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Abstract 

Public health researchers and practitioners commonly infer phylogenies from viral genome sequences to understand transmission 
dynamics and identify clusters of genetically-related samples. However, viruses that reassort or recombine violate phylogenetic 
assumptions and require more sophisticated methods. Even when phylogenies are appropriate, they can be unnecessary or difficult to 
interpret without specialty knowledge. For example, pairwise distances between sequences can be enough to identify clusters of related 
samples or assign new samples to existing phylogenetic clusters. In this work, we tested whether dimensionality reduction methods 
could capture known genetic groups within two human pathogenic viruses that cause substantial human morbidity and mortality and 
frequently reassort or recombine, respectively: seasonal influenza A/H3N2 and SARS-CoV-2. We applied principal component analy-
sis, multidimensional scaling (MDS), t-distributed stochastic neighbor embedding (t-SNE), and uniform manifold approximation and 
projection to sequences with well-defined phylogenetic clades and either reassortment (H3N2) or recombination (SARS-CoV-2). For 
each low-dimensional embedding of sequences, we calculated the correlation between pairwise genetic and Euclidean distances in the 
embedding and applied a hierarchical clustering method to identify clusters in the embedding. We measured the accuracy of clusters 
compared to previously defined phylogenetic clades, reassortment clusters, or recombinant lineages. We found that MDS embeddings 
accurately represented pairwise genetic distances including the intermediate placement of recombinant SARS-CoV-2 lineages between 
parental lineages. Clusters from t-SNE embeddings accurately recapitulated known phylogenetic clades, H3N2 reassortment groups, 
and SARS-CoV-2 recombinant lineages. We show that simple statistical methods without a biological model can accurately represent 
known genetic relationships for relevant human pathogenic viruses. Our open source implementation of these methods for analysis 
of viral genome sequences can be easily applied when phylogenetic methods are either unnecessary or inappropriate.
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1. Introduction
Tracking the evolution of human pathogenic viruses in real time 
enables epidemiologists to respond quickly to emerging epidemics 
and local outbreaks (Grubaugh et al. 2019). Real-time analyses of 
viral evolution typically rely on phylogenetic methods that can 
reconstruct the evolutionary history of viral populations from 
their genome sequences and estimate states of inferred ances-
tral viruses from the resulting trees including their most likely 
genome sequence, time of circulation, and geographic location 
(Volz et al. 2013, Baele et al. 2017, Sagulenko et al. 2017). Impor-
tantly, these methods assume that the sequence diversity of sam-
pled tips accrued through clonal evolution, i.e. the occurrence 
of mutations on top of an inherited genomic background, i.e. 
further inherited by descendant pathogens. In practice, the evolu-
tionary histories of many human pathogenic viruses violate this 
assumption through processes of reassortment or recombination, 
as seen in seasonal influenza (Nelson et al. 2008, Marshall et al. 

2013) and seasonal coronaviruses (Su et al. 2016), respectively. 
Researchers account for these evolutionary mechanisms by lim-

iting their analyses to individual genes (Lemey et al. 2007, Bhatt 

2011), combining multiple genes despite their different evolution-

ary histories (Wiens and Cannatella, 1998), or developing more 

sophisticated models to represent the joint likelihoods of multiple 

co-evolving lineages with ancestral reassortment or recombina-

tion graphs (Barrat-Charlaix et al. 2022, Muller et al. 2022). How-

ever, several key questions in genomic epidemiology do not require 

inference of ancestral relationships and states, and therefore 

may be amenable to non-phylogenetic approaches for summariz-
ing genetic relationships. For example, genomic epidemiologists 
commonly need to (1) visualize the genetic relationships among 
closely related virus samples (Argimón et al. 2016, Campbell et al. 
2021), (2) identify clusters of closely-related genomes that repre-
sent regional outbreaks or new variants of concern (O’Toole et al. 
2022, McBroome et al. 2022, Stoddard et al. 2022, Tran-Kiem and 
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Bedford 2024), and (3) place newly sequenced viral genomes in the 
evolutionary context of other circulating samples (O’Toole et al. 
2021, Turakhia et al. 2021, Aksamentov et al. 2021). Given that 
these common use cases rely on genetic distances between sam-
ples, tree-free statistical methods that operate on pairwise dis-
tances could be sufficient to address each case. As these tree-free 
methods lack a formal biological model of evolutionary relation-
ships, they make weak assumptions about the input data and 
therefore should be applicable to pathogen genomes that violate 
phylogenetic assumptions. Furthermore, methods that describe 
genetic relationships with network-like visualizations may feel 
more familiar to public health practitioners who are accustomed 
to viewing contact tracing networks alongside genomic informa-
tion in tools like MicrobeTrace (Campbell et al. 2021) or MicroReact 
(Argimón et al. 2016) and for viral pathogens like HIV (Wertheim 
et al. 2017, Campbell et al. 2020) and SARS-CoV-2 (Kirbiyik et al. 
2020, Vang et al. 2021). For this reason, reduced dimensional-
ity representations of genomic relationships may be more easily 
applied for public health action.

Common statistical approaches to analyzing variation from 
genome alignments start by transforming alignments into either 
a matrix that codes biallelic nucleotide variants as binary inte-
gers (0 for reference alleles and 1 for alternate alleles) (McVean 
and Przeworski 2009) or a distance matrix representing the pair-
wise distances between sequences (Rambaut et al. 2008). The first 
of these transformations is the first step prior to performing a 
principal component analysis (PCA) to find orthogonal represen-
tations of the inputs that explain the most variance (Jolliffe and 
Cadima 2016). The second transformation calculates the number 
of mismatches between each pair of aligned genome sequences, 
also known as the Hamming distance, to create a distance matrix. 
Most phylogenetic methods begin by building a distance matrix 
for all sequences in a given multiple sequence alignment. Dimen-
sionality reduction algorithms such as multidimensional scaling 
(MDS) (Hout et al. 2012), t-distributed stochastic neighbor embed-
ding (t-SNE) (van der Maaten and Hinton 2008), and uniform 
manifold approximation and projection (UMAP) (McInnes et al. 
2018) accept such distance matrices as an input and produce a 
corresponding low-dimensional representation or ‘embedding’ of 
those data. Both types of transformation allow us to reduce high-
dimensional genome alignments (M × N values for M genomes 
of length N) to low-dimensional embeddings where clustering 
algorithms and visualization are more tractable. Additionally, 
distance-based methods can reflect the presence or absence of 
insertions and deletions in an alignment that many phylogenetic 
methods ignore.

Each of the embedding methods mentioned above has been 
applied previously to genomic data to visualize relationships 
between individuals and identify clusters of related genomes. 
Although PCA is a generic linear algebra algorithm that opti-
mizes for an orthogonal embedding of the data, the principal 
components from single nucleotide polymorphisms (SNPs) rep-
resent mean coalescent times and therefore recapitulate broad 
phylogenetic relationships (McVean and Przeworski 2009). PCA has 
been applied to SNPs of human genomes (Novembre et al. 2008, 
Alexander et al. 2009, McVean and Przeworski 2009, Auton et 
al., 2015) and to multiple sequence alignments of viral genomes 
(Metsky et al. 2017). MDS attempts to embed input data into 
a lower-dimensional representation such that each pair of data 
points are as close in the embedding as they are in the origi-
nal high-dimensional space. MDS has been applied to multiple 
gene segments of seasonal influenza viruses to visualize evolu-
tionary relationships between segments (Rambaut et al. 2008) and 

to individual influenza gene segments to reveal low-dimensional 
trajectories of genetic clusters (He and Deem 2010, Ito et al. 2011). 
Both t-SNE and UMAP build on manifold learning methods like 
MDS to find low-dimensional embeddings of data that place sim-
ilar points close together and dissimilar points far apart (Kobak 
and Linderman 2021). These methods have been applied to SNPs 
from human genomes (Diaz-Papkovich et al. 2019) and single-cell 
transcriptomes (Becht et al., 2019, Kobak and Berens 2019).

Although these methods are commonly used for qualitative 
studies of evolutionary relationships, few studies have attempted 
to quantify patterns observed in the resulting embeddings, inves-
tigate the value of applying these methods to viruses that reassort 
or recombine, or identify optimal method parameters for applica-
tion to viruses. Recent studies disagree about whether methods 
like PCA, t-SNE, and UMAP produce meaningful global structures 
(Kobak and Linderman 2021) or arbitrary patterns that distort 
high-dimensional relationships (Chari et al. 2023). To address 
these open questions, we tuned and validated the performance 
of PCA, MDS, t-SNE, and UMAP with genomes from simulated 
influenza-like and coronavirus-like populations and then applied 
these methods to natural populations of seasonal influenza virus 
A/H3N2 and SARS-CoV-2. These natural viruses are highly rele-
vant as major causes of global human mortality, common sub-
jects of real-time genomic epidemiology, and representatives of 
reassortant and recombinant human pathogens. For each com-
bination of virus and embedding method, we quantified the 
relationship between pairwise genetic and Euclidean embedding 
distances, identified clusters of closely-related genomes in embed-
ding space, and evaluated the accuracy of clusters compared to 
genetic groups defined by experts and clusters defined directly 
from pairwise genetic distances. Finally, we tested the ability of 
these methods to capture patterns of reassortment between sea-
sonal influenza A/H3N2 hemagglutinin (HA) and neuraminidase 
(NA) segments and recombination in SARS-CoV-2 genomes. 
These results demonstrate the interpretability of embeddings 
from each method and inform our recommendations for future 
applications of these methods to specific problems in genomic
epidemiology.

2. Results
2.1 The ability of embedding methods to produce 
global structures for simulated viral populations 
varies little across method parameters
To understand how well PCA, MDS, t-SNE, and UMAP could repre-
sent genetic relationships between samples of human pathogenic 
viruses under well-defined evolutionary conditions, we simu-
lated influenza-like and coronavirus-like populations as previ-
ously described (Whittaker et al. 2020, Muller et al. 2022) and 
created embeddings for each population across a range of method 
parameters. For both influenza- and coronavirus-like population 
types, we simulated five independent replicates for 60 years, fil-
tered out the first 10 years of each population as a burn-in period, 
and analyzed the remaining 50 years. We simulated influenza-
like populations with a mutation rate of 0.00382 substitutions per 
site per year to match the natural H3N2 HA rate (Whittaker et al. 
2020), and we sampled 10 HA sequences per week. We simulated 
coronavirus-like populations with a mutation rate of 0.0008 sub-
stitutions per site per year (Rambaut 2020) and a recombination 
rate of 10−5 events per site per year (Muller et al. 2022). We sam-
pled 15 full-length coronavirus sequences approximately every 
two weeks.
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We maximized the local and global interpretability of each 
method’s embeddings by identifying parameters that maximized 
a linear relationship between genetic distance and Euclidean dis-
tance in low-dimensional space (see Section 4). Specifically, we 
selected parameters that minimized the median of the mean 
absolute error (MAE) between observed pairwise genetic distances 
of simulated genomes and predicted genetic distances for those 
genomes based on their Euclidean distances in each embedding. 
For methods like PCA and MDS where increasing the number of 
components available to the embedding could lead to overfitting, 
we selected the maximum number of components beyond which 
the median MAE did not decrease by more than 1 nucleotide.

For influenza-like populations, the optimal parameters were 
2 components for PCA, 3 components for MDS, perplexity of 200 
and learning rate of 100 for t-SNE, and nearest neighbors of 100 
and minimum distance of 0.1 for UMAP. As expected, increasing 
the number of components for PCA and MDS gradually decreased 
the median MAEs of their embeddings (Supplementary Fig. S1 A 
and B). However, beyond 2 and 3 components, respectively, the 
reduction in error did not exceed 1 nucleotide. This result suggests 
that there were diminishing returns for the increased complex-
ity of additional components. Both t-SNE and UMAP embeddings 
produced a wide range of errors (the majority between 10 and 20 
average mismatches) across all parameter values (Supplementary 
Fig. S1 C and D). Embeddings from t-SNE appeared robust to vari-
ation in parameters, with a slight improvement in median MAE 
associated with perplexity of 200 and little benefit to any of the 
learning rate values (Supplementary Fig. S1 C). Similarly, UMAP 
embeddings were robust across the range of tested parameters, 
with the greatest benefit coming from setting the nearest neigh-
bors >25 and no benefit from changing the minimum distance 
between points (Supplementary Fig. S1 D).

The optimal parameters for coronavirus-like populations were 
similar to those for the influenza-like populations. The optimal 
parameters were 2 components for PCA, 3 for MDS, perplexity of 
100 and learning rate of 100 for t-SNE, and nearest neighbors of 
50 and minimum distance of 0.05 for UMAP. As with influenza-
like populations, both PCA and MDS showed diminishing benefits 
of increasing the number of components (Supplementary Fig. S2 
A and B). Similarly, we observed little improvement in MAEs from 
varying t-SNE and UMAP parameters (Supplementary Fig. S2 C and 
D). The most noticeable improvement came from setting t-SNE’s 
perplexity to 100 (Supplementary Fig. S2 C). These results indicate 
the limits of t-SNE and UMAP to represent global genetic structure 
from these data.

We inspected representative embeddings based on the opti-
mal parameters above for the first 4 years of influenza- and 
coronavirus-like populations. Simulated sequences from the same 
time period tended to map closer in embedding space, indicating 
the maintenance of ‘local’ genetic structure in the embeddings 
(Fig. 1). Most embeddings also represented some form of global 
structure, with later generations mapping closer to intermedi-
ate generations than earlier generations. MDS maintained the 
greatest continuity between generations for both population types 
(Supplementary Fig. S3). In contrast, PCA, t-SNE, and UMAP all 
demonstrated tighter clusters of samples separated by potentially 
arbitrary space. These qualitative results matched our expecta-
tions based on how well each method maximized a linear rela-
tionship between genetic and Euclidean distances during param-
eter optimization (Supplementary Fig. S1 and Supplementary
Fig. S2). 

2.2 Embedding clusters recapitulate 
phylogenetic clades for seasonal influenza H3N2
Seasonal influenza H3N2’s HA sequences provide an ideal pos-
itive control to test embedding methods and clustering in low-
dimensional space. H3N2’s HA protein evolves rapidly, accu-
mulating amino acid mutations that enable escape from adap-
tive immunity in human populations (Petrova and Russell 2018). 
These mutations produce distinct phylogenetic clades that repre-
sent potentially different antigenic phenotypes. The World Health 
Organization (WHO) Global Influenza Surveillance and Response 
System regularly sequences genomes of circulating influenza lin-
eages (Hay and McCauley 2018) and submits these sequences to 
public INSDC databases like NCBI’s GenBank (Arita et al. 2021). 
These factors, coupled with HA’s relatively short gene size of 
1701 nucleotides, facilitate real-time genomic epidemiology of 
H3N2 (Neher and Bedford 2015) and rapid analysis by the embed-
ding methods we wanted to evaluate. We analyzed H3N2 HA 
sequences from two consecutive time periods including an ‘early’ 
dataset from 2016 to 2018 and a ‘late’ dataset from 2018 to 2020. 
For each dataset, we created embeddings with all four methods, 
identified clusters in the embeddings with HDBSCAN, and calcu-
lated the accuracy of clusters relative to expert-defined genetic 
groups (see Section 4). As a point of comparison, we also identi-
fied HDBSCAN clusters from pairwise genetic distances between 
sequences and compared the accuracy of these clusters to clusters 
from embeddings and known genetic groups. We used the early 
dataset to identify cluster parameters that minimized the distance 
between clusters and known genetic groups. We tested these opti-
mal parameters with the late dataset. This approach allowed us to 
maximize cluster accuracy against the background of embedding 
method parameters that we already optimized to maximize the 
interpretability of visualizations.

We first applied each embedding method to the early H3N2 
HA sequences (2016–2018) and compared the placement of these 
sequences in the embeddings to their corresponding clades in the 
phylogeny. All four embedding methods qualitatively recapitu-
lated the 10 Nextstrain clades observed in the phylogeny (Fig 2 and 
Supplementary Fig. S4). Samples from the same clade generally 
grouped tightly together. Most embedding methods also delin-
eated larger phylogenetic clades, placing clades A1, A2, A3, A4, and 
3c3.A into separate locations in the embeddings. Despite main-
taining local and broader global structure, not all embeddings 
captured intermediate genetic structure. For example, all methods 
placed A1b and its descendant clades, A1b/135K and A1b/135N, 
into tight clusters together. The t-SNE embedding created sepa-
rate clusters for each of these clades, but these clusters all placed 
so close together in the embedding space that, without previ-
ously defined clade labels, we would have visually grouped these 
samples into a single cluster. These results qualitatively replicate 
the patterns we observed in embeddings for simulated influenza-
like populations where genetically similar sequences placed closer 
together and all methods except MDS produced tight local clusters 
of similar sequences (Fig 1). 

To quantify the apparent maintenance of local and global 
structure by all four embedding methods, we calculated the 
relationship between pairwise genetic and Euclidean distance of 
samples in each embedding. All methods maintained a linear 
pairwise relationship for samples that differed by no more than 
≈10 nucleotides (Fig 3). Only MDS consistently maintained that 
linearity as genetic distance increased (Pearson’s R2 = 0.94). We 
observed a less linear relationship for samples with more genetic 
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Figure 1. Representative embeddings for simulated populations using optimal parameters per pathogen (rows) and embedding method (columns). 
Each panel shows the embedding for sequences from the first four years of a single replicate population for the corresponding pathogen type. Each 
point represents a simulated viral sequence colored by its generation with darker values representing later generations. Supplementary Fig. S3 shows 
the full MDS embedding for all components.

differences in PCA (Pearson’s R2 = 0.75), t-SNE (Pearson’s R2 = 0.38), 
and UMAP (Pearson’s R2 = 0.52) embeddings. While PCA and UMAP 
Euclidean distances increased monotonically with genetic dis-
tance, t-SNE embeddings placed some pairs of samples with inter-
mediate distances of 35–45 nucleotides closer together than pairs 
of samples with lower genetic distances. 

Next, we found clusters for early H3N2 HA embeddings and 
pairwise genetic distances and calculated the distance from these 
clusters to previously defined genetic groups. We assigned cluster 
labels to each sample with the hierarchical clustering algorithm, 
HDBSCAN (Campello et al. 2015). We calculated distances between 
clusters and known genetic groups with the normalized varia-
tion of information (VI) metric (Meila 2003) which produces a 
value of 0 for identical groups and 1 for maximally different 
groups (Section 4). HDBSCAN does not require an expected num-
ber of clusters as input, but it does provide a parameter for 
the minimum distance required between clusters. We optimized 
this minimum distance threshold by minimizing the VI distance 
between known genetic groups and clusters produced with differ-
ent threshold values (Supplementary Table S1). Clusters from all 
four embedding methods captured broad phylogenetic clades (A1, 
A1b, A2, A3, 3c2.A, and 3c3.A) but failed to distinguish between 
A1b and its descendants (Fig 4). The 15 clusters from t-SNE and 7 
from UMAP most accurately captured expert clade assignments 
(normalized VI=0.09), followed by PCA’s 7 clusters (normalized 
VI=0.10) and MDS’s 9 clusters (normalized VI=0.11). PCA and 
UMAP clusters failed to distinguish between A4 and its ances-
tral clade of 3c2.A. Although all methods produced clusters that 
were generally supported by cluster-specific mutations (Supple-
mentary Table S3 and Supplementary Fig. S5, only MDS and t-SNE 
produced monophyletic clusters (Supplementary Table S2). The 
average pairwise genetic diversity within and between clusters 
matched the diversity within Nextstrain clades (Supplementary 
Fig. S6). These results indicate that all embedding methods could 
potentially be well-suited for clustering and classification of H3N2 

HA sequences. Clusters based on genetic distances were the far-
thest from Nextstrain clades (normalized VI=0.17, Supplementary 
Table S1) and had higher average genetic diversity than clusters 
from embedding methods (Supplementary Fig. S6). These results 
suggest that applying dimensionality reduction methods prior to 
clustering could improve cluster accuracy. 

To understand whether these embedding methods and optimal 
cluster parameters could effectively cluster previously unseen 
sequences, we applied each method to the late H3N2 HA dataset 
(2018–2020), identified clusters per embedding, and calculated 
the VI distance between clusters and previously defined clades. 
The late dataset included nine clades with at least 10 sam-
ples (Supplementary Fig. S7). These clades had a greater average 
between-clade distance than clades in the early dataset (Supple-
mentary Fig. S6). Clusters from PCA (N = 5), MDS (N = 6), t-SNE 
(N = 7), and UMAP (N = 8) were similarly accurate, with normal-
ized VI distances of 0.07, 0.08, 0.05, and 0.09, respectively (Fig. 5, 
Supplementary Fig. S8, and Supplementary Table S1). Genetic 
distance clusters (N=4) were farthest from Nextstrain clades (nor-
malized VI=0.12, Supplementary Table 1). MDS split clade A3’s 
17 samples into two widely separated groups in its Euclidean 
space. On further inspection of this clade in the tree, we found 
seven homoplasies (mutations that also occur elsewhere in the 
tree) on the branch leading to A3 and 10 homoplasies on the 
branch leading to one of A3’s subclades. Previous work with MDS 
embeddings of HA sequences has shown that MDS’s global opti-
mization algorithm is sensitive to homoplasies (Ito et al. 2011). 
In this dataset, clade A3 represented an extreme example where 
MDS could not cluster a clade that had many homoplasies and 
few samples. In contrast, PCA, t-SNE, and UMAP correctly clus-
tered A3 samples together in their embeddings, showing the 
robustness of these methods to homoplasies. Accordingly, clusters 
from all methods except MDS were monophyletic (Supplementary 
Table S2). The majority of clusters from all methods were sup-
ported by cluster-specific mutations (Supplementary Table S3 and
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Dimensionality reduction distills relationships between human viruses  5

Figure 2. Phylogeny of early (2016–2018) influenza H3N2 HA sequences plotted by nucleotide substitutions per site on the x-axis (top) and 
low-dimensional embeddings of the same sequences by PCA (middle left), MDS (middle right), t-SNE (bottom left), and UMAP (bottom right). Tips in the 
tree and embeddings are colored by their Nextstrain clade assignment. Line segments in each embedding reflect phylogenetic relationships with 
internal node positions calculated from the mean positions of their immediate descendants in each dimension (see Methods). Line colors represent 
the clade membership of the most ancestral node in the pair of nodes connected by the segment. Line thickness in the embeddings scales by the 
square root of the number of leaves descending from a given node in the phylogeny. Clade labels appear in the tree at the earliest ancestral node of 
the tree for each clade. Clade labels appear in each embedding at the average position on the x and y axis for sequences in a given clade.
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6 Nanduri et al.

Figure 3. Relationship between pairwise genetic and Euclidean distances in embeddings of early (2016–2018) influenza H3N2 HA sequences by PCA 
(upper left), MDS (upper right), t-SNE (lower left), and UMAP (lower right). Each boxplot represents the distribution of pairwise Euclidean distances at a 
given genetic distance. Panel titles include Pearson’s R2 values and linear regression coefficients between the plotted distances.

Supplementary Fig. S5. The average of pairwise nucleotide dif-
ferences within clusters generally matched the diversity within 
Nextstrain clades (Supplementary Fig. S6). As with the early H3N2 
HA dataset, clusters from genetic distances between late H3N2 
HA sequences had the highest within and between group pairwise 
nucleotide differences. 

Cluster accuracies were robust to changes in sampling den-
sity under the same even geographic and temporal sampling 
scheme, with MDS clusters producing the lowest median dis-
tance to Nextstrain clades (Supplementary Fig. S9A). However, 
biased sampling toward the USA and clade 3c3.A decreased clus-
ter accuracy for t-SNE and UMAP (Supplementary Fig. S9B). Under 
even sampling, genetic distance clusters were less accurate than 
clusters from embeddings until the number of input sequences 
exceeded 1500. However, genetic distance clusters were consis-
tently accurate under biased sampling. These results show that all 
four methods can produce clusters that accurately capture known 
genetic groups when applied to previously unseen H3N2 HA sam-
ples with unbiased sampling. Clusters from PCA, MDS, and genetic 
distances are better choices when the composition of sequences 
is biased strongly by geography or time.

2.3 Joint embeddings of hemagglutinin and 
neuraminidase sequences identify seasonal 
influenza virus H3N2 reassortment events
Given that clusters from embedding methods could recapitulate 
expert-defined clades, we measured how well the same methods 
could capture reassortment events between multiple gene seg-
ments as detected by biologically-informed computational mod-
els. Evolution of HA and NA surface proteins contributes to the 
ability of influenza viruses to escape existing immunity (Petrova 

and Russell 2018) and HA and NA genes frequently reassort (Nel-
son et al. 2008, Marshall et al. 2013, Potter et al., 2019). Therefore, 
we focused our reassortment analysis on HA and NA sequences, 
sampling 1607 viruses collected between January 2016 and Jan-
uary 2018 with sequences for both genes. We inferred HA and NA 
phylogenies from these sequences and applied TreeKnit to both 
trees to identify maximally compatible clades (MCCs) that repre-
sent reassortment events (Barrat-Charlaix et al. 2022). Of the 208 
reassortment events identified by TreeKnit, 15 (7%) contained at 
least 10 samples representing 1049 samples (65%, Supplementary 
Fig. S10).

We created PCA, MDS, t-SNE, and UMAP embeddings from the 
HA alignments and from merged HA and NA alignments. We 
identified clusters in both HA-only and HA/NA embeddings and 
calculated the VI distance between these clusters and the MCCs 
identified by TreeKnit. We expected that clusters from HA-only 
embeddings could only reflect reassortment events when the HA 
clade involved in reassortment happened to carry characteris-
tic nucleotide mutations. We expected that the VI distances for 
clusters from HA/NA embeddings would improve on the baseline 
distances calculated with the HA-only clusters.

All embedding methods produced more accurate clusters from 
the HA/NA alignments than the HA-only alignments (Fig. 6, Sup-
plementary Fig. S11, and Supplementary Table S1). HA/NA clus-
ters from t-SNE were closest to reassortment events identified 
by TreeKnit (normalized VI=0.06) and almost twice as close to 
those reassortment events than the HA-only clusters (normal-
ized VI = 0.11). For the other three embedding methods, including 
NA with HA reduced the distance between clusters and reassort-
ment events by a similar absolute values of 0.05, 0.07, and 0.03 for 
PCA, MDS, and UMAP, respectively. Clusters from genetic distances 
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Dimensionality reduction distills relationships between human viruses  7

Figure 4. Phylogenetic trees (left) and embeddings (right) of early (2016–2018) influenza H3N2 HA sequences colored by HDBSCAN cluster. Normalized 
VI values per embedding reflect the distance between clusters and known genetic groups (Nextstrain clades). Line segments in each embedding reflect 
phylogenetic relationships with internal node positions calculated from the mean positions of their immediate descendants in each dimension (see 
Methods). Line thickness in the embeddings scales by the square root of the number of leaves descending from a given node in the phylogeny.
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8 Nanduri et al.

Figure 5. Phylogenetic trees (left) and embeddings (right) of late (2018–2020) H3N2 HA sequences colored by HDBSCAN cluster. Normalized VI values 
per embedding reflect the distance between clusters and known genetic groups (Nextstrain clades). Line segments in each embedding reflect 
phylogenetic relationships with internal node positions calculated from the mean positions of their immediate descendants in each dimension (see 
Methods). Line thickness in the embeddings scales by the square root of the number of leaves descending from a given node in the phylogeny.
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Dimensionality reduction distills relationships between human viruses  9

improved the most by the addition of NA from a normalized VI of 
0.2 to 0.11 (Supplementary Table S1). Embeddings with both genes 
produced more clusters for all methods than the HA-only embed-
dings with t additional clusters in PCA (Supplementary Fig. S12), 
9 in MDS (Supplementary Fig. S13), 2 in t-SNE (Supplementary 
Fig. S14 and Supplementary Fig. S15), 1 in UMAP (Supplemen-
tary Fig. S16), and 16 in genetic distance clusters (Supplementary 
Table 1). All embeddings of HA/NA alignments produced distinct 
clusters for the known reassortment event within clade A2 (Pot-
ter et al., 2019) as represented by MCCs 14 and 11. Other pairs 
of larger reassortment events that occurred in the same part of 
the HA tree like MCCs 9 and 12 or MCCs 5 and 10 mapped farther 
apart in all HA/NA embeddings compared to HA-only embeddings 
(Supplementary Fig. S11). We noted that some of the additional 
clusters in HA/NA embeddings likely also reflected genetic diver-
sity in NA that was independent of reassortment between HA and 
NA. These results suggest that a single embedding of multiple gene 
segments could identify biologically meaningful clusters within 
and between all genes. 

2.4 SARS-CoV-2 clusters recapitulate broad 
genetic groups corresponding to Nextstrain 
clades
SARS-CoV-2 poses a greater challenge to embedding methods than 
seasonal influenza, with an unsegmented genome an order of 
magnitude longer than influenza’s HA or NA (Zhu et al. 2020), a 
mutation rate in the spike surface protein subunit S1, i.e. four 
times higher than influenza H3N2’s HA rate (Kistler et al. 2022), 
and increasingly common recombination (Focosi and Maggi 2022, 
Turakhia et al. 2022). However, multiple expert-based clade defini-
tions exist for SARS-CoV-2, enabling comparison between clusters 
from embeddings and known genetic groups. These definitions 
span from broad genetic groups named by the WHO as ‘variants 
of concern’ (e.g. ‘Alpha,’ ‘Beta,’ etc.) (Thiel et al. 2021) or systemati-
cally defined by the Nextstrain team (Hodcroft et al. 2020, Bedford 
et al. 2021, Roemer et al. 2022) to smaller, emerging genetic clus-
ters defined by Pango curators (O’Toole et al. 2021). As with sea-
sonal influenza, we defined an early SARS-CoV-2 dataset spanning 
from January 2020 to January 2022, embedded genomes with the 
same four methods, and identified HDBSCAN clustering parame-
ters that minimized the VI distance between embedding clusters 
and previously defined genetic groups as defined by Nextstrain 
clades and Pango lineages (see Section 4). To test these optimal 
cluster parameters, we produced clusters from embeddings of a 
late SARS-CoV-2 dataset spanning from January 2022 to Novem-
ber 2023 and calculated the VI distance between those clusters 
and known genetic groups. Unlike the seasonal influenza analy-
sis, we counted insertion and deletion (‘indel’) events in pairwise 
genetic distances for SARS-CoV-2, to improve the resolution of 
distance-based embeddings.

All embedding methods placed samples from the same 
Nextstrain clades closer together and closely related Nextstrain 
clades near each other (Fig. 7). For example, the most genetically 
distinct clades like 21J (Delta) and 21L (Omicron) placed farthest 
from other clades, while both Delta clades (21I and 21J) placed 
close together (Fig. 7, Supplementary Fig. S17). MDS placed related 
clades closer together on a continuous scale, while PCA, t-SNE, and 
UMAP produced more clearly separate groups of samples. We did 
not observe the same clear grouping of Pango lineages. For exam-
ple, the Nextstrain clade 21J (Delta) contained 11 Pango lineages 
that all appeared to map into the same overlapping space in all 
four embeddings (Supplementary Fig. S18). These results suggest 

that distance-based embedding methods can recapitulate broader 
genetic groups of SARS-CoV-2, but that these methods lack the 
resolution of finer groups defined by Pango nomenclature. 

We quantified the maintenance of local and global structure in 
early SARS-CoV-2 embeddings by fitting a linear model between 
pairwise genetic and Euclidean distances of samples. PCA pro-
duced the weakest linear relationship (Pearson’s R2 = 0.35, Fig. 8). 
MDS created a strong linear mapping across the range of observed 
genetic distances (Pearson’s R2 = 0.92). Both t-SNE and UMAP 
maintained intermediate degrees of linearity (Pearson’s R2 = 0.55
and R2 = 0.59, respectively). These embeddings placed the most 
genetically similar samples close together and the most geneti-
cally distinct farther apart. However, these embeddings did not 
consistently place pairs of samples with intermediate genetic dis-
tances at an intermediate distance in Euclidean space. The linear 
relationship for genetically similar samples in t-SNE and UMAP 
remained consistent up to a genetic distance of approximately 30 
nucleotides. 

We identified clusters in embeddings and pairwise genetic 
distances from early SARS-CoV-2 data using cluster parame-
ters that minimized the normalized VI distance between clusters 
and known genetic groups. Since Nextstrain clades and Pango 
lineages represented different resolutions of genetic diversity, 
we identified optimal distance thresholds per lineage definition. 
However, we found that the optimal thresholds were the same 
for both lineage definitions, except for genetic distance clusters 
which had a slightly higher optimal threshold for Pango lineages 
than Nextstrain clades (Supplementary Table S1). The 19 clusters 
from t-SNE were closest to the 24 Nextstrain clades (normalized 
VI = 0.09) followed by MDS, UMAP, genetic distances, and PCA with 
distances of 0.15, 0.16, 0.17, and 0.23, respectively (Fig. 9 and 
Supplementary Table S1). Clusters from PCA, t-SNE, and UMAP 
all represented completely monophyletic groups (Supplementary 
Table S2). Clusters from all methods were generally supported by 
cluster-specific mutations including 2 of 3 (67%) PCA clusters, 9 of 
16 (56%) MDS clusters, 15 of 19 (79%) t-SNE clusters, 5 of 6 (83%) 
UMAP clusters, and 7 of 9 (78%) genetic distance clusters (Supple-
mentary Table S3 and Supplementary Fig. S5. Clusters from t-SNE 
had the most similar within-group distances to Nextstrain clades 
(Supplementary Fig. S18). 

Clusters from all methods were farther from the 35 Pango 
lineages (Supplementary Fig. S20 and Supplementary Table S1). 
The 19 clusters from t-SNE were the closest (normalized VI=0.14) 
followed by MDS, UMAP, genetic distances, and PCA with dis-
tances of 0.23, 0.25, 0.26, and 0.32, respectively (Supplementary 
Table S1). We found that within-cluster distances for t-SNE were 
lower on average than within-lineage Pango distances, suggest-
ing that Pango lineages were not as tightly scoped as we originally 
expected (Supplementary Fig. S18). These results confirm quan-
titatively that these embeddings methods can accurately capture 
broader genetic diversity of SARS-CoV-2, but most methods can-
not distinguish between fine resolution genetic groups defined by 
Pango lineage nomenclature.

To test the optimal cluster parameters identified above, we 
applied embedding methods to late SARS-CoV-2 data and com-
pared clusters from these embeddings to the corresponding 
Nextstrain clades and Pango lineages. Compared to the 17 
Nextstrain clades defined in this time period (Supplementary 
Fig. S21), the closest clusters were from t-SNE (normalized VI=0.09 
with 66 clusters) and UMAP (normalized VI=0.09 with 13 clus-
ters, Fig. 10 and Supplementary Table S1). We attributed t-SNE’s 
additional clusters to recombinant lineages that were geneti-
cally distinct but which received a generic ‘recombinant’ label 
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10 Nanduri et al.

Figure 6. Phylogeny of early (2016–2018) influenza H3N2 HA sequences plotted by nucleotide substitutions per site on the x-axis (top) and 
low-dimensional embeddings of the same HA sequences concatenated with matching NA sequences by PCA (middle left), MDS (middle right), t-SNE 
(bottom left), and UMAP (bottom right). Tips in the tree and embeddings are colored by their TreeKnit Maximally Compatible Clades (MCCs) label 
which represents putative HA/NA reassortment groups. Tips from MCCs with fewer than 10 sequences are colored as ‘unassigned’. The first 
normalized VI values per embedding reflect the distance between HA/NA clusters and known genetic groups (MCCs). VI values in parentheses reflect 
the distance between HA-only clusters and known genetic groups. MCC labels appear in the tree and each embedding for larger pairs of reassortment 
events. MCC 9 represents two Nextstrain clades, so its labels appear twice in the tree. MCCs 14 and 11 represent a previously published reassortment 
event within Nextstrain clade A2 (Potter et al., 2019). Labels for MCC 14 represent the subset of its sequences from clade A2.
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Dimensionality reduction distills relationships between human viruses  11

Figure 7. Phylogeny of early (2020–2022) SARS-CoV-2 sequences plotted by number of nucleotide substitutions from the most recent common ancestor 
on the x-axis (top) and low-dimensional embeddings of the same sequences by PCA (middle left), MDS (middle right), t-SNE (bottom left), and UMAP 
(bottom right). Tips in the tree and embeddings are colored by their Nextstrain clade assignment. Line segments in each embedding reflect 
phylogenetic relationships with internal node positions calculated from the mean positions of their immediate descendants in each dimension (see 
Methods). Line thickness in the embeddings scales by the square root of the number of leaves descending from a given node in the phylogeny. Clade 
labels in the tree and embeddings highlight larger clades.
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12 Nanduri et al.

Figure 8. Relationship between pairwise genetic and Euclidean distances in embeddings for early (2020–2022) SARS-CoV-2 sequences by PCA (upper 
left), MDS (upper right), t-SNE (lower left), and UMAP (lower right). Each boxplot represents the distribution of pairwise Euclidean distances at a given 
genetic distance. Panel titles include Pearson’s R2 values and linear regression coefficients between the plotted distances.

in Nextstrain’s clade definitions instead of a unique clade name 
(Supplementary Fig. S21). Although we did not consider these 
non-monophyletic recombinant samples when calculating VI dis-
tances between clusters and Nextstrain clades, these samples 
appear in each embedding where they could form their own dis-
tinct clusters. Only t-SNE, UMAP, and genetic distance clusters 
were fully monophyletic (Supplementary Table S2). Genetic dis-
tance, PCA, and t-SNE clusters were best supported by cluster-
specific mutations with 16 of 17 clusters (94%), 6 of 7 clusters 
(86%), and 51 of 66 clusters (77%), respectively (Supplementary 
Table S3 and Supplementary Fig. S5. Clusters from t-SNE had the 
lowest average within-group distances (Supplementary Fig. S18). 
We observed similar absolute and relative distances to Nextstrain 
clades across methods at different sampling densities under an 
even geographic and temporal sampling scheme with t-SNE and 
UMAP consistently producing the most accurate clusters (Sup-
plementary Fig. S23A). In the presence of geographic and genetic 
bias associated with randomly sampling the late SARS-CoV-2 data, 
UMAP produced the most accurate clusters across all sampling 
densities while t-SNE clusters became less accurate as the number 
of biased sequences increased (Supplementary Fig. S23B). In con-
trast to the same analysis for H3N2 HA populations, clusters from 
genetic distances were consistently farther from Nextstrain clades 
than clusters from embeddings across all sampling densities and 
biases. 

All methods produced less accurate representations of the 137 
Pango lineages (Supplementary Figs. S22 and S24 and Supplemen-
tary Table S1). However, t-SNE clusters were nearly as accurate 
with a normalized VI of 0.14, suggesting that t-SNE’s numerous 

additional clusters likely did represent many of the recombinant 
Pango lineages in the dataset that all received a ‘recombinant’ 
Nextstrain clade label. Of the 80 recombinant Pango lineages that 
also had a t-SNE cluster, 79 (99%) mapped to a single t-SNE cluster 
(Supplementary Fig. S25). Of the 52 t-SNE clusters with recombi-
nant Pango lineages, 43 (83%) mapped to a single Pango lineage. 
Clusters from other methods were at least twice as far from Pango 
lineages as t-SNE’s clusters, suggesting that these other meth-
ods poorly captured recombinant lineages. With the exception 
of t-SNE’s performance, these results replicate the patterns we 
observed with early SARS-CoV-2 data where clusters from embed-
dings more effectively represented broader genetic diversity than 
the finer resolution diversity denoted by Pango lineages. Unlike 
the Pango lineages in the early SARS-CoV-2 data, the lineages from 
the later data exhibited fewer pairwise genetic distances between 
samples in each lineage than samples in Nextstrain clades or any 
embedding cluster (Supplementary Fig. S18).

To understand whether t-SNE clusters could capture Pango-
resolution genetic groups within a single Nextstrain clade, we 
evenly sampled approximately 2000 sequences from a dominant 
Nextstrain clade with many Pango lineages, 21J (Delta), and iden-
tified clusters from a t-SNE embedding of those data. Within the 
1992 sequences sampled from 21J (Delta), we found 38 Pango lin-
eages after collapsing lineages with fewer than 10 sequences into 
their parent lineages. We found 28 t-SNE clusters representing 
1806 sequences (91%) with 186 sequences (9%) assigned to the 
unclustered ‘-1’ label (Supplementary Fig. S26). The VI distance 
between Pango lineages and all clusters (including the unclus-
tered group) was 0.17 (Supplementary Table S1). This distance 
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Figure 9. Phylogenetic trees (left) and embeddings (right) of early (2020–2022) SARS-CoV-2 sequences colored by HDBSCAN cluster. Normalized VI 
values per embedding reflect the distance between clusters and known genetic groups (Nextstrain clades). Line segments in each embedding reflect 
phylogenetic relationships with internal node positions calculated from the mean positions of their immediate descendants in each dimension (see 
Methods). Line thickness in the embeddings scales by the square root of the number of leaves descending from a given node in the phylogeny.
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14 Nanduri et al.

Figure 10. Phylogenetic trees (left) and embeddings (right) of late (2022–2023) SARS-CoV-2 sequences colored by HDBSCAN cluster. Normalized VI 
values per embedding reflect the distance between clusters and known genetic groups (Nextstrain clades).

was consistent with the distance of 0.14 between Pango lineages 
and t-SNE clusters from both the full early and late SARS-CoV-
2 datasets. The VI distance between Pango lineages and clusters 
without the unclustered sequences was 0.13, confirming that one 

quarter of the distance between t-SNE clusters and Pango lineages 
above came from unclustered sequences. Of the 38 Pango lineages 
with a t-SNE cluster, 30 lineages (79%) had a single correspond-
ing t-SNE cluster, seven lineages (18%) had two or three t-SNE 
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clusters, and one lineage (B.1.617.2) had five t-SNE clusters (Sup-
plementary Fig. S26). Of the 28 t-SNE clusters, 21 clusters (75%) 
had a single corresponding Pango lineage, 6 (21%) mapped to two 
or three Pango lineages, and 1 (cluster 27) mapped to 18 Pango lin-
eages with most sequences from B.1.617.2 and AY.4. These results 
suggest that clusters from t-SNE embeddings can capture more 
Pango-resolution genetic groups by analyzing sequences within a 
specific Nextstrain clade.

2.5 Distance-based embeddings reflect 
SARS-CoV-2 recombination events
Finally, we tested the ability of sequence embeddings to 
place known recombinant lineages of SARS-CoV-2 between their 
parental lineages in Euclidean space. We reasoned that each 
recombinant lineage, X, should always place closer to its parental 
lineages A and B than the parental lineages place to each other. 
Based on this logic, we calculated the average Euclidean distance 
between pairs of samples in lineages A and B, A and X, and B and X
for each embedding method (see Section 4). We identified recombi-
nant lineages that mapped closer to both of their parental lineages 
and those that mapped closer to at least one of the parental 
lineages.

We identified 66 recombinant lineages for which that lineage 
and both of its parental lineages had at least 10 genomes (Sup-
plementary Table S4). MDS embeddings most consistently placed 
recombinant lineages between the parental lineages with cor-
rect placement of 60 (91%) lineages (e.g. Supplementary Fig. S27). 
The t-SNE, UMAP, and PCA embeddings correctly placed 55 (83%), 
50 (76%), and 45 (68%) lineages, respectively. Additionally, all 66 
recombinant lineages placed closer to at least one parent in all 
embeddings except for one lineage in the PCA embeddings.

3. Discussion
3.1 Tree-free dimensionality reduction methods 
can provide valuable biological insights
We applied four standard dimensionality reduction methods to 
simulated and natural genome sequences of two relevant human 
pathogenic viruses and found that the resulting embeddings could 
reflect pairwise genetic relationships between samples and cap-
ture previously identified genetic groups. From our analysis of 
simulated influenza- and coronavirus-like sequences, we found 
that each method produced consistent embeddings of genetic 
sequences for two distinct pathogens, 50 years of evolution, and a 
wide range of practical method parameters. Of the four methods, 
MDS most accurately reflected pairwise genetic distances between 
simulated samples in its embeddings. From our analysis of natu-
ral populations of seasonal influenza H3N2 HA and SARS-CoV-2 
sequences, we confirmed that MDS most reliably reflected pair-
wise genetic distances. We found that clusters from t-SNE embed-
dings most accurately recapitulated previously defined genetic 
groups at the resolution of WHO variants and Nextstrain clades 
and consistently produced clusters that corresponded to mono-
phyletic groups in phylogenies and were robust to the presence of 
homoplasies. Clusters from t-SNE embeddings of H3N2 HA and NA 
sequences most accurately matched reassortment clades iden-
tified by a biologically-informed model based on ancestral reas-
sortment graphs. MDS embeddings consistently placed known 
recombinant lineages of SARS-CoV-2 between their parental lin-
eages, while t-SNE clusters most accurately captured recombinant 
lineages. All of the embedding methods and the HDBSCAN clus-
tering method rely on pairwise comparisons between all samples 
making them robust to individual outliers caused by sequencing 

errors. Furthermore, distance-based methods like MDS, t-SNE, and 
UMAP easily ignore missing characters in individual sequences. 
These results show that tree-free dimensionality reduction meth-
ods can provide valuable biological insights for human pathogenic 
viruses through easily interpretable visualizations of genetic rela-
tionships and the ability to account for genetic variation that 
tree-based phylogenetic methods cannot use, including indels, 
reassortment, and recombination.

3.2 Recommendations for application of 
methods to new pathogens
From these results, we can also make the following recommenda-
tions about how to apply these methods to other viral pathogens. 
First, evenly sample the available genome sequences across time 
and geography, to minimize bias in embeddings. Then, choose 
which embedding method to use based on the question under 
investigation. For analyses that require the most accurate low-
dimensional representation of pairwise genetic distances across 
local and global scales, use MDS with three dimensions. For anal-
yses that need to find clusters of closely related samples, use 
t-SNE with a perplexity of 100 (or less, if using fewer than 100 
samples) and a learning rate that scales with the number of 
samples in the data. Since the HDBSCAN algorithm relies on 
the density of samples in a given coordinate space to find clus-
ters and samples are less likely to place close together in higher 
dimensions (Campello et al. 2015), we recommend clustering with 
low-dimensional embeddings of sequences instead of the higher-
dimensional pairwise distance matrices. In all cases, plot the 
relationship between pairwise genetic distances and Euclidean 
distances in each embedding. These plots reveal the range of 
genetic distances that an embedding can represent linearly and 
act as a sanity check akin to plotting the temporal signal present 
in samples prior to inferring a time-scaled phylogeny (Pybus 2016, 
Sagulenko et al. 2017). Before finding clusters in the t-SNE embed-
ding, determine the minimum genetic distance desired between 
clusters, and use the pairwise genetic and Euclidean distance plot 
to find the corresponding Euclidean distance to use as a threshold 
for HDBSCAN. While HDBSCAN clusters require this pathogen-
specific tuning, the linear relationship between Euclidean 
and genetic distance remains robust to changes in method
parameters.

The computational complexity of the original MDS and t-SNE 
algorithms scales by the cube and square of the number of input 
samples (N), respectively (Yang et al. 2006, van der Maaten and 
Hinton 2008). However, more efficient alternate implementations 
exist for both methods that can scale by N logN and operate on 
millions of samples (Yang et al. 2006, Delicado and Pachón-García 
2024, Yang et al. 2013, van der Maaten 2013, van der Maaten 
2014). For this reason, the primary practical limitation to scaling 
MDS and t-SNE to increasingly more pathogen sequences is the 
time and space required to calculate pairwise genetic distances 
for all samples. Implementing more efficient pairwise distance 
calculations remains a future direction for this area of research.

3.3 Limitations of methods and analysis
Despite the promise of these simple methods to answer impor-
tant public health questions about human pathogenic viruses, 
these methods and our analyses suffer from inherent limitations. 
The lack of an underlying biological model is both a strength 
and the clearest limitation of the dimensionality reduction meth-
ods we considered here. For example, embeddings of SARS-CoV-2 
genomes that represent the complete circulating diversity at a 
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given time cannot capture the same fine-grained genetic res-
olution as Pango lineage annotations. Only t-SNE clusters of 
SARS-CoV-2 genomes within a single Nextstrain clade get close 
to defining Pango-resolution genetic groups. Each method pro-
vides only a few parameters to tune its embeddings and these 
parameters have little effect on the qualitative outcome. PCA 
is sensitive to missing characters in individual sequences and 
must treat each gap character from a single deletion event as an 
independent mutation instead of a single variant. In maintain-
ing a linear relationship between Euclidean and genetic distances, 
MDS sacrifices the ability to form more accurate genetic clus-
ters for viruses with large genomes like SARS-CoV-2 and struggles 
to correctly cluster samples from the same genetic group with 
numerous recurrent mutations. Neither t-SNE nor UMAP main-
tain a linear relationship between pairwise Euclidean and genetic 
distances across the observed range of genetic distances. As a 
result, viewers cannot know that samples mapping far apart in 
a t-SNE or UMAP embedding are as genetically distant as they 
appear. Given these limitations of these methods, we do not expect 
them to replace biologically-informed methods that provide more 
meaningful parameters to tune their algorithms. Instead, these 
methods provide an easy first step to produce interpretable visual-
izations and clusters of genome sequences, prior to analysis with 
more sophisticated methods with biological models.

We note that our analysis reflects a small subset of human 
pathogenic viruses and dimensionality reduction methods. We 
focused on analysis of two respiratory RNA viruses that contribute 
substantially to seasonal human morbidity and mortality, but 
numerous alternative pathogens would also have been relevant 
subjects. For example, HIV represents a canonical example of a 
highly recombinant and bloodborne virus, while Zika, dengue, and 
West Nile viruses represent pathogens with multiple host species 
in a transmission chain. Similarly, we selected only four dimen-
sionality reduction methods from myriad options that are com-
monly applied to genetic data (Armstrong et al. 2022). We chose 
these methods based on their wide use and availability in tools 
like scikit-learn (Duchesnay 2011) and to limit the dimensionality 
of our analyses.

3.4 Current applications and future directions 
for applying dimensionality reduction methods 
to viral pathogens
Following the recommendations we outlined above, researchers 
can immediately put these methods into practice with viral 
pathogens. We provide optimal settings for each pathogen and 
embedding method in this study and open source tools to apply 
these methods to other pathogens through the pathogen-embed
toolkit. We provide this toolkit through the standard Python pack-
age repository PyPI, Bioconda, and Nextstrain-managed Docker 
and Conda environments. These tools integrate easily into exist-
ing workflows for the genomic epidemiology of viruses and their 
results can be visualized with Nextstrain. Alternately, researchers 
may choose to apply similar existing tools developed for analy-
sis of metagenomic or bacterial populations (Schloss et al. 2009, 
Schloss 2020, Bolyen et al., 2019, McMurdie et al. 2013, Lees et al. 
2019) to the analysis of viral populations.

In the short term, these methods can identify biologically-
relevant clusters from viral sequence alignments. For example, 
researchers can apply t-SNE and HDBSCAN clustering to align-
ments of unsegmented viruses like Zika or Ebola that lack existing 
clade definitions to identify candidate phylogenetic groups. Simi-
larly, researchers can jointly build embeddings from alignments of 

segmented viruses like influenza and identify clusters correspond-
ing to putative reassortment groups. For example, the Nextstrain 
team now routinely produces t-SNE embeddings and clusters from 
HA and NA sequences for weekly seasonal influenza analyses at 
https://nextstrain.org/seasonal-flu/ to track reassortment events. 
Researchers can also quickly apply these methods in response 
to outbreaks like the recent H5N1 avian influenza outbreak in 
cattle in the United States (Nguyen et al. 2024). As a proof of con-
cept, we applied t-SNE to all eight gene segments of recent H5N1 
sequences, identified clusters with HDBSCAN, and confirmed the 
previously reported reassortment groups with PB2/NP and the 
other gene segments in the cattle outbreak. Researchers can eas-
ily visualize their embeddings in standard visualization tools for 
genomic epidemiology including Nextstrain’s Auspice (Hadfield 
et al. 2018), MicrobeTrace (Campbell et al. 2021), or MicroReact 
(Argimón et al. 2016).

Some limitations noted above suggest future directions for this 
line of research. In the long term, researchers may benefit from 
analyzing viral genomes with a broader range of dimensionality 
reduction methods including neural network models (Kupper-
man et al. 2022, Chari et al. 2023). Biologically-informed versions 
of these methods could support finer-grained cluster identifica-
tion and more intuitive parameters for users to adjust to suit 
their pathogens. We also expect that researchers will benefit from 
applying the methods we describe here to a broader range of virus 
families including those that lack standard phylogenetic clade 
definitions or that undergo too much recombination to be appro-
priately analyzed with standard phylogenetic methods. Finally, 
the combination of dimensionality reduction methods and clus-
tering with HDBSCAN provides the foundation for future methods 
to automatically identify reassortant and recombinant lineages. 
For example, representing viral genomes with low-dimensional 
MDS embeddings could simplify the problem of identifying recom-
binant lineages to a matter of classifying groups by their Euclidean 
distances.

In conclusion, we showed that simple dimensionality reduc-
tion methods operating on pairwise genetic differences can cap-
ture biologically-relevant clusters of phylogenetic clades, reassort-
ment events, and patterns of recombining lineages for human 
pathogenic viruses. The conceptual and practical simplicity of 
these tools should enable researchers and public health practi-
tioners to more readily visualize and compare samples for human 
pathogenic viruses when phylogenetic methods are either unnec-
essary or inappropriate.

4. Methods
4.1 Embedding methods

We selected four standard and common dimensionality reduction 
(or ‘embedding’) methods to apply to human pathogenic viruses: 
PCA, MDS, t-SNE, and UMAP. PCA operates on a matrix with sam-
ples in rows, ‘features’ in columns, and numeric values in each 
cell (Jolliffe and Cadima 2016). To apply PCA to multiple sequence 
alignments, we encoded each nucleotide value as a vertex in a 
simplex as previously described (Stormo 2011) with ‘A’ encoded as 
(1, −1, −1), ‘C’ as (−1, 1, −1), ‘G’ as (−1, −1, 1), and ‘T’ as (1, 1, 1). We 
encoded all other characters as (0, 0, 0). This encoding places each 
nucleotide at an equal distance from the other nucleotides in the 
simplex and produces an input matrix for PCA of size N × 3L for 
N sequences of length L. We applied scikit-learn’s PCA implemen-
tation to the resulting numerical matrix with the ‘full’ singular 
value decomposition solver and 10 components (Duchesnay 2011). 
To minimize the effects of missing data on the PCA embeddings, 
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we dropped all columns with ‘N’ or ‘-’ characters from concate-
nated H3N2 HA/NA alignments and SARS-CoV-2 alignments prior 
to producing PCA embeddings.

The remaining three methods operate on a distance matrix. We 
constructed a distance matrix from a multiple sequence align-
ment by calculating the pairwise Hamming distance between 
nucleotide sequences. By default, the Hamming distance only 
counted mismatches between pairs of standard nucleotide val-
ues (A, C, G, and T), ignoring other values including gaps. We 
implemented an optional mode that additionally counted each 
occurrence of consecutive gap characters in either input sequence 
as individual insertion/deletion (‘indel’) events.

We applied scikit-learn’s MDS implementation to a given dis-
tance matrix, with an option to set the number of components in 
the resulting embedding (Duchesnay 2011). Similarly, we applied 
scikit-learn’s t-SNE implementation, with options to set the ‘per-
plexity’ and the ‘learning rate’. The perplexity controls the number 
of neighbors the algorithm uses per input sample to determine 
an optimal embedding (van der Maaten and Hinton 2008). This 
parameter effectively determines the balance between maintain-
ing ‘local’ or ‘global’ structure in the embedding (Kobak and Berens 
2019). The learning rate controls how rapidly the t-SNE algorithm 
converges on a specific embedding (Jacobs, 1988, van der Maaten 
and Hinton 2008) and should scale with the number of input sam-
ples (Halpert et al. 2019). We initialized t-SNE embeddings with 
the first two components of the corresponding PCA embedding, 
as previously recommended to obtain more accurate global struc-
ture (Kobak and Berens 2019, Kobak and Linderman 2021). Finally, 
we applied the umap-learn Python package written by UMAP’s 
authors, with options to set the number of ‘nearest neighbors’ and 
the ‘minimum distance’ (McInnes et al. 2018). As with t-SNE’s per-
plexity parameter, the nearest neighbors parameter determines 
how many adjacent samples the UMAP algorithm considers per 
sample to find an optimal embedding. The minimum distance 
sets the lower limit for how close any two samples can map next 
to each other in a UMAP embedding. Lower minimum distances 
allow tighter groups of samples to form. For both t-SNE and UMAP, 
we used the default number of components of 2.

4.2 Simulation of influenza-like and 
coronavirus-like populations
Given the relative lack of prior application of dimensional-
ity reduction methods to human pathogenic viruses, we first 
attempted to understand the behavior and optimal parameter 
values for these methods when applied to simulated viral pop-
ulations with well-defined evolutionary parameters. To this end, 
we simulated populations of influenza-like and coronavirus-like 
viruses using SANTA-SIM (Jariani et al. 2019). These simulated 
populations allowed us to identify optimal parameters for each 
embedding method, without overfitting to the limited data avail-
able for natural viral populations. For each population type 
described below, we simulated five independent replicates with 
fixed random seeds for 60 years, filtered out the first 10 years of 
each population as a burn-in period, and analyzed the remaining 
years.

We simulated influenza-like populations as previously
described with 1700 bp HA sequences (Whittaker et al. 2020). As 
in that previous study, we scaled the number of simulated genera-
tions per real year to 200 per year to match the observed mutation 
rate for natural H3N2 HA sequences, we sampled 10 genomes 
every four generations for 12 000 generations (or 60 years of real 
time), and filtered out the first 10 years of each simulation’s data 
as a burn-in period.

We simulated coronavirus-like populations as previously 
described for human seasonal coronaviruses with genomes of 
21 285 bp (Muller et al. 2022). For the current study, we assigned 
30 generations per real year to obtain mutation rates similar to 
the 8 × 10-4 substitutions per site per year estimated for SARS-
CoV-2 (Rambaut 2020). To account for the effect of recombination 
on optimal method parameters, we simulated populations with 
a recombination rate of 10−5 events per site per year based on 
human seasonal coronaviruses for which recombination rates 
are well-studied (Muller et al. 2022, Carabelli et al., 2023). We 
calibrated the overall recombination probability in SANTA-SIM 
such that the number of observed recombination events per year 
matched the expected number for human seasonal coronaviruses 
(0.3 per year) (Muller et al. 2022). To assist with this calibration 
of recombination events per year, we modified the SANTA-SIM 
source code to emit a boolean status of ‘is recombinant’ for each 
sampled genome. This change allowed us to identify recombinant 
genomes by their metadata in downstream analyses and calculate 
the number of recombination events observed per year. For each 
replicate population, we sampled 15 genomes every generation for 
1800 generations (or 60 years of real time) and filtered out the first 
10 years of each simulation’s data as a burn-in period.

4.3 Optimization of embedding method 
parameters
We identified optimal parameter values for each embedding 
method with time series cross-validation of embeddings based 
on simulated populations (Hyndman and Athanasopoulos 2023). 
To increase the interpretability of embedding space, we defined 
parameters as ‘optimal’ when they maximized the linear relation-
ship between pairwise genetic distance of viral genomes and the 
corresponding Euclidean distance between those same genomes 
in an embedding. This optimization approach allowed us to also 
determine the degree to which each method could recapitulate 
this linear relationship.

For each simulated population replicate, we created 10 training 
and test datasets that each consisted of 4 years of training data 
and 4 years of test data preceded by a 1-year gap from the end 
of the training time period. These settings produced training/test 
data with 2000 samples each for influenza-like populations and 
1800 samples each for coronavirus-like populations. For each 
combination of training/test dataset, embedding method, and 
method parameters, we applied the following steps. We created an 
embedding from the training data with the given parameters, fit a 
linear model to estimate pairwise genetic distance from pairwise 
Euclidean distance in the embedding, created an embedding from 
the test data, estimated the pairwise genetic distance for genomes 
in the test data based on their Euclidean distances and the linear 
model fit to the training data, and calculated the mean absolute 
error (MAE) between estimated and observed genetic distances in 
the test data. We summarized the error for a given population 
type, method, and method parameters across all population repli-
cates and training/test data by calculating the median of the MAE. 
For all method parameters except those controlling the number 
of components used for the embedding, we selected the optimal 
parameters as those that minimized the median MAE for a given 
embedding method. Since increasing the number of components 
used by PCA and MDS allows these methods to overfit to available 
data, we selected the optimal number of components for these 
methods as the number beyond which the median MAE did not 
decrease by at least 1 nucleotide. This approach follows the same 
concept from the MDS algorithm itself where optimization occurs 
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iteratively until the algorithm reaches a predefined error threshold 
(Hout et al. 2012).

With the approach described above, we tested each method 
across a range of relevant parameters with all combinations of 
parameter values. For PCA and MDS, we tested the number of com-
ponents between 2 and 10. For t-SNE, we tested perplexity values 
of 15, 30, 100, 200, and 300, and we tested learning rates of 100, 
200, and 500. For UMAP, we tested nearest neighbor values of 25, 
50, and 100, and we tested values for the minimum distance that 
points can be in an embedding of 0.05, 0.1, and 0.25.

4.4 Selection of natural virus population data
We selected recent publicly available genome sequences and 
metadata for seasonal influenza H3N2 HA and NA genes and 
SARS-CoV-2 genomes from INSDC databases (Arita et al. 2021). 
For both viruses, we divided the available data into ‘early’ and 
‘late’ datasets to use as training and test data, respectively, for 
identification of virus-specific clustering parameters.

For analyses that focused only on H3N2 HA data, we defined the 
early dataset between January, 2016 and January, 2018 and the late 
dataset between January 2018 and January 2020. These datasets 
reflected two years of recent H3N2 evolution up to the time 
when the SARS-CoV-2 pandemic disrupted seasonal influenza 
circulation. For both early and late datasets, we evenly sam-
pled 25 sequences per country and per month of each year. We 
excluded outliers which were sequences either labeled as envi-
ronmental samples, containing over 100 gap characters within 
the HA sequence, or flagged by TreeTime (Sagulenko et al. 2017) 
for having a phylogenetic divergence that exceeded four times the 
interquartile interval of residuals from a root-to-tip regression for 
all sequences in the same tree. With this sampling scheme, we 
selected 1523 HA sequences for the early dataset and 1073 for 
the late dataset. For analyses that combined H3N2 HA and NA 
data, we defined a single dataset between January 2016 and Jan-
uary 2018, keeping 1607 samples for which both HA and NA have 
been sequenced.

For SARS-CoV-2 data, we defined the early dataset between 
January 1, 2020 and January 1, 2022 and the late dataset 
between January 1, 2022 and November 3, 2023. For the 
early dataset, we evenly sampled 1736 SARS-CoV-2 genomes 
by geographic region, year, and month, excluding known out-
liers that had been previously identified by the Nextstrain 
team during weekly phylogenetic surveillance since January, 
2020 (https://github.com/nextstrain/ncov/blob/master/defaults/
exclude.txt). For the late dataset, we used the same even sam-
pling by space and time to select 1309 representative genomes. 
In addition to these genomes, we identified all recombinant 
lineages in the official Pango designations as of November 
3, 2023 (https://github.com/cov-lineages/pango-designation/raw/
1bf4123/pango_designation/alias_key.json) for which the recom-
binant lineage and both of its parental lineages had at least 10 
genome records each. We sampled at most 10 genomes per lineage 
for all distinct recombinant and parental lineages for a total of 
1157. With these additional genomes, the late SARS-CoV-2 dataset 
included 2464 total genomes.

4.5 Evaluation of linear relationships between 
genetic distance and Euclidean distance in 
embeddings
To evaluate the biological interpretability of distances between 
samples in low-dimensional embeddings, we plotted the pairwise 
Euclidean distance between samples in each embedding against 
the corresponding genetic distance between the same samples. 

We calculated Euclidean distance using all components of the 
given embedding (e.g. 2 components for PCA, t-SNE, and UMAP 
and 3 components for MDS). For each embedding, we fit a lin-
ear model between Euclidean and genetic distance and calculated 
the squared Pearson’s correlation coefficient, R2. The distance 
plots provide a qualitative assessment of each embedding’s local 
and global structure relative to a biologically meaningful scale of 
genetic distance, while the linear models and correlation coeffi-
cients quantify the global structure in the embeddings.

4.6 Phylogenetic analysis
For each natural population described above, we created an anno-
tated phylogenetic tree. For seasonal influenza H3N2 HA and 
NA sequences, we aligned sequences with MAAFT (version 7.486) 
(Katoh 2002, Katoh and Standley 2013) using the augur align
command (version 22.0.3) (Huddleston et al., 2021). For SARS-
CoV-2 sequences, we used existing reference-based alignments 
provided by the Nextstrain team (https://docs.nextstrain.org/
projects/ncov/en/latest/reference/remote_inputs.html) and gen-
erated with Nextalign (version 2.14.0) (Aksamentov et al. 2021). We 
inferred each phylogeny with IQ-TREE (version 2.1.4-beta) (Nguyen 
et al. 2015) using the augur tree command with its default 
IQ-TREE parameters of -ninit 2 -n 2 -me 0.05 and a general 
time reversible (GTR) model. These are the same parameters we 
use to build SARS-CoV-2 and seasonal influenza phylogenies for 
https://nextstrain.org. We named internal nodes of the resulting 
divergence tree with TreeTime (version 0.10.1) (Sagulenko et al. 
2017) using the augur refine command. We visualized phylo-
genies with Auspice (Hadfield et al. 2018), after first converting 
the trees to Auspice JSON format with augur export. To visu-
alize phylogenetic relationships in the context of each pathogen 
embedding, we calculated the mean Euclidean position of each 
internal node in each dimension of a given embedding (e.g. MDS 1) 
based on the Euclidean positions of that node’s immediate descen-
dants and plotted line segments on the embedding connecting 
each node of the tree with its immediate parent to represent 
branches in the phylogeny. We only plotted these phylogenetic 
relationships on embeddings for pathogen datasets that lacked 
reassortment and recombination including early and late H3N2 
HA and early SARS-CoV-2 datasets.

4.7 Definitions of genetic groups by experts or 
biologically-informed models
We annotated phylogenetic trees with genetic groups previously 
identified by experts or assigned by biologically informed mod-
els. For seasonal influenza H3N2, the World Health Organization 
assigns ‘clade’ labels to clades in HA phylogenies that appear to 
be genetically or phenotypically distinct from other recently cir-
culating H3N2 samples. We used the latest clade definitions for 
H3N2 maintained by the Nextstrain team as part of their seasonal 
influenza surveillance efforts (Neher and Bedford 2015).

As seasonal influenza clades only account for the HA gene and 
lack information about reassortment events, we assigned joint 
HA and NA genetic groups using a biologically-informed model, 
TreeKnit (version 0.5.6) (Barrat-Charlaix et al. 2022). TreeKnit 
infers ancestral reassortment graphs from two gene trees, finding 
groups of samples for which both genes share the same his-
tory. These groups, also known as maximally compatible clades 
(MCCs), represent samples whose HA and NA genes have evolved 
together. TreeKnit attempts to resolve polytomies in one tree using 
information present in the other tree(s). Input trees for TreeKnit 
must contain the same samples and root on the same sample. 
Because of these TreeKnit expectations, we inferred HA and NA 
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trees with IQ-TREE with a custom argument to collapse near-zero-
length branches (-czb). We rooted the resulting trees on the same 
sample that we used as an alignment reference, A/Beijing/32/1992, 
and pruned this sample prior to downstream analyses. We applied 
TreeKnit to the rooted HA and NA trees with a gamma value of 
2.0 and the --better-MCCs flag, as previously recommended for 
H3N2 analyses (Barrat-Charlaix et al. 2022). Finally, we filtered 
the MCCs identified by TreeKnit to retain only those with at least 
10 samples. We also omitted the root MCC which consistently 
included the most recent common ancestor of both HA and NA 
trees and did not represent a reassortment event, as described in 
TreeKnit’s definition of MCCs (Barrat-Charlaix et al. 2022).

For SARS-CoV-2, we used both coarser ‘Nextstrain clades’ (Hod-
croft et al. 2020, Bedford et al. 2021, Roemer et al. 2022) and more 
granular Pango lineages (O’Toole et al. 2021) provided by Nextclade 
as ‘Nextclade pango’ annotations. Nextstrain clade definitions 
represent the World Health Organization’s variants of concern 
along with post-Omicron phylogenetic clades that have reached 
minimum global and regional frequencies and growth rates. Pango 
lineages represent expert-curated lineages (https://github.com/
cov-lineages/pango-designation) and must contain at least five 
samples with an unambiguous evolutionary event. Additionally, 
Pango lineages produced by recombination receive a lineage name 
prefixed by an ‘X’, while Nextstrain clades do not explicitly reflect 
recombination events.

Since Pango lineages can represent much smaller genetic
groups than are practically useful, we collapsed lineages with 
fewer than 10 samples in our analysis into their parental lineages 
using the pango_aliasor tool (https://github.com/corneliusroeme
r/pango_aliasor). Specifically, we counted the number of samples
per lineage, sorted lineages in ascending order by count, and col-
lapsed each lineage with a count <10 into its parental lineage 
in the count-sorted order. This approach allowed small lineages 
to aggregate with other small parental lineages and meet the 
10-sample threshold. We used these ‘collapsed Nextclade Pango’ 
lineages for subsequent analyses.

4.8 Clustering of samples in embeddings
To understand how well embeddings of genetic data could capture 
previously defined genetic groups, we applied an unsupervised 
clustering algorithm, HDBSCAN (Campello et al. 2015), to each 
embedding using the Python-based hdbscan package (McInnes 
et al. 2017). In addition to the four embedding methods, we 
identified HDBSCAN clusters from a fifth ‘method’ of precom-
puted pairwise genetic distances. This genetic distance method 
allowed us to understand how clusters differed between low- 
and high-dimensional inputs. HDBSCAN identifies initial clusters 
from high-density regions in the input space and merges these 
clusters hierarchically. This algorithm allowed us to avoid defin-
ing an arbitrary or biased expected number of clusters a priori. 
HDBSCAN provides parameters to tune the minimum number of 
samples required to seed an initial cluster (‘min samples’), the 
minimum size for a final cluster (‘min size’), and the minimum 
distance between initial clusters below which those clusters are 
hierarchically merged (‘distance threshold’). We hardcoded the 
min samples to 5 to minimize the number of spurious initial clus-
ters and min size to 10 to reflect our interest in genetic groups 
with at least 10 samples throughout our analyses. HDBSCAN cal-
culates the distance between clusters on the Euclidean scale of 
each embedding or on the scale of precomputed nucleotides differ-
ences from each genetic distance matrix. To account for variation 
in method-specific distances, we performed a coarse grid search 
of distance threshold values for each virus type and method.

We performed the grid search on the early datasets for both 
seasonal influenza H3N2 HA and SARS-CoV-2. For each dataset 
and method, we applied HDBSCAN clustering with a distance 
threshold between 0 and 20 inclusive with steps of 0.5 between 
values. For a given threshold, we obtained sets of samples assigned 
to HDBSCAN clusters from the embedding. We evaluated the 
accuracy of these clusters with VI which calculates the distance 
between two sets of clusters of the same samples (Meila 2003). 
When two sets of clusters are identical, VI equals 0. When the sets 
are maximally different, VI is logN where N is the total number of 
samples. To make VI values comparable across datasets, we nor-
malized each value by dividing by logN, following the pattern used 
to validate TreeKnit’s MCCs (Barrat-Charlaix et al. 2022). Unlike 
other standard metrics like accuracy, sensitivity, or specificity, 
VI distances do not favor methods that tend to produce more, 
smaller clusters. For each virus dataset and method, we iden-
tified the distance threshold that minimized the normalized VI 
between HDBSCAN clusters and genetic groups defined by experts 
or biologically-informed models (‘Nextstrain clade’ for seasonal 
influenza and both ‘Nextstrain clade’ and ‘Pango lineage’ for SARS-
CoV-2). HDBSCAN allows samples to not belong to a cluster and 
assigns these samples a numeric label of −1. We intentionally 
included all unassigned samples in the normalized VI calculation 
thereby penalizing cluster parameters that increased the num-
ber of unassigned samples by increasing their VI values. Since 
Nextstrain clade assignments could include non-monophyletic 
labels like ‘unassigned’ and ‘recombinant’ to represent samples 
that did not map into a single clade, we ignored these labels in our 
VI distance calculations to avoid rewarding clusters that placed 
such non-monophyletic samples into the same group. Finally, 
we used these optimal distance thresholds to identify clusters in 
out-of-sample data from the late datasets for both viruses and cal-
culate the normalized VI between those clusters and previously 
defined genetic groups.

4.9 Evaluating robustness of embedding cluster 
accuracy
The cluster accuracies we estimated for late H3N2 HA and SARS-
CoV-2 datasets represented a single VI measurement for a single 
pathogen dataset. To understand how robust these accuracies 
were across different datasets, we generated alternate random 
samples from both late pathogen datasets using two different 
sampling schemes and a range of total sequences sampled. Specif-
ically, we sampled 500, 1000, 1500, 2000, or 2500 total sequences 
for five replicates per pathogen (random seeds of 0, 1, 2, 3, and 4) 
with either even sampling by geography and time or random sam-
pling. For the relatively smaller influenza data, we evenly sampled 
by country, year, and month. For the larger SARS-CoV-2 data, 
we evenly sampled by region, year, and month. Even sampling 
attempted to minimize geographic and temporal biases in the 
original data. Random sampling uniformly selected samples in a 
way that reflected the bias in the data. Influenza data were heavily 
biased toward samples from the USA and clade 3c3.A, while SARS-
CoV-2 data were biased toward Europe and North America and 
Nextstrain clades 21K, 21L, and 22B. For each replicate from each 
sampling scheme and total number of sequences, we embedded 
the corresponding sequences with each method, identified clus-
ters in embeddings, and calculated the VI distance between those 
clusters and Nextstrain clade assignments. We plotted the distri-
bution of the resulting VI distances, to estimate the robustness of 
these values to sampling bias and density (Supplementary Figs. S9 
and S23).
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4.10 Evaluating the monophyletic nature of 
embedding clusters
To quantify the degree to which embedding clusters represented 
monophyletic groups in a pathogen phylogeny, we counted the 
number of times clusters from each embedding method appeared 
in different parts of the tree. Specifically, we applied augur 
traits with TreeTime (version 0.10.1) (Sagulenko et al. 2017, Hud-
dleston et al., 2021) to infer cluster labels for internal nodes of 
the phylogeny for each pathogen dataset and embedding method. 
Using a preorder traversal of the tree, we identified each transi-
tion between different cluster labels assigned to pairs of ancestral 
and derived internal nodes. Since the ‘unclustered’ cluster label 
of ‘−1’ produced by HDBSCAN could occur in both ancestral and 
derived nodes and lead to overcounting transitions, we only logged 
transitions with this label in the ancestral state ( e.g. transition 
from cluster −1 to cluster 0 but not cluster 0 to cluster −1). For 
each embedding, we counted the number of distinct clusters, total 
transitions, and excess transitions beyond the expected single 
transition between pairs of clusters. Embeddings with no excess 
transitions between clusters represented monophyletic groups.

4.11 Identification of cluster-specific mutations
To better understand the genetic basis of embedding clusters, 
we identified cluster-specific mutations for all HDBSCAN clusters. 
First, we found all mutations between each sample’s sequence and 
the reference sequence used to produce the alignment, consider-
ing only A, C, G, T, and gap characters. Within each cluster, we 
identified mutations that occurred in at least 10 samples and in 
at least 50% of samples in the cluster. We recorded the resulting 
mutations per cluster in a table with columns for the embed-
ding method, the position of the mutation, the derived allele of 
the mutation, and a list of the distinct clusters the mutation 
appeared in. From this table, we could identify mutations the only 
occurred in specific clusters and mutations that distinguished sets 
of clusters from each other.

4.12 Assessment of HA/NA reassortment in 
seasonal influenza populations
To assess the ability of embedding methods to detect reassortment 
in seasonal influenza populations, we applied each method to 
either HA alignments only or concatenated alignments of HA and 
NA sequences from the same samples, performed HDBSCAN clus-
tering with the optimal distance threshold for the given method, 
and calculated the normalized VI between the resulting clusters 
and TreeKnit MCCs. As mentioned above, we dropped all columns 
with ‘N’ or ‘-’ characters from the HA and HA/NA alignments prior 
to producing PCA embeddings. We used the original alignments to 
calculate distance matrices for all other methods, since distance-
based methods can ignore N characters in pairwise comparisons. 
We compared normalized VI values for the HA-only clusters of 
each method to the corresponding VI values for the HA/NA clus-
ters. Lower VI values in the HA/NA clusters than HA-only clusters 
indicated better clustering of samples into known reassortment 
groups.

4.13 Assessment of recombination in 
SARS-CoV-2 populations
To assess the ability of embedding methods to detect recombina-
tion in late SARS-CoV-2 populations (2022-2023), we calculated 
the Euclidean distances in low-dimensional space between the 
10 known recombinant lineages and their respective parental lin-
eages described in ‘Selection of natural virus population data’ 
above. Given that we optimized each method’s parameters to 

maximize a linear relationship between genetic and Euclidean 
distance, we expected embeddings to place recombinant lin-
eages between their parental lineages, reflecting the intermediate 
genetic state of the recombinants. For a recombinant lineage X
and its parental lineages A and B, we calculated the average pair-
wise Euclidean distance, D, between samples in A and B, A and 
X, and B and X. We identified lineages that mapped properly as 
those for which D(A,X) < D(A,B) and D(B,X) < D(A,B). We also iden-
tified lineages for which the recombinant lineage placed closer 
to at least one parent than the distance between the parents. 
Note that we used the original uncollapsed Pango annotations 
to identify samples in each lineage, as these were the lineage 
names used to include recombinant samples in the analysis and 
define known relationships between recombinant and parental
lineages.
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