of late (2018–2020) influenza H3N2 HA sequences 824

plotted by nucleotide substitutions per site on the x-axis (top) and 825

low-dimensional embeddings of the same sequences by PCA (middle left), 826

MDS (middle right), t-SNE (bottom left), and UMAP (bottom right). Tips 827

in the tree and embeddings are colored by their Nextstrain clade assignment. Line 828

segments in each embedding reflect phylogenetic relationships with internal node 829

positions calculated from the mean positions of their immediate descendants in each 830

dimension (see Methods). Line colors represent the clade membership of the most 831

ancestral node in the pair of nodes connected by the segment. Line thickness scales by 832

the square root of the number of leaves descending from a given node in the phylogeny. 833

S7 Fig. MDS embeddings for late (2018–2020) influenza H3N2 HA 834

sequences showing all three components. Line segments in each embedding reflect 835

phylogenetic relationships with internal node positions calculated from the mean 836

positions of their immediate descendants in each dimension (see Methods). Line colors 837

represent the clade membership of the most ancestral node in the pair of nodes 838

connected by the segment. Line thickness scales by the square root of the number of 839

leaves descending from a given node in the phylogeny. 840

S8 Fig. Replication of cluster accuracy per embedding method for late 841

(2018–2020) influenza H3N2 HA sequences across different sampling 842

densities (total sequences sampled) and sampling schemes including A) even 843

geographic and temporal sampling and B) random sampling. We measured 844

cluster accuracy across five replicates per sampling density and scheme with the 845
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normalized VI distance between clusters from a given embedding and Nextstrain clades 846

for the same samples. The even sampling scheme selected sequences evenly across 847

country, year, and month to minimize geographic and temporal bias. The random 848

sampling scheme uniformly sampled from the original dataset, reflecting the geographic 849

and genetic bias in those data. 850

S9 Fig. Embeddings influenza H3N2 HA-only (left) and combined HA/NA 851

(right) showing the effects of additional NA genetic information on the 852

placement of reassortment events detected by TreeKnit (MCCs). 853

S10 Fig. PCA embeddings for influenza H3N2 HA sequences only (top 854

row) and HA/NA sequences combined (bottom row) showing the HA trees 855

colored by clusters identified in each embedding (left) and the 856

corresponding embeddings colored by cluster (right). 857

S11 Fig. MDS embeddings for influenza H3N2 HA sequences only (top 858

row) and HA/NA sequences combined (bottom row) showing the HA trees 859

colored by clusters identified in each embedding (left) and the 860

corresponding embeddings colored by cluster (right). 861

S12 Fig. t-SNE embeddings for influenza H3N2 HA sequences only (top 862

row) and HA/NA sequences combined (bottom row) showing the HA trees 863

colored by clusters identified in each embedding (left) and the 864

corresponding embeddings colored by cluster (right). 865

S13 Fig. UMAP embeddings for influenza H3N2 HA sequences only (top 866

row) and HA/NA sequences combined (bottom row) showing the HA trees 867

colored by clusters identified in each embedding (left) and the 868

corresponding embeddings colored by cluster (right). 869

S14 Fig. MDS embeddings for early SARS-CoV-2 sequences showing all 870

three components. Line segments in each embedding reflect phylogenetic 871

relationships with internal node positions calculated from the mean positions of their 872
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immediate descendants in each dimension (see Methods). Line thickness scales by the 873

square root of the number of leaves descending from a given node in the phylogeny. 874

S15 Fig. Phylogeny of early (2020–2022) SARS-CoV-2 sequences plotted 875

by number of nucleotide substitutions from the most recent common 876

ancestor on the x-axis (top) and low-dimensional embeddings of the same 877

sequences by PCA (middle left), MDS (middle right), t-SNE (bottom left), 878

and UMAP (bottom right). Tips in the tree and embeddings are colored by their 879

Pango lineage assignment. Line segments in each embedding reflect phylogenetic 880

relationships with internal node positions calculated from the mean positions of their 881

immediate descendants in each dimension (see Methods). Line thickness scales by the 882

square root of the number of leaves descending from a given node in the phylogeny. 883

S16 Fig. Pairwise nucleotide distances for early (2020-2022) and late 884

(2022-2023) SARS-CoV-2 sequences within and between genetic groups 885

defined by Nextstrain clades, Pango lineages, and clusters from PCA, MDS, 886

t-SNE, and UMAP embeddings. 887

S17 Fig. Phylogenetic trees (left) and embeddings (right) of early 888

(2020–2022) SARS-CoV-2 sequences colored by HDBSCAN cluster. 889

Normalized VI values per embedding reflect the distance between clusters and known 890

genetic groups (Pango lineages). Line segments in each embedding reflect phylogenetic 891

relationships with internal node positions calculated from the mean positions of their 892

immediate descendants in each dimension (see Methods). Line thickness scales by the 893

square root of the number of leaves descending from a given node in the phylogeny. 894

S18 Fig. Replication of cluster accuracy per embedding method for late 895

(2022–2023) SARS-CoV-2 sequences across different sampling densities 896

(total sequences sampled) and sampling schemes including A) even 897

geographic and temporal sampling and B) random sampling. We measured 898

cluster accuracy across five replicates per sampling density and scheme with the 899

normalized VI distance between clusters from a given embedding and Nextstrain clades 900

for the same samples. The even sampling scheme selected sequences evenly across 901
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region, year, and month to minimize geographic and temporal bias. The random 902

sampling scheme uniformly sampled from the original dataset, reflecting the geographic 903

and genetic bias in those data. 904

S19 Fig. Phylogenetic trees (left) and embeddings (right) of late 905

(2022–2023) SARS-CoV-2 sequences colored by HDBSCAN cluster. 906

Normalized VI values per embedding reflect the distance between clusters and known 907

genetic groups (Pango lineages). 908

S1 Table. Optimal cluster thresholds per pathogen, known genetic group 909

type, and embedding method based on normalized variation of information 910

(VI) distances calculated from early pathogen datasets. Smaller VI values 911

indicate fewer differences between HDBSCAN clusters and known genetic groups. VI of 912

0 indicates identical clusters and 1 indicates maximally different clusters. Threshold 913

refers to the minimum Euclidean distance between initial clusters for HDBSCAN to 914

consider them as distinct clusters. We apply these optimal thresholds per pathogen, 915

known genetic group type, and method to find clusters in corresponding late datasets 916

for each pathogen. 917

S2 Table. Number of clusters, transitions between clusters in the 918

phylogeny, and excess transitions indicating non-monophyletic groups per 919

pathogen and embedding. Embeddings without any excess transitions reflect 920

monophyletic groups in the corresponding pathogen phylogeny. 921

S3 Table. Mutations observed per embedding cluster relative to a 922

reference genome sequence for each pathogen. Each row reflects the alternate 923

allele identified at a specific position of the given pathogen genome or gene sequence, 924

the pathogen dataset, the embedding method, the number of clusters in the embedding 925

with the observed mutation, and the list of distinct cluster labels with the mutation. 926

Mutations must have occurred in at least 10 samples of the given dataset with an allele 927

frequency of at least 50%. Cluster-specific mutations appear in rows with a 928

cluster count value of 1. 929
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S4 Table. Average Euclidean distances between each known recombinant, 930

X, and its parental lineages A and B per embedding method. Distances 931

include average pairwise comparisons between A and B, A and X, and B and X. 932

Additional columns indicate whether each recombinant lineage maps closer to both 933

parental lineages (or at least one) than those parents map to each other. 934

S5 Table. Accessions and authors from originating and submitting 935

laboratories of seasonal influenza and SARS-CoV-2 sequences from INSDC 936

databases. 937
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