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Abstract: Antimicrobial resistance (AMR) poses an ever-increasing challenge to the treatment of infections.14

AMR mechanisms are commonly associated with AMR genes that are carried on mobile elements, such as15

plasmids that can move between bacterial lineages. Here we introduce an approach that allows us to reconstruct16

how plasmids move between bacterial lineages. To do so, we model the co-evolution of chromosomal and plasmid17

DNA in a Bayesian phylogenetic network approach using a joint coalescent and plasmid transfer process. We18

apply this new approach to a five-year dataset of Shigella isolates from Melbourne, Australia. Doing so, we19

reconstruct the gain and loss of small plasmids, and the recent dissemination of a multidrug-resistance plasmid20

between S. sonnei and S. flexneri lineages in multiple independent events and through steady growth in the21

prevalence since 2010. This approach has a strong potential to improve our understanding of where AMR-22

carrying plasmids are introduced and maintained.23
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Introduction26

Antimicrobial resistance (AMR) in bacteria represents one of the most serious public health threats of the 21st27

century, with the burden of disease estimated to be over 1 million deaths per year (Murray et al., 2022). Multiple28

reports have highlighted the urgent need for novel computational approaches to track the emergence and spread29

of AMR in both known and emerging bacterial pathogens (World Health Organization, 2020). AMR genes30

that mediate either reduced susceptibility or resistance to therapeutics are often carried on mobile elements,31

such as plasmids, that typically form part of the accessory genome (Rozwandowicz et al., 2018; Partridge32

et al., 2018). Plasmids can move between lineages of the same bacterial species, or between unrelated bacterial33

species (Partridge et al., 2018). Importantly, horizontal transfer of genetic material enables bacterial populations34

to rapidly develop AMR, as plasmids may carry multiple genes that confer AMR to different antimicrobials35

(Hawkey et al., 2022; Ingle et al., 2021; Park et al., 2018). The spread of drug-resistant plasmids within a36

bacterial population increases the chance of AMR genes disseminating to other bacterial species in the same37

ecological niche.38

Shigella are a key exemplar pathogen to develop new methodological approaches to study the movement39

of plasmids between bacterial lineages. The core genome of Shigella is comprised of the chromosome and a40

large virulence plasmid (pINV) that is essential for infection in humans Yang et al. (2005). This virulence41

plasmid, pINV, co-evolves with the Shigella chromosome, with variation in size and genetic content between the42
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Shigella species (The et al., 2016). The pINV encodes genes that facilitate several interactions with the host cell43

machinery enabling the bacterium to survive and replicate in the human host cells (Schroeder and Hilbi, 2008).44

Two species of Shigella, S. sonnei and S. flexneri, are responsible for the main burden of disease of Shigellosis45

globally (Bengtsson et al., 2022). These species may have different plasmids. For example, in S. sonnei three46

other smaller plasmids have been characterized in the reference genome Ss046. These three plasmids, spA, spB47

and spC, are commonly found within S. sonnei global lineage III (Holt et al., 2012). AMR determinants to48

streptomycin and sulfonamide are encoded on spA (Hawkey et al., 2021). Additionally, S. sonnei and S. flexneri49

have been associated with multidrug resistant (MDR) outbreaks, particularly in men who have sex with men50

(MSM) (Baker et al., 2015; Ingle et al., 2019, 2020; Mason et al., 2022), representing a major public health51

threat. These outbreaks have been driven by the presence of an MDR plasmid, pKSR100 (Baker et al., 2015;52

Ingle et al., 2019). Recent reports have shown the acquisition of blaCTX-M-27 gene mediating resistance to53

extended spectrum betalactams on variants of the pKSR100 plasmid driving the outbreaks of extensively drug54

resistant S. sonnei (Mason et al., 2022).55

The movement of plasmids is a major barrier to understanding and controlling AMR in bacterial species and56

new approaches are urgently required to understand these movements. The advent of whole-genome sequencing57

(WGS) and ongoing implementation of routine WGS of bacterial pathogens into public health laboratories58

means that AMR is increasingly detected using in silico approaches. However, to date there have been limited59

approaches to explore plasmid evolution in large scale population analyses. This shortfall is in part due to the60

genetic makeup of plasmids that complicates computational analyses (Robertson and Nash, 2018). Plasmids61

are usually typed using a limited number of markers based on replicon or MOB genes, due to a lack of core62

backbone (Partridge et al., 2018; Robertson and Nash, 2018). Plasmid types may co-occur with different AMR63

profiles however, complete plasmid genomes are still required to confidently characterise AMR mechanisms.64

WGS provides an avenue to tackle the question of how plasmids move between bacterial lineages by allowing65

us to infer the shared ancestral history of genomes isolated from different bacteria. The horizontal transfer of66

plasmids occurs between bacterial lineages and, as such, is a co-divergent process with the chromosomal DNA of67

these bacterial lineages. We model this process by using a ”coalescent with plasmid transfer (CoalPT)” model,68

instead of overlaying plasmid presence or absence, as is typically done. The model, which we refer to as CoalPT,69

can be described as a joint coalescent and plasmid transfer process, where lineages can coalesce from present to70

past or undergo a plasmid transfer event, similar to how recombination is often modeled (Hudson, 1983). The71

model has two key parameters, the effective population size and the plasmid transfer rate, that denote the rate72

at which coalescent and plasmid transfer events occur. The estimated plasmid transfer rate is a population level73

rate and a function of how often bacterial lineages are in the same location, the probability of them exchanging74

plasmids if they have one, and also the degree of selection that acts on the bacterium that picked up a new75

plasmid. The result of the CoalPT model is a timed phylogenetic network with each lineage of the network76

corresponding to one or more lineages of either the chromsome or plasmid trees. As such, the plasmid network77

denotes the co-evolutionary history of the chromosome and the plasmid is denoted by a timed phylogenetic78

network, in which the chromosome and plasmid trees are embedded. To perform inference under the CoalPT79

model, we use Markov chain Monte Carlo (MCMC) sampling to infer the timed phylogenetic network, related80

to the MCMC inference of reassortment (Müller et al., 2020) and recombination networks (Müller et al., 2022).81

Using an MCMC approach allows us to infer the phylogenetic network, effective population sizes, plasmid82

transfer rates and evolutionary parameters all while accounting for uncertainty in the data and the network and83

parameter estimates.84

We implemented this approach as a package for the open source software BEAST2 (Bouckaert et al., 2019)85

to facilitate its adoption. We then use CoalPT to reconstruct the acquisition, movement and co-divergence of86

several plasmids within two species of Shigella, of different sizes, virulence and AMR potential. To do so, we use87

a dataset of overall 1,105 Shigella isolates from a five year timespan from Australia, representing one of the most88

comprehensive datasets of Shigella globally. We first infer of the rate of plasmid transfer in S. sonnei, showing89

that there were multiple events where plasmids were transferred between bacterial lineages, but also that these90

plasmids get lost repeatedly. We then show how modeling the co-divergence of plasmid and chromosomal DNA91
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enables inference of the rate of evolution of plasmids with high precision despite limited genomic information.92

Lastly, we show the movement of an MDR plasmid within and between two Shigella species. Understanding93

how plasmids move within and between bacterial lineages can provide insights into dissemination of plasmid-94

mediated AMR to inform targeted public health interventions.95

Results96

Smaller, non-essential plasmids are readily transferred between bacterial lineages97

To investigate how plasmids move between S. sonnei lineages, we reconstructed the joint evolutionary history of98

S. sonnei chromosomal DNA and four plasmids (pINV, spA, spB & spC) (fig 1). We assume a strict molecular99

clock with a different molecular clock rate and HKY+Γ4 (Hasegawa et al., 1985) substitution model for the100

chromosome and each plasmid. We additionally assume a constant-size coalescent process and infer the effective101

population size and the rate of plasmid transfer, allowing each plasmid to have a different transfer rate. The102

coalescent with plasmid transfer assumes that there is no inter-lineage recombination within the chromosome or103

plasmids. Thus, we masked sections with evidence of recombination in the chromosome using Gubbins (Croucher104

et al., 2015). S. sonnei can carry multiple plasmids in addition to the pINV, one of which (spA) contains AMR105

genes streptomycin and sulphonamides. The relative prevalence of the smaller plasmids was reasonably constant106

over the sampling period (fig 1C), with spA and spB being detected in most samples, while spC was detected107

only in relatively few isolates. We observed some evidence for a recent increase in the proportion of bacterial108

lineages carrying any of the three small plasmids, notably from around 2016 for spC and spA and from late109

2010’s for spB (fig 1E). However, the proportion of ancestral lineages carrying spA and spC appears to have110

remained largely constant (fig 1E).111

We found little to no support for the virulence plasmid, pINV, having been transferred between different112

bacterial lineages, suggesting co-divergence of the chromosome and pINV (fig 1F). In contrast, as shown in113

figure 1F, we find strong evidence for the three smaller plasmids (spA-spC) being transferred between bacterial114

lineages. These plasmid transfer events correspond to co-infection events, subsequent exchange of plasmids115

within a host and subsequent onward transmission of the bacteria. We estimate large differences in the rates of116

plasmid transfer between pINV, spA, spB and spC (see fig S1). Importantly, the spA plasmid is inferred to have117

the highest transfer rate between bacterial lineages and is the only plasmid known to confer resistance, out of118

those considered here (see fig S1), with other plasmids displaying substantially lower rates of plasmid transfer119

(see fig S1).120

We next computed the rate at which plasmids are being lost. We calculated the number of times a plasmid121

has been lost as the number of child edges (i.e. branches) in a network for which the parent branch carries a122

plasmid, while the child branch itself does not. We then divide this number by the total length of the plasmid123

tree to get an estimate of the rate at which the plasmid is lost in units of plasmid loss events per unit time. The124

virulence plasmid, which in S. sonnei is known to be often lost in culture (The et al., 2016), but forms part of125

the core genome of all Shigella species, had the highest rate of being lost (fig 1G). The smaller plasmids were126

all lost at a similar rate (fig 1G), suggesting similar maintenance costs.127

Accounting for the co-divergence of chromosomes and plasmids is essential for128

estimating rates of evolution on plasmids129

Evolution of the genome of bacterial species occurs as a result of selective pressures on the core and accessory130

genome. The core will likely be under strong selective constraints, while the accessory may be subject to weaker131

selection. Indeed, we find that plasmids tend to have higher molecular evolutionary clock rates than those132

of the chromosome, sometimes by several fold (fig 2A). Single nucleotide polymorphisms (SNPs) within the133

bacterial chromosome have been the focus of bacterial phylodynamics to date due to enough temporal signal in134

the sequence data to model the population dynamics, facilitated by the bacterial chromosome being orders of135
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Figure 1: Co-divergence of the core chromosome and plasmids in Shigella sonnei. Maximum clade
crediblity (MCC) networks (i.e. the network with the highest product of posterior node probabilities) of Shigella
sonnei samples with the embedding of the plasmid trees for spA, spB and spC (A-C). Vertical lines are used to
denote plasmid transfer events, where the circles denote the branch to which a plasmid was transferred. Dashed
lines correspond branches from which plasmids branch off. Branches with colors correspond to those that carry
a plasmid, whereas those in grey do not and tips labeled with color circles are samples for which the plasmid
was available. The text denotes the posterior probability of plasmid transfer events for events with a posterior
support of over 0.5. D Monthly number of sequenced S. sonnei cases between 2016 and 2020 and prevalence
of three plasmids spA, spB and spC over time as a 3 month moving average. E Proportion of lineages in the
past that contained a plasmid. F Posterior estimate of the number of recorded times a plasmid jumped between
lineages. G Posterior estimate of the rate at which plasmids are getting lost.
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magnitude larger than some plasmids. In the case of S. sonnei the chromosome has approximately 22 times more136

nucleotides than the virulence plasmid, pINV, and between ∼570 to ∼2300 times more than spA–spC. In spite137

of the higher rates of evolution in plasmids, compared to the chromosome, we would still expect an alignment138

of SNPs in the core chromosome to have larger number of SNPs due to its sheer size. As such, plasmids are139

less likely to contain as much information as the chromosome and may therefore be less likely to behave as140

measurably evolving populations (Drummond et al., 2003; Biek et al., 2015).141
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Figure 2: Rates of evolution for plasmids and core chromosome in Shigella sonnei. A Evolutionary
rate posterior estimates of the the chromosomal and plasmid DNA of S. sonnei sequences isolated in Melbourne,
Australia over several years. We compare estimates inferred by assuming an individual rate of evolution for the
chromosome and plasmids to those where we explicitly model the joint evolutionary history of these lineages
as a phylogenetic network. B Rates of evolution of plasmids using simulated datasets. On the y-axis, we show
the inferred evolutionary rates with the error bars denoting the 95% HPD and the point denoting the mean
estimates. The x-axis is the number of variable sites in the alignment. Density tree representation of the plasmid
tree using the coalescent with plasmid transfer (red) and inferring the plasmid trees individually (blue) for spA
(C), spB (D), spC (E). HPD: highest posterior density

To illustrate how modeling the co-divergence of the chromosomal and plasmid DNA impacts inferences of142

the evolutionary rate, we reconstructed the phylogenetic trees of the chromosomes, virulence, spA, spB and spC143

plasmids individually. For the chromosome and the pINV, we used the SNP alignment, that only contains the144
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SNPs in order to reduce the size of the dataset. For spA–spC, we used the full alignments (with gaps, Ns and145

both variant and invariant sites) obtained from mapping against the reference genomes (see Methods). We used146

the same priors and evolutionary models as for the network inference described above and then inferred the147

phylogenetic trees, evolutionary rates and other parameters. As shown in figure 2A, we found the chromosome148

to evolve at a rate of mean 7.8 × 10−7 subs/site/year (95% highest posterior density, HPD 6.6 − 9.4 × 10−7),149

and the virulence plasmid to evolve at at rate of 9.3× 10−7 subs/site/year (95% HPD 5.8× 10−7 − 1.3× 10−6).150

The small plasmids spA-spC all evolve at substantially higher rates, with means of between 2.9 × 10−6 and151

1.9 × 10−5 subs/site/year. Inferring these rates of evolution would be impossible using the plasmid alignments152

alone and thus require information about the co-divergence of the plasmids and chromosome.153

To further explore the impact of out approach in estimates of evolutionary rates, we compared the inferred154

rates for plasmids using the coalescent with plasmid transfer and individual tree inference using simulations. We155

simulated 50 phylogenetic networks under the coalescent with plasmids transfer with three plasmids sampled156

over five years. We assume that the chromosome and the three plasmids at a rate of 5 × 10−4 subs/site/unit157

time. The chromosome has a SNP alignment length of 8000bp, while the three plasmids had SNP alignments of158

200bp, 100bp and 50bp respectively. These setting will produce approximately the same number of SNPs per159

unit of time as a chromosome of 4.8 × 106bp evolving at a rate of 8 × 10−7 subs/site unit time.160

As shown in figure 2B using tree inference only to retrieve rates of evolution will return the prior on161

the evolutionary rate, even for cases with relatively many SNPs, implying that the data are not sufficiently162

informative to drive the estimate of this parameter. The reason is that even in cases with many SNPs in total, the163

number of SNPs per time that one expects to occur over the sampling period of 5 years is 5 years×200 bp×5×10−4
164

subs/site/year = 0.5 SNPs for the largest plasmid. The network approach on the other hand is able to infer the165

rates of evolution of plasmids even when only few SNPs occur (fig 2B).166

This is also true for the tree topology of the plasmid trees, which is also aided by modeling the co-evolution167

of plasmids and core chromosome. As shown in figures 2C-E, particularly more recent topologies are resolved168

with higher precision.169

Evidence for cross-species MDR plasmid exchange and steady growth of pKSR100170

prevalence171

We next investigated the movement of a multidrug resistance (MDR) plasmid that has been previously well-172

characterised using genomic epidemiological approaches, in two Shigella species, S. sonnei and S. flexneri. To173

do so, we compiled three alignments. We made an alignment from SNPs in the reference chromosome for both174

S. sonnei (n = 789 isolates) and S. flexneri (n = 316 isolates) individually (see methods). For the MDR plasmid175

(pKSR100) known to circulate in both species, we aligned sequences from both species jointly. All S. sonnei176

and S. flexneri where isolates had ≥70% coverage of the pKSR100 reference were included in the alignment. We177

then subsampled 250 isolates equally from S. sonnei and S. flexneri that carried the pKSR100-like plasmids.178

The chromosomal DNA of S. sonnei and S. flexneri were assumed to be their individual trees, while all samples179

of the pKSR100 plasmids were assumed to be from the same trees.180

We next reconstructed the joint evolutionary history of the core chromosome and the MDR plasmid assuming181

a strict molecular clock for both the chromosome and the MDR plasmid and a HKY+Γ4 substitution model.182

In order to improve the computational efficiency, we fixed the rate of evolution of the core chromosomes to be183

equal to the estimates in 2, while estimating the rate of evolution of the MDR plasmid.184

As shown in figure 3A&B, we found evidence for multiple events where the MDR plasmid jumped between185

bacterial lineages within species and also between species. These jumps between lineages were, in some cases,186

associated with a rapid expansion of a clade. For example, we found that the S. sonnei clade expanded after187

the introduction of an MDR plasmid into the bacterial lineage from S. flexneri around 2010. We next sought188

to distinguish introductions of the MDR plasmid into S. sonnei and S. flexneri clades by whether they likely189

originated from the other bacterial species or from an unknown species entirely. To do so, we followed the190

procedure described in Directionality of plasmid transfer. Additionally, we only considered plasmid transfer191
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events that were introduced into S. sonnei or S. flexneri in the last 50 years. As shown in figure 3D, there192

is evidence for multiple introductions of plasmids into both species from each other, but also from unknown193

bacterial lineages. These could be other Shigella lineages or other from other bacterial species in the same194

ecological niches as has been previously reported (Duy et al., 2020).195

We next computed the proportion of lineages in the past that carried the plasmid pKSR100. As shown in196

figure 3C, we find a steady increase in the proportion of bacterial lineages that carry the pKSR100 plasmid.197

This increase is inferred to start around the year 2010, and to continue relatively steady until 2020 from when198

we have the most recent samples in the dataset.199

Discussion200

Our work presents a novel way to infer how plasmids move between bacterial lineages by using a phylogenetic201

network approach that explicitly models the co-divergence of plasmids with chromosomes. This represents a202

substantial advancement to the field of bacterial population genomics as it enables for the greater exploration203

of the plasmid movements within bacterial pathogens over time. In line with other research we find the co-204

divergence of virulence plasmid, pINV, with the chromosome of S. sonnei (The et al., 2016), and the movement205

of small plasmids within the S. sonnei population. Further, we find evidence for multiple MDR plasmid transfer206

events between S. sonnei lineages, but also between S. sonnei and S. flexneri lineages (Baker et al., 2015;207

Ingle et al., 2019; Locke et al., 2021; Mason et al., 2022). Future work could explore where these plasmid are208

originating from to improve our understanding of how AMR genes move between species, by incorporating other209

bacterial species into this analyses.210

Modeling plasmid evolution has profound implications for calibrating their molecular clock and inferring211

their evolutionary rates and timescales. The main factors to consider for molecular clock calibration are sequence212

sampling times and the amount of information that accumulates over time. The latter pertains to the product of213

the evolutionary rate and the number of sites. Outbreaks of many bacterial species, including those of Shigella214

spp. contain enough information to calibrate the molecular clock (Duchêne et al., 2016). Our results show215

that plasmid sequence data alone are insufficient to calibrate the molecular clock, such that joint analyses of216

chromosome and plasmid data are essential to understand plasmid evolution.217

Explicitly modeling the co-divergence of plasmids and core genomes also allows us to quantify the number218

of these events, the timings of introductions, the lineages where plasmids were introduced from, while also219

accounting for uncertainty in the genomic data. Tracking the movement of plasmids over time has been difficult,220

but is increasingly of interest to to better understand the epidemiology of bacterial outbreaks. As such, this221

provides a framework to study other bacterial populations where the plasmid dynamics are less clear. These222

approaches would be immediately relevant to drug-resistant plasmids, but could also be extended to virulence223

plasmids or where there has been reported convergence of AMR and virulence (Lam et al., 2019). Such as224

investigating whether the expansion of a plasmid was from one introduction and subsequent expansion, or the225

result of repeated introductions.226

Currently, we assume that each plasmid has a neutral fitness effect, meaning that lineages carrying a plasmid227

are assumed to be equally fit as lineages that do not. This assumption could in principle be relaxed to study the228

fitness benefits and costs of plasmids on a population level by modeling the fitness of a lineage as a function of229

the presence or absence of a plasmid using phylogenetic fitness models ( Luksza and Lässig, 2014). Such analyses230

would be particularly interesting in the context of empirically measured fitness costs in culture. An additional231

insight that could be gained is how plasmids are introduced and transferred between different host types, by232

extending the current unstructured coalescent approach to account for population structure (Müller et al., 2017,233

2018; Stolz et al., 2022).234

Finally, we showed that modeling the co-divergence of plasmid and chromosomal DNA allows to reconstruct235

the plasmid phylogeny much more precisely. In turn, these inferences improve the accuracy with which we can236

unravel key evolutionary pathways, such as the timing of their introduction to a population and timescale of237

7

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 28, 2023. ; https://doi.org/10.1101/2022.10.27.514108doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.27.514108
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Co-evolution of chromsome and 
pKSR100

B Host switching of pKSR100 
between S. sonnei and S. flexneri

into S. flexneri
into S. sonnei

0 1 2 3 4 5 6 7 8
number of events

pr
ob

ab
ilit

y 
de

ns
ity

from S. flexneri S. sonnei unknown

Plasmids introduced into S. sonnei or S. flexneri
C

0.00

0.25

0.50

0.75

1.00

2000 2005 2010 2015 2020

pr
op

or
tio

n 
of

 a
nc

es
tra

l l
in

ea
ge

s 
ca

rry
in

g 
pl

as
m

id

D

Figure 3: Transmission of pKSR100 between S. sonnei and flexneri. MCC network of S. sonnei and
flexneri samples with the embedding of the psk100 plasmid tree A. The text denote the posterior support
values for plasmid transfer events. B Plasmid tree of pKSR100 with the host species S. sonnei or S. flexneri
mapped onto the tree. The different colors of the tips show clusters of sequences that are the result of separate
introductions of the MDR plasmid. C Proportion of ancestral lineages which carried the pKSR100 plasmid. D
Distribution of the number of introductions of the MDR plasmid into S. sonnei and S. flexneri. These events
are computed for the posterior distribution of networks with y-axis denoting the probability density for the
number of events. MCC: maximum clade credibility. MDR: multidrug resistance
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point mutations of epidemiological relevance. Importantly, the only source of evolutionary information that we238

consider are point mutations. Novel approaches that model, for example, rearrangements of genes on a plasmid239

could provide additional insight into the evolutionary dynamics of those plasmids, but also the movement of240

plasmid between lineages. Such approaches would have applications to better understand the movement of e.g.241

drug resistant plasmids both locally, within specific clinical settings, or internationally, such as tracking the242

dissemination of plasmids of interest across the globe.243

Methods244

Coalescent with plasmid transfer245

Different bacterial lineages can exchange plasmids through different mechanisms. To model this process, we use246

a coalescent based model, related to the coalescent with reassortment (Müller et al., 2020). In the coalescent247

with plasmid transfer model, we model a backwards in time process starting from sampled individuals (fig 4).248

The sampled individuals are required to have a chromosome, but can have anywhere from 0 to n plasmid249

sequences. For a given effective population size Ne and plasmid transfer rate ρ, we then sample the time to250

the next coalescent event (from present to past) from an exponential distribution with a rate of
(k
2)

Ne . The251

timing to the next plasmid transfer event is drawn from an exponential distribution with mean 1
n∗ρ . Upon a252

coalescent event, the parental lineage will carry the union of chromosomal or plasmid lineages of the two child253

lineages. Upon a plasmid transfer event, one plasmid lineage is randomly chosen to branch off into one parental254

lineage, whereas all other plasmid and the chromosomal lineages will follow the other parental lineage. This is255

different to how reassortment is modeled in (Müller et al., 2020) in that a plasmid transfer occurs relative to256

the chromosome and only one plasmid is transferred at a time. This is the backwards in time equivalent of one257

plasmid being transferred between bacterial lineages at a time. The method is agnostic to how a plasmid is258

transferred, other than the assumption that only one plasmid is transferred at a time. However, we assume that259

there is no interlineage recombination happening within the chromosomal or plasmid DNA, although this is an260

assumption that could potentially be relaxed in the future by employing a similar approach to (Müller et al.,261

2022). Importantly, the resulting phylogenetic network is not constrained to be tree based (as e.g (Didelot et al.,262

2010; Vaughan et al., 2017)) but allowed to have any possible structure one can simulated under the coalescent263

with plasmid transfer.264

Posterior probability265

In order to perform joint Bayesian inference of phylogenetic networks, the embedding of chromosome and plasmid266

trees, together with the parameters of the associated models, we use a MCMC algorithm to characterize the267

joint posterior density. The posterior density is denoted as:268

P (N,µ, θ, ρ|D) =
P (D|N,µ)P (N |θ, ρ)P (µ, θ, ρ)

P (D)
, (1)

where N denotes the network, µ the parameters of the substitution model, θ the coalescent model and ρ the269

plasmid transfer rate. The coalescent model θ can be any model that described an effective population size over270

time, meaning it can describe a constant rate coalescent process (constant Ne) or parametric or non-parametric271

Ne dynamics. The plasmid transfer rate is currently assumed to be constant over time, but can vary between272

different plasmids. The multiple sequence alignment, that is the data, is denoted D. P (D|N,µ) denotes the273

network likelihood, P (N |θ, ρ), the network prior and P (µ, θ, ρ) the parameter priors. As is usually done in274

Bayesian phylogenetics, we assume that P (µ, θ, ρ) = P (µ)P (θ)P (ρ).275
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between bacterial 
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Figure 4: Schematic representation of the coalescent with plasmid transfer model. The coalescent
with plasmid transfer models a backwards in time process where any two network lineages can coalesce (share
a common ancestor). Additionally, network lineages can undergo a plasmid transfer event, modeled backwards
in time as one of the plasmid lineages branching of the main branch. How rapidly two lineages share a common
ancestor backwards in time is given by the effective population size and the rates of plasmid transfer denote the
rate of observing plasmid transfer events backwards in time.

Network Likelihood276

As we assume that there is no interlineage recombination within the chromosomal or plasmid DNA, we can277

simplify the network likelihood P (D|N,µ) into the tree likelihood of the chromosomal and plasmid DNA. If Ti278

is the tree of the chromosome or plasmid (with i = 0 being the chromosome tree and i > 0 being plasmid trees)279

and if Di is either the chromosomal or plasmid alignment, we can write the network likelihood as:280

P (D|N,µ) =

chromosome+nrplasmid∏
i=1

P (Di|Ti, µ), (2)

The tree likelihood calculations use the default implementation of the tree likelihood in BEAST2 (Bouckaert281

et al., 2019) and can use beagle (Ayres et al., 2012) to increase the speed of likelihood calculations. Importantly,282

this approach allows us to all the default substitution and clock models in BEAST2, including, for example,283

relaxed clock models discussed here (Bouckaert et al., 2019).284
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Network Prior285

The network prior is denoted by P (N |θ, ρ), which is the probability of observing a network and the embedding286

of chromosomal and plasmid trees under the coalescent with plasmid transfer model. θ denotes a unstructured287

coalescent population model that described effective population sizes Ne over time, and ρ the per plasmid288

transfer rate . The network prior is the equivalent to the tree prior in phylogenetic tree analyses.289

We can calculate P (N |θ, ρ) by expressing it as the product of exponential waiting times between events (i.e.,290

plasmid transfer, coalescent, and sampling events):291

P (N |θ, ρ) =

#events∏
i=1

P (eventi|Li, θ, ρ) × P (intervali|Li, θ, ρ), (3)

where we define ti to be the time of the i-th event and Li to be the set of lineages extant immediately prior to292

this event. (That is, Li = Lt for t ∈ [ti − 1, ti).)293

Given that the coalescent process is a constant size coalescent and given the i-th event is a coalescent event,294

the event contribution is denoted as:295

P (eventi|Li, θ, ρ) =
1

Ne(ti)
. (4)

If the i-th event is a plasmid transfer event and assuming a constant rates over time, the event contribution is296

denoted as:297

P (eventi|Li, θ, ρ) = ρ. (5)

This event contribution can be generalized to account for different rates of transfer for different plasmids by298

using substituting ρ with the plasmid specific rate depending on which plasmid was transferred. The interval299

contribution denotes the probability of not observing any event in a given interval. It can be computed as the300

product of not observing any coalescent, nor any plasmid transfer event in interval i. We can therefore write:301

P (intervali|Li, θ, ρ) = exp[−(λc + λr)(ti − ti−1)], (6)

where λc denotes the rate of coalescence and can be expressed as:302

λc =

(
|Li|
2

)
(ti − ti−1)∫ ti
ti−1

Ne(t)
, (7)

and λr denotes the rate of observing a plasmid transfer event on any co-existing lineage and can be expressed303

as:304

λr = ρ
∑
l∈Li

L(l) ∗

{
0, if ni = 1

ni, otherwise
(8)

with ni being the number of plasmids on Li.305

MCMC Algorithm for Plasmid Transfer Networks306

In order to infer the network topology, timings of individual events as well as embedding of chromosome307

and plasmid trees within the plasmid transfer network, we employ Markov chain Monte Carlo sampling of308

the networks and embedding of trees. This MCMC sampling employs operators that operate on the network309

topology, embedding of trees within those network or the timings of individual events, such as coalescent or310

plasmid transfer events. The operators we use are similar to the ones used in (Müller et al., 2020) and in (Müller311

et al., 2022), but condition on only one plasmid jumping between bacterial lineages at a time. We here summarize312

each MCMC operator briefly:313
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Add/remove operator. The add/remove operator adds and removes plasmid transfer events. The add314

remove operator on networks is an extension of the subtree prune and regraft move for networks (Bordewich315

et al., 2017). Similar to Müller et al. (2022), we also added an adapted version to sample re-attachment under316

a coalescent distribution to increase acceptance probabilities.317

Exchange operator. The exchange operator changes the attachment of edges in the network while keeping318

the network length constant.319

Subnetwork slide operator. The subnetwork slide operator changes the height of nodes in the network320

while allowing to change the topology.321

Scale operator. The scale operator scales the heights of the root node or the whole network without322

changing the network topology.323

Gibbs operator. The Gibbs operator efficiently samples any part of the network that is older than the324

root of any segment of the alignment and is thus not informed by any genetic data and is the analogue to the325

Gibbs operator in (Müller et al., 2020) for reassortment networks.326

Empty edge preoperator. The empty edge preoperator augments the network with edges that do not327

carry any loci for the duration of a move, to allow for larger jumps in network space.328

The roots of phylogenetic networks can be much more distant that the roots of the individual plasmid trees.329

As in Müller et al. (2022), we assume the plasmid transfer rate to be reduced prior to the individual plasmid330

trees having reached their root. As shown in Müller et al. (2022), this assumption does not affect parameter331

inferences, but can speed up inference332

Validation and testing333

Phylogenetic networks sampled under the coalescent with plasmid transfer should describe the same distribution334

as those simulated under the coalescent with plasmid transfer. As such, we can compare the distributions of335

networks simulated under a set of parameters to the ones sampled using MCMC under the same set of parameters336

(in other words to sampled under the prior). If the implementation of the MCMC is correct, the two distributions337

of networks should match. As shown in figure S3, the sampled and simulated network distributions match.338

We next perform a well calibrated simulated study, where we simulated phylogenetic networks under effective339

population size and plasmid transfer rates sampled from the prior. We then infer the effective population sizes,340

plasmid transfer rates and phylogenetic networks using, as priors, the same distributions used to sampled the341

parameters for simulations. As shown in figures S4 and S5, we can retrieve the effective population sizes and342

plasmid transfer rates from simulated datasets.343

Directionality of plasmid transfer344

In order to estimate the directionality of plasmid transfers, we first classify each network lineage that carries the345

information of a chromosome in into either S. sonnei and S. flexneri, based on the chromosome. Each reticulation346

event, which corresponds to a plasmid being introduced into a new bacterial lineage, is then classified based347

on the chromosome assignment, telling us into which species a plasmid has been introduced. For example, a348

plasmid being transferred onto a network lineage with the chromosome belonging to S. sonnei is classified as349

an introduction into S. sonnei.350

We then infer that a plasmid has originated from S. sonnei or S. flexneri if the plasmid lineage has originated351

from a chromosomal lineage belonging to either species or from an unknown species entirely. To do so, we follow352

the plasmid lineage at each reticulation event backwards in time until we reach the next coalescent event of353

that plasmid lineage with another plasmid lineage. If this coalescent event has a corresponding chromosomal354

lineage, we say the plasmid originated from the species this lineage belongs to. As we do not explicitly consider355

plasmids other than S. sonnei or S. flexneri, we further assume that a plasmid has originated from an unknown356

species if this coalescent event is more than 50 years in the past.357
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Dataset358

S. sonnei (n = 789) and S. flexneri (n = 316) isolates received at the Microbiological Diagnostic Unit Public359

Health Laboratory (MDU PHL), the bacteriology reference laboratory for the state of Victoria, Australia,360

between January 2016 and December 2020 were included in this study. These isolates were accompanied by361

year and month of collection. These isolates undergo routine WGS on Illumina NextSeq platforms using DNA362

extraction and sequencing protocols previously described (Ingle et al., 2020).363

Alignments of the core genome were generated for the both the S. sonnei and S. flexneri isolates. The364

789 S. sonnei were aligned to the reference S. sonnei chromosome Ss046 (accession number NC 007384) to365

call SNPs using Snippy v.4.6.0 (https://github.com/tseemann/snippy), with filtering of phage regions identified366

using PHASTER (Arndt et al., 2016) and recombination detection undertaken with Gubbins (v2.4.1) (Croucher367

et al., 2015). SNPsites (v2.5.1) (Page et al., 2016) was used to extract the variant SNPs, resulting in a SNP368

alignment of 7,640. The same approach was used for the 316 S. flexneri isolates using the reference S. flexneri369

2a str 301 (accession number NC 004337) resulting in a SNP alignment of 41,041.370

All 789 S. sonnei were also aligned to the four plasmids of Ss046 using using Snippy v.4.4.5. These include371

the virulence plasmid, pINV, (accession number NC 007385 214,396 bases), spA (accession number NC 009345372

8,401 bases), spB (accession number NC 009346 5,153 bases) and spC (accession number NC 009347 2,101373

bases). An alignment for each plasmid was generated for isolates which had ≥70% coverage of each plasmid374

sequence. 89 SNPs in the 46 isolates where the virulence plasmid was detected and this alignment was used in375

the model. For the three small plasmids of Ss046, the full alignment (including gaps and N’s) was used instead376

of the core SNP alignment alone.377

All S. sonnei and S. flexneri isolates were aligned to the MDR S. flexneri plasmid pKSR100 strain SF7955378

(accession number LN624486, 73,047 bases). An alignment was generated for all 587 S. sonnei and S. flexneri379

isolates which had ≥70% coverage of the MDR plasmid. This MDR plasmid has been found in S. sonnei and380

S. flexneri lineages circulating in MSM populations since 2015 (Baker et al., 2015).381

Data availability382

The source code for the analyses performed, such as the R scripts to recreated figures is available here https:383

//github.com/nicfel/Plasmids-Material.384

Code availability385

The coalescent with plasmid transfer is implemented as a package to BEAST2 called CoalPT. The source code for386

this package is available here https://github.com/nicfel/CoalPT. The source code for the analyses performed,387

such as the R scripts to recreated figures is available here https://github.com/nicfel/Plasmids-Material.388

The networks are plotted using an adapted version of baltic https://github.com/evogytis/baltic/. The389

densitree plot (Bouckaert, 2010) uses and adapted version of the one implemented as part of the phangorn390

package (Schliep, 2011)391
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Figure S1: Inferred rate at which plasmids are transferred per plasmid per year. Posterior distribution
of plasmid transfer rates inferred from S. sonnei sequence data (y-axis), for the different plasmids in the analyses
(x-axis).
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Figure S2: Embedding of pINV plasmid tree in the coalescent with plasmid network. Here, we show
the embedding of the virulence plasmid tree within the maximum clade credibility coalescent with plasmid
network. The virulence plasmid is around 200kb long and is not inferred to jump between bacterial lineages.
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Figure S3: Comparison of network height, length and plasmid transfer events between sampled and
simulated networks. To validate the implementation of CoalPT, we simulated networks under the CoalPT
model, once with 5 plasmids and once with 10 plasmids. We then sampled phylogenetic networks under our
implementation of the CoalPT model in BEAST2 under the prior (i.e without any sequence information). As
shown here, the summary statistics between networks simulated and sampled (using MCMC) under CoalPT
match.
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Figure S4: Inferred effective population sizes from simulated data. To test the performance of the
coalescent with plasmid transfer, we simulated 100 networks in a well calibrated simulated study. The effective
population sizes were sampled from a Lognormal distribution with M=1.4844 and S=0.5. The plasmid transfer
rates were sampled from a Lognormal distribution with M=-1.7344 and S=0.5. We then simulated genomic
sequences for the core genome and 3 plasmids under the Jukes Cantor Model. Last, we inferred the phylogenetic
network, effective population sizes and plasmid transfer rates from these sequences using the above lognormal
distributions as priors on the Ne and plasmid transfer rates. Here, we show the inferred Ne sizes (y-axis)
compared to simulated Ne (x-axis). The point denote the median estimate and the error bars the lower 95%
highest posterior density interval.
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Figure S5: Inferred plasmid transfer rates from simulated data. Here, we show the inferred plasmid
transferred rates(y-axis) compared to the true/simulated rates on the x-axis. These estimates are from the same
analyses as the ones in fig S4. The point denote the median estimate and the error bars the lower 95% highest
posterior density interval.
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