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Abstract: Phylodynamic methods can quantify temporal and spatial transmission dynamics of14

infectious diseases from information contained in phylogenetic trees. Usually, phylodynamic meth-15

ods infer spatial or temporal transmission dynamics separately, leading to biased inferences and16

limiting their application to study disease spread. Here, we introduce a structured coalescent sky-17

line approach, MASCOT-Skyline, to quantify spatial transmission patterns of infectious diseases18

and how population sizes and migration rates change over time. We model the effective population19

size dynamics in different locations using a non-parametric function, allowing us to approximate20

a range of population size dynamics. We implemented the inference of non-parametric population21

size dynamics as part of the Bayesian phylodynamics platform BEAST2 and the software package22

MASCOT. Using a range of data sets and simulations, we show that both temporal and spatial23

dynamics should be modeled to provide accurate inferences, even when only one or the other is of24

interest. Current methods that model either spatial or temporal transmission dynamics, but not25

both simultaneously, are biased in various situations. However, accounting for both simultaneously,26

we can retrieve complex temporal dynamics across different locations from pathogen genome data27

while providing accurate estimates of the transmission rates between those locations.28

Introduction29

Infectious diseases are a major burden on public health systems around the world (Vos et al., 2020).30

Different data sources and methods exist to understand how these diseases spread quantitatively.31

Mainly, this relies on case data, that is, counts of when and where cases of a particular disease oc-32

curred. However, given case counts suffer from various limitations, including under-ascertainment,33

delays in reporting, and changes in the rate of under-ascertainment over time and between loca-34

tions (Gibbons et al., 2014), there is continued interest in alternative data sources.35

One such data source, genomic data, is increasingly being collected for infectious disease surveil-36

lance (Gardy and Loman, 2018), though substantial differences in genomic surveillance exist across37

the globe (Brito et al., 2022). Genomic data can be obtained by sequencing a subset of laboratory-38

confirmed cases. Pathogen genomes can give us a window into how diseases spread. While pathogens39

are transmitted between individuals, random mutations to their genomes accrue over time. These40

random changes to their genomes can then be used to reconstruct the relatedness of viruses se-41

quenced from individuals. The evolutionary relationship, or the phylogenetic tree, of the pathogens42
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approximates the transmission history linking these individuals. From this phylogenetic tree, one43

can infer the transmission dynamics of infectious diseases using phylodynamic methods even if only44

a subset of individuals in the transmission history is sequenced (Grenfell et al., 2004). Phylodynamic45

methods utilize the branching patterns of timed phylogenetic trees to learn about the underlying46

population dynamics that created them (Holmes and Grenfell, 2009; Volz et al., 2013). This in-47

formation can be inferred using forwards-in-time birth-death (Kendall, 1948) or backwards-in-time48

coalescent models (Kingman, 1982). Birth-death models describe how lineages multiply (birth),49

go extinct (death), and are sampled. The birth and death rates and their changes over time can50

be used to describe the transmission rates, becoming uninfectious rates, or effective reproduction51

numbers (Stadler et al., 2013). Coalescent models, however, describe how lineages coalesce in the52

past, meaning when they share a common ancestor. The rates at which two random lineages and53

a population share a common ancestor are lower if the population is larger and vice versa. The54

coalescent is typically parameterized by the effective population size (Ne), which is proportional to55

the number of infected individuals in a population and inversely proportional to the transmission56

rate in that population (Volz et al., 2009; Volz, 2012). In contrast to case-based inference methods57

and birth-death methods, coalescent approaches infer population size dynamics from the related-58

ness of cases instead of the dynamics in the number of samples. Nonetheless, they can still suffer59

somewhat from biases under specific sampling assumption (Karcher et al., 2016).60

By modeling changes in the effective population size over time Ne(t), coalescent approaches61

can be used to model changes in pathogen prevalence or generation time over time. One can use62

deterministic parametric approaches to model changes in the population sizes over time (Volz63

et al., 2009) or simulate population trajectories from stochastic compartmental models (Popinga64

et al., 2015). Alternatively, non-parametric approaches, typically called skyline models, can be65

used (Strimmer and Pybus, 2001). These methods allow the effective population sizes to vary66

over time in a piecewise, constant fashion. Different skyline approaches vary in how changes in67

effective population sizes are parameterized. Some a priori assume the number of change points to68

be fixed allows the effective population size to change at coalescent events (Drummond et al., 2005;69

Minin et al., 2008; Bouckaert, 2022). Others, typically called skygrid methods, allow the effective70

population sizes to vary at pre-determined points in time (Gill et al., 2013) or split the height of the71

tree into equally sized epochs (Bouckaert, 2022). Coalescent models have been previously deployed72

to, for example, study the change in the prevalence of hepatitis C (Pybus et al., 2003), seasonal73

influenza (Rambaut et al., 2008) and tuberculosis (Merker et al., 2015).74

A further advantage of inferring transmission dynamics from genomic data is that we can learn75

about how cases between locations are connected. We can use this information to infer spatial76

transmission dynamics, which are not readily accessible from occurrence data alone. A small set77

of examples for this work includes studies on the early spread of HIV (Faria et al., 2014; Worobey78

et al., 2016), the global circulation of seasonal influenza (Bedford et al., 2015), and the cross-79

species transmission of MERS coronaviruses (Dudas et al., 2018) or yellow fever (Faria et al.,80

2018). Related approaches can be used in “who infected who” approaches that seek to determine81

transmission directionality between individuals (see, for example, De Maio et al. (2016)), showing82

the broad range of applications of methods that model population structure.83

Different methods exist to do so, including discrete trait analyses (DTA) (Lemey et al., 2009),84

structured birth-death (Maddison et al., 2007; Stadler and Bonhoeffer, 2013; Kühnert et al., 2016),85

or structured coalescent methods (Takahata, 1988; Hudson et al., 1990; Notohara, 1990). Discrete86

trait analyses (DTA) are conceptually different from structured birth-death and coalescent mod-87

els. DTA only models the movement of viral lineages without explicitly modeling anything about88

branching processes. They are, therefore, also referred to as neutral trait models, meaning that89

they model the evolution of a trait, such as geographic location, on top of an existing phylogenetic90
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tree. DTA has arguably been the most popular method of the here described methods, partly due91

to its ease of use and computational speed. However, biased sampled in DTA models can often lead92

to biased model results (De Maio et al., 2015). Structured birth-death models describe the birth,93

death, sampling, and movement of lineages between discrete sub-populations or demes forward in94

time.95

Structured coalescent models model how lineages share a common ancestor within and move96

between sub-populations, from present to past, backward in time. The structured coalescent is97

parameterized by effective population size (Ne) and migration rates, which can be related to epi-98

demiologically more meaningful parameters, such as the prevalence and transmission rates (Volz,99

2012). Structured coalescent methods largely assume that the rates of coalescence and migration100

are constant over time, though deterministic approaches to model parametric dynamics from com-101

partmental models exist (Volz and Siveroni, 2018) While structured coalescent approaches are102

historically not used as frequently as discrete trait analyses, there are some distinct advantages to103

these types of methods, including potentially being less subject to sampling biases (De Maio et al.,104

2015), while still being able to analyze larger datasets (Müller et al., 2018). One of the limiting105

factors of structured coalescent methods is their assumption of populations to be constant over106

time. This assumption is, however, rarely appropriate and can lead to the biased reconstruction of107

the within-deme and the between-deme dynamics (Layan et al., 2023).108

Here, we introduce a phylodynamic framework to infer non-parametric effective population size109

(Ne) dynamics under the marginal approximation of the structured coalescent MASCOT (Müller110

et al., 2018). The effective population sizes are estimated at predefined points in time, between which111

we assume exponential growth dynamics (Volz and Didelot, 2018). As such, we allow the Ne’s to112

continuously change over time instead of assuming piecewise constant dynamics, as is typically used113

in skyline approaches (for example Gill et al. (2013)). We use a Gaussian Markov Random Field114

(GMRF), as in Gill et al. (2013) for unstructured populations, to model the temporal correlation115

between Ne’s. We then estimate Ne trajectories for each sub-population in the model using Markov116

chain Monte Carlo (MCMC) by using MCMC operations that learn the correlation structure be-117

tween the different parameters Baele et al. (2017). We first show, using simulations, that we can118

retrieve non-parametric population dynamics and migration rates of different sub-populations from119

phylogenetic trees. We then show how accounting for population structure improves the inference120

of population dynamics and vice versa. Lastly, we compare the ancestral state reconstruction and121

inference results of migration rates between MASCOT-Skyline and DTA (Lemey et al., 2009) us-122

ing a dataset of SARS-CoV-2 sequences and Susceptible-Infected-Recovered (SIR) simulations. We123

implemented MASCOT-Skyline as part of the BEAST2 package MASCOT (Müller et al., 2018), a124

package for the Bayesian phylogenetics software platform BEAST2 (Bouckaert et al., 2019).125

Results126

Nonparametric population dynamics and migration patterns can be recovered127

from phylogenetic trees128

We first performed a well-calibrated simulation study using a two-state structured coalescent model129

in MASTER (Vaughan and Drummond, 2013), to validate the ability of MASCOT-Skyline to re-130

trieve non-parametric population size dynamics. We simulated effective population size trajectories131

from a Gaussian Markov random field (GMRF). We sampled the natural logarithm of the effective132

population size at time t = 0 in state a ln(Nea(t = 0)) from a normal distribution N (0, 1). For133

each Ne at time n > 0, we sampled the Ne from ln(Ne(t = n)) ∼ N (ln(Ne(t = n − 1)), 0.5).134

Between adjacent Ne’s, we assume exponential growth. We repeated this to get the Ne trajectories135
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Figure 1: Inferred effective population size trajectories from simulated data. Here, we
show the inferred effective population size dynamics with the line denoting the median inferred log
Ne’s. The shaded areas denote the bounds of the 95% highest posterior density interval. The plots
show the results for four of the 100 replicates chosen randomly.

of both states. We then sample the forward-in-time migration rates between the two states from an136

exponential distribution with a mean of 1. We compute the backward-in-time migration rates over137

time from the forward migration rates and the Ne trajectories using equation 1. Next, we simulate138

one phylogenetic tree using 800 leaves, 400 from each location, and infer the Ne trajectories and139

migration rates using MASCOT-Skyline from that tree. We use an exponential distribution with a140

mean of 1 for the migration prior and the above specification of the GMRF for the Ne prior. We141

repeated this process 100 times.142

In Figure 1, we show, for four of the total 100 randomly chosen replicates, that MASCOT-143

skyline can retrieve these nonparametric population dynamics from phylogenetic trees. Using these144

simulations, we obtain a 94% coverage of the 95% highest posterior density interval (HPD) of the145

true Ne value (see Figure S1A). The forward-in-time migration rates are also recovered well by146

MASCOT-Skyline (see Figure S1B), though, at 89%, the coverage is below the expected range147

(91% to 99%) of coverage estimates for 100 replicates. This is not unexpected as MASCOT is an148

approximation of the structured coalescent (Müller et al., 2017).149
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Figure 2: Inferred transmission dynamics of ZIKV when having skyline or constant Ne
dynamics. A Inferred node states when inferring non-parametric skyline Ne’s in different demes.
The tree is the maximum clade credibility (MCC) tree, and the nodes are colored by the node with
the highest posterior probability in the MCC tree. B Inferred node states when each location has
a constant Ne over time. C & E Inferred Ne trajectories for MASCOT-Skyline. The inner interval
(dark) denotes the 50% highest posterior density (HPD) interval, and the outer interval (light) the
limits of the 95% HPD interval. Inferred number of migration events between the different location
using MASCOT-Skyline D and MASCOT-Constat F.

Assumptions about the population dynamics drive ancestral state reconstruction150

in structured coalescent models151

Spatial and temporal population dynamics impact the shape of phylogenetic trees. As such, we152

can expect methods that infer one dynamic aspect while ignoring the other may be biased. To153

illustrate the nature of the bias, we first use a simple example. We simulated a phylogenetic tree154

using the exponential coalescent without any population structure. Subsequently, we inferred the155

effective population sizes, migration rates, and internal node states twice, first assuming constant156

effective population sizes over time, and then allowing them to grow exponentially. In both cases,157

we permit for an additional unsampled deme. When not accounting for population dynamics,158

internal nodes deeper in the tree are inferred to be in another location than the samples (see159

Figure S2A). The effective population size of that second location is inferred to be much smaller than160

the first location (see figure S2B). The smaller effective population size roughly corresponds to the161
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effective population size early during the exponential growth (figures S2E). The backward-in-time162

migration rates are inferred to be much higher from the sampled into the unsampled location than163

vice versa (figure S2C). Without correctly accounting for population dynamics, the unstructured164

exponentially growing population is explained by a small population with strong migration into165

a larger population. Based on this illustration, we would expect to overestimate the number of166

introductions from a deme with few into a deme with many samples. When a deme has only a few167

samples, the effective population size of that deme essentially becomes unconstrained by any data,168

which the model will use to approximate past population dynamics.169

We illustrate this issue using Zika virus (ZIKV) dnd show how accounting for population dy-170

namics can recover more plausible ancestral state reconstructions. We use a previously analyzed171

dataset of ZIKV sequences sampled from Polynesia, Brazil, the Caribbean, and various locations172

in South America (Faria et al., 2017). This study used DTA to infer that ZIKV was most likely173

introduced once into the northeast of Brazil, followed by subsequent spread in Brazil and else-174

where in the Americas (Faria et al., 2017; Grubaugh et al., 2017; Black et al., 2019). We perform175

two different inferences: first, we assume the effective population sizes to be constant over time,176

and second, we allow them to vary over time. We jointly infer the phylogenetic tree, evolutionary177

rate, and population parameters under the structured coalescent assuming constant forward-in-time178

migration rates.179

As shown in figure 2A and B, the ancestral state reconstructions vary greatly when accounting180

for population dynamics (Skyline) and when not (Constant). In the skyline scenario, we infer one181

introduction from Polynesia to the northeast of Brazil and from there to the other parts of Brazil182

and the Americas. In the constant scenario, on the other hand, we infer multiple introductions of183

ZIKV from Polynesia to the Caribbean and subsequently to different regions in Brazil (see figure 2B184

and F).185

Population structure biases population dynamic inference.186

As previously shown (Heller et al., 2013), population structure can impact the inference of popula-187

tion dynamics in coalescent skyline approaches. In particular, reductions in the effective population188

sizes towards the present can signal sub-population structure that is not accounted for (Heller et al.,189

2013).190

To investigate these biases, we compare how the inference of population dynamics is impacted191

when outside introduction into that population is not accounted for. To do so, we compiled a192

dataset with influenza A/H3N2 sequences sampled only from New Zealand and Australia, which193

we denote below as Oceania, sampled between 2000 and 2005. Oceania is thought to mainly act as194

a sink population for influenza A/H3N2, where there are introductions of viruses into the country195

that spark annual influenza epidemics, but viruses circulating in Oceania rarely seed epidemics196

elsewhere in the world (Bedford et al., 2010; Bahl et al., 2011).197

Using this example dataset, we inferred the population dynamics in Oceania twice. First, we198

assumed no introduction of viruses into Oceania, as well as no export of viruses out of Oceania. We199

then inferred the effective population size of influenza A/H3N2 into Oceania over time. Next, we200

allowed for an outside deme to represent influenza transmission anywhere outside of Oceania. This201

outside deme, sometimes referred to as a ghost deme (Beerli, 2004; Slatkin, 2005), does not have202

any sampled sequences in the dataset. We estimated the effective population sizes of that outside203

deme over time alongside the migration rates between Oceania and the outside deme.204

As shown in Figure 3, the effective population size estimates are substantially different if we205

allow for an outside (ghost) deme compared to when we do not allow for that deme. If we allow206

a ghost deme, the inferred seasonality is much more pronounced. On the other hand, if we do207
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Figure 3: Misinterpretation of population structure as population dynamics for H3N2
in Oceania. A Inferred phylogenetic tree of 200 influenza A/H3N2 sequences sampled in New
Zealand and Australia (Oceania). B Inferred effective population sizes in Oceania when allowing
for an unsampled outside (ghost) deme and when assuming no population structure. C Inferred
effective population sizes in Oceania when not allowing for an unsampled outside (ghost) deme
compared to the inferred effective population size of the ghost deme when allowing for population
structure.

not allow for a ghost deme, we see that the inferred effective population size dynamics of Oceania208

closely resemble the dynamics of the ghost deme.209

We next tested using the same simulations as in Figure 1, what effective population size dynam-210

ics a skyline method recovers that does not model population structure. As we show in Figure S4,211

ignoring population structure in these simulations means that the inferred effective population size212

trajectories closely resemble the larger population.213

Sampling bias impacts ancestral state reconstructions.214

The coalescent patterns in phylogenetic trees indicate where lineages are over time. For example,215

rapid coalescence indicates smaller populations. If lineages rapidly coalesce, they are more likely to216

be in a smaller population.217

Here, we investigate the power and pitfalls of this by reconstructing the transmission of MERS-218

CoV between camels and humans using the dataset from Dudas et al. (2018). MERS predominantly219

circulates in camels with occasional spillovers followed by limited transmission in humans. The220

dataset described in Dudas et al. (2018) contains 274 sequences sampled from humans and camels.221

We subsampled this dataset ranging from 100% of human samples and 10% of the camel samples222

to 100% of both and then to 10% of the human samples and 100% of the camel samples. We then223

performed ancestral sequence reconstruction using MASCOT-Skyline and DTA.224

As shown in Figure 4, when there are few camel samples, DTA infers MERS to circulate in225

humans with occasional spillovers into camels. With all 274 sequences in the data, DTA still infers226
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Figure 4: Repeated spillover of MERS-CoV from camels to humans. A Maximum clade
credibility (MCC) trees inferred using MASCOT-Skyline for different amounts of samples from
camels and humans, from left to right). Each branch is colored by the most likely location of the
child node of that branch. B Inferred effective population size trajectories using MASCOT-Skyline
for different amounts of samples from camels and humans. C Maximum clade credibility (MCC)
trees inferred using DTA.

the predominant circulation in humans. Only when most human samples are removed DTA start227

to infer the predominant circulation in camels.228

Conversely, MASCOT-Skyline infers predominant circulation in camels, even if most camel229

sequences are removed. The reason for that is that the human samples indicate rapid coalescence230

and, therefore, a small Ne. For branches that do not conform with a small Ne, it infers them to be231

in the larger outside (here camel) population. When we remove more and more human sequences,232

the picture changes. The more recent camel sequences are strongly clustered geographically, also233

indicating a small Ne. Now that there are fewer human sequences, the human Ne effectively takes the234

role of a “ghost” deme, and MASCOT-Skyline infers rapid coalescence (that is, the local outbreak235

clusters) after introductions from elsewhere. Since the only possible location for elsewhere is the236

human compartment, MASCOT-Skyline infers that local outbreak clusters have been introduced237

from outside. Interestingly, this means that the biases are inverted between the MASCOT-Skyline238

and DTA, with MASCOT-Skyline being more likely to infer a human source with fewer human239

samples.240

We next remove local outbreak clusters by first identifying groups of sequences sampled from241

the same location in the same month. We then only use one of the sequences from that group to242

represent the outbreak. When we remove local outbreak clusters in the camel compartment, we243
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infer camels to be the source location much more consistently across different sample numbers (see244

figure S5). We infer circulation in humans only when using almost exclusively camel sequences.245

Modeling population size dynamics is necessary to reconstruct migration rates246

When we analyze spatial transmission patterns, we typically seek to infer the movement of vi-247

ral lineages and/or the rates governing that movement. Reconstructing the movement of viral248

lineages—performing ancestral state reconstruction—can reveal how many introductions occurred249

in a location and the number of migration events between locations. However, the number of events250

identified directly correlates to the number of samples in a location. The more we sample from251

a location, the more introductions into that location we will identify. The migration rates are252

population-level parameters independent of the number of samples. The migration rates also tend253

to be more important to understanding the spread of pathogens than solely the number of migration254

events.255

Importantly, migration rates can be used to determine what drives spatial transmission dy-256

namics, such as using generalized linear models (GLM) (Lemey et al., 2014). In the GLM ap-257

proaches (Lemey et al., 2014; Müller et al., 2019), the contribution of predictors to the migration258

rates is inferred instead of directly inferring these rates. Yet, this still relies on the models’ ability259

to quantify migration rates accurately.260

We next show, starting from the example of SARS-CoV-2, how well ancestral states and mi-261

gration rates can be inferred using MASCOT-Skyline and discrete trait analyses (Lemey et al.,262

2009). We use sequences collected from Washington state (USA), North America, and the rest of263

the world, previously analyzed in (Müller et al., 2021). We further split sequences in Washing-264

ton state into eastern and western Washington state based on whether the county of isolation is265

east or west of the Cascade mountain range. We then performed phylogeographic analyses using266

MASCOT-Skyline and DTA.267

As shown in figure 5A and B, DTA and MASCOT-Skyline infer similar ancestral state recon-268

structions. These similar ancestral state reconstructions reflect similar migration events between269

the four discrete locations (Fig. 5D). To further quantify the similarity in the ancestral state re-270

constructions between the two methods, we infer the sampling location of 5 random tips from each271

location that have had their location masked before running phylogeographic inference. We then272

computed the posterior support of the sampled location to be in the correct location of isolation.273

As shown in Figures S6, the posterior support for the correct location of isolation is similar between274

the two methods. However, DTA has a higher posterior support for the actual sampled location275

than MASCOT-Skyline.276

While the two methods reconstruct similar ancestral states, they infer vastly different migration277

rates (Figure 5C). In particular, DTA infers migration rates highly correlated to the number of278

migration events between two locations (Figure 5E). The migration rates inferred by MASCOT-279

Skyline instead have little to no correlation with the number of migration events between the two280

locations. If we have two locations, one with ten times more number of infected individuals, then281

we would expect ten times more migration events from that location, even if the migration rates282

are the same. Therefore, this means that the number of migration events is not a sufficient measure283

of the migration rates. Since DTA does not incorporate population dynamics into the estimation284

of migration rates, these differences are not unexpected.285

Unlike the sampling location, we do not know the actual migration rates for this dataset.286

However, we can use simulations to investigate when the two methods perform well. To this end,287

we perform simulations using a Susceptible-Infected-Recovered (SIR) model with two states using288

MASTER (Vaughan and Drummond, 2013). We perform SIR simulations using various sampling289
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Figure 5: Reconstruction of the geographic spread of SARS-CoV-2 between the world,
North America, and Eastern and Western Washington. A Maximum clade credibility tree
reconstructed using MASCOT-Skyline and DTA (B). The colors represent the inferred node states
with the highest posterior probability. C Inferred migration rate ratios between the four locations
using MASCOT-Skyline and DTA. Each violin plot shows the rate ratio from A to B over the rate
of B to A. D Inferred number of migration events between the four locations using MASCOT-
Skyline and DTA. Each violin plot shows the number of migration events from A to B over the
number of events from B to A. E Correlation between the inferred migration rates and the number
of migration events between the four locations. The correlation coefficients are calculated using the
median number of events between the 4 locations and the median migration rates between them.

models, different migration rates, and different reproduction numbers R0 across states.290

MASCOT-Skyline is able to recover the prevalences over time for the two states (see Figure S7291

& S8). Both methods, DTA and MASCOT-Skyline, can recover ancestral states similarly well for292

low rates of migration (see Figure S9). DTA has greater posterior support for both the right and293

the wrong node states (see Figure S9). Overall, both approaches recover the true ancestral node294

states similarly well, which is consistent with our analyses of the SARS-CoV-2 dataset.295

As suggested by our SARS-CoV2 analyses, we find large differences in the migration rate esti-296

mates between the two methods (see Figure S10). MASCOT-Skyline recovers the rates accurately297

for most simulation scenarios, with somewhat worse performance when R0’s differ across the two298

states (see Figure S10). This was expected based on our assumption that the prevalence is pro-299

portional to the effective population size with the same proportionality factor across states. We300

therefore expect that explicitly accounting for differences in these proportionality factors would301

remedy these biases. DTA overall suffers from relatively low coverage of the true value in these302

simulations of between 27% and 89%. These low coverage values are partly explained by a lower303

correlation between true and estimated values but also by narrower highest posterior density in-304

tervals (see Figure S11. Both methods are able to retrieve the magnitude of migration, that is, the305
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mean migration rate accurately (see Figure S12). The estimated mean migration rates are highly306

correlated to the simulated values, though DTA has lower coverage of the true simulated values307

due to narrower HPD intervals. Lastly, we compared the ratio of migration rates from state 1 to 2308

over the migration rate from 2 to 1.309

Lastly, we investigate if correcting for the cumulative prevalence in the source and sink locations310

for DTA improves the correlation of the migration rate estimates. We find some improvement, but311

the correlation is still weaker than for MASCOT-Skyline (see Figure S10).312

Discussion313

Here, we show that population dynamics and population structure are intrinsically linked when314

inferring the spread of pathogens. This is consistent with previous work on biases in phylogeo-315

graphic (Layan et al., 2023) and phylodynamic models (Heller et al., 2013). To address this, we316

develop MASCOT-Skyline, an approach to infer non-parametric population dynamics alongside317

population structure.318

Using the example of ZIKV spread in South America, we show that assuming the wrong popu-319

lation dynamic model dramatically impacts the reconstruction of how the spread of ZIKV unfolded,320

with MASCOT-Skyline providing a reconstruction that is much more consistent with other esti-321

mates (Faria et al., 2017).322

The bias introduced by assuming constant effective population sizes over time is relatively323

hard to predict a priori. Anecdotally, locations with very few samples can act similarly to a ghost324

deme (Beerli, 2004; Slatkin, 2005). In that case, the Ne of locations with only a few samples is325

potentially used by the model to approximate the population dynamics of the other state. While326

we did not explicitly investigate performance differences between MASCOT-Skyline and constant,327

the computational demands for MASCOT-Skyline do not seem to be substantially higher than for328

the constant approach. This is particularly true when the Ne is only estimated at, for example,329

ten or fewer time points. Population dynamics are present to some degree in most datasets, which330

should make approaches that account for them better suited to analyze these datasets in all but a331

few cases. As such, we recommend defaulting to MASCOT-Skyline over constant.332

Using the example of MERS-CoV, we illustrate this bias by changing the number of samples333

from humans and camels. MERS-CoV circulates in camels and repeatedly spills over into humans,334

causing limited outbreaks. If the sink population is extremely undersampled, the effective population335

size of the sink population will be used to approximate the population dynamics of the source336

population. Interestingly, this leads to the opposite sampling bias than in the case of discrete trait337

analyses (DTA) (Lemey et al., 2009). DTA tends to assign the source location to the overrepresented338

deme. The fewer human samples there are, the more likely camels are inferred to be the source339

location. This is caused by the sampled numbers being treated as informative by DTA. While the340

explanation for the pattern inferred by DTA is relatively straightforward, the explanation for the341

pattern inferred by MASCOT-Skyline is more complex. We suspect that with more camel samples342

and only a few human samples, MASCOT-Skyline infers a Ne trajectory for the camel state that343

is consistent with the local outbreak clusters. This opens interesting questions about what level of344

structure is important to consider in such analyses and how to choose samples that reflect that345

level of population structure. In the case of MERS-CoV, if one is interested in the structure at the346

level of the host species, sampling (or subsampling) has to be performed to represent this structure.347

As such, doing so requires information about the sampling process and the potential exclusion of348

some of the sequences collected, for example, from outbreak clusters.349

Ancestral state reconstruction provides a picture of the path of individual lineages. Addition-350
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ally, ancestral state reconstructions can act as a sanity check on whether the inference results351

are consistent with prior knowledge, such as which species is the host species. Using the example352

of SARS-CoV-2, we show that similar ancestral state reconstructions can lead to vastly different353

migration rate estimates between DTA and MASCOT-Skyline. While we do not know the true354

migration rates in this case, the rate estimates of MASCOT-Skyline are more consistent with what355

is expected from the population sizes of the different locations in the dataset.356

Based on our simulation study and the SARS-CoV-2 example, the migration rate estimates by357

DTA should likely not be interpreted as population-level parameters in most cases. That is, they358

do not reflect the rate at which an individual in location A move to location B, unless the sampling359

rates are constant over time and the same across locations A and B. Instead, they should likely be360

interpreted as a parameter that mainly reflects the observed number of migration events between361

locations A and B in the dataset. Therefore, subsampling strategies for DTA analyses should likely362

be based on the number of infected over time and across locations. If that is not possible, the363

migration rate estimates may not be directly interpretable as epidemiological parameters. This also364

poses interesting questions for methods that seek to reconstruct the drivers of migration patterns,365

for example, using generalized linear models (Lemey et al., 2014; Müller et al., 2019). The results366

of such analyses could also be subject to similar limitations.367

Sampling biases are a persistent challenge to phylogeographic reconstructions. This research368

shows that it is crucial to consider the sampling process in phylogeographic reconstructions for369

relatively simple (DTA) and more complex models (structured coalescent). Further, we show that370

migration dynamics must be considered in a population dynamic context.371

Methods and Materials372

MASCOT373

MASCOT, the marginal approximation of the structured coalescent, tracks the probability of lin-374

eages being in any of the modeled states backward in time by solving ordinary differential equations375

described in Müller et al. (2017) and Müller et al. (2018). MASCOT is parameterized by effective376

population sizes and migration rates. The effective population size of state a is given by Nea, and377

the backward migration rate from state a to state b is given by mab. MASCOT assumes that the378

effective population sizes and migration rates are constant during each integration step. By solving379

the ordinary differential equations (ODE), MASCOT computes the probability of the tree given380

the parameters P(T—N⃗e, m⃗). To model time-varying parameters, we feed the continuously varying381

values for ⃗Ne(t) and m⃗(t) into the ODE calculations as piecewise constant values ⃗Ne(t) and m⃗(t)382

at different time points t that approximate the underlying continuous dynamics. The piecewise con-383

stant approximation uses a user-defined number of intervals, with more intervals leading to a better384

approximation of the continuous dynamics of the parameters but also higher computational costs.385

We further explain this in Figure S14. The probability P(T— ⃗Ne(t), m⃗(t)) can then be computed386

by integrating over all possible states at the root of the tree Müller et al. (2018). Additionally, one387

can compute the probability of each node in the tree being in any state to perform ancestral state388

reconstruction (Müller et al., 2018) or explicitly reconstruct the migration histories using stochastic389

mapping (Stolz et al., 2022).390

MASCOT-Skyline391

To model nonparametric population dynamics alongside population structure, we first define a grid392

of time points to model nonparametric population dynamics. We define the grid in absolute time393
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or relative to a tree’s height, which is the default option. We then infer each grid point’s effective394

population size Nea(t). Between those points, we assume that the effective population sizes change395

continuously according to an exponential growth model. Effectively, we use linear interpolation396

between any two adjacent Ne’s in log space. Alternative approaches, such as spline interpolation,397

would also be possible to implement. For the computation of P(T— ⃗Ne(t), m⃗(t)), we approximate398

the continuous parameter dynamics using piecewise constant approximation as described above and399

then use the piecewise constant values for the integration of the MASCOT ODE’s. Typically, the400

number of intervals used for the piecewise constant approximation should be substantially higher401

than the number of the Ne’s estimated for this to be a reasonable approximation.402

By default, we assume the forward-in-time migration rates to be constant over time. As the403

backward-in-time migration rates that go into the computation of P(T—θ), we say that the404

backward-in-time migration rate mb
ab from a to b is:405

mb
ab(t) = mf

ba

Neb(t)

Nea(t)
(1)

Using the derivation of the coalescent rates or effective population sizes in (Volz, 2012), the error406

ϵ of this assumption is:407

mf
ba

Neb(t)

Nea(t)
= ϵmf

ba

Ib(t)

βb
Sb
Nb

Ia(t)

βa
Sa
Na

And, therefore

ϵ =
βa

Sa
Na

βb
Sb
Nb

meaning the error we introduce equals the effective transmission rate in the sink divided by the rate408

over the sink. With the reduction of the pool of susceptible individuals Sa in the population Na, the409

difference induced by differences in the transmission rates β will likely become smaller. Therefore,410

the error of the assumption that the ratio of Ne’s between source and sink is equal to the ratio411

between the number of infected individuals is reduced over time. However, in cases where there is412

a difference in, for example, the generation time (or the becoming uninfectious rate), the error will413

persist. For example, this could be the case when studying the transmission across different host414

species.415

In addition to the skyline model, we implemented exponential and logistic growth models. The416

different dynamic models for the effective population size can mixed. For example, state a can be417

a skyline model, while state b can grow exponentially or be constant. The above equation assumes418

that the ratio of Ne’s between source and sink locations is equal to the ratio in the number of419

infected individuals.420

Joint inference of effective population sizes and migration rates421

To infer the effective population sizes, the different demes, and the migration rates, we use the422

adaptable variance multivariate normal operator Baele et al. (2017). The adaptable variance multi-423

variate normal operator proposes new parameter states during the MCMC and learns the correlation424

structure between the different parameters. The effective population sizes are denoted in log space,425

while the migration rates are logged in real space, that is, not in log space. The prior on the effective426

population sizes, sometimes referred to as a smoothing prior, is similar to the skyline method (Gill427
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et al., 2013). The implementation of the smoothing prior works is as follows. One can choose an428

arbitrary prior on the difference between two adjacent Ne’s in log space. Further, one can choose a429

prior distribution on the most recent/present Ne. If the prior on the difference between two adjacent430

Ne’s is a normal distribution with mean 0 and standard deviation σ, then the smoothing prior is431

a Gaussian Markov random field (GMFR). The σ parameter itself can be fixed or estimated from432

the data, which corresponds to the precision of the skyline method (Gill et al., 2013). By default,433

selecting the σ to be estimated for each state will mean a different value for σ will be estimated434

individually for each state. To change between source and sink locations throughout the MCMC, we435

use an operator that swaps the effective population sizes for the same time points between locations436

a and b. All other operators used for the MCMC are the default operators in BEAST2 (Bouckaert437

et al., 2019).438

Implementation439

We implemented MASCOT-Skyline as part of the BEAST2 package MASCOT. MASCOT-Skyline440

requires at least the BEAST2 version 2.7 to execute. The code is available at https://github.com/441

nicfel/Mascot and through the BEAST2 package manager. MASCOT-Skyline is implemented442

in Java. MASCOT-Skyline is available starting from MASCOT version v3.0.5. Analyses can be443

set up using the BEAUti interface of BEAST2 by choosing MASCOT-Skyline as a tree prior.444

The effective population size dynamics are chosen separately for each location, deme, or state.445

Therefore, constant, exponential, or skyline effective population size dynamics can all be used in446

the same analyses, albeit for different states. For setting the specifications of the Gaussian Markov447

Random Field (GMRF) prior on the skyline dynamics, one has to specify the prior on the difference448

between adjacent Ne’s (that is, between the Ne at time t and at time t+1) to a normal distribution449

with mean 0 and standard deviation s. The standard deviation can then be specified or estimated.450

The standard deviation is estimated, by default, individually for each state. Throughout this paper,451

we assume that each state’s standard deviation is the same. Implementing MASCOT-Skyline as an452

open-source packaged to BEAST2 allows users to use the variety of evolutionary models and data453

sources implemented in BEAST2 or packages to BEAST2, including relaxed clock models or amino454

acids alignments.455

We additionally provide a simple tutorial to help users start with MASCOT-Skyline here https:456

//github.com/nicfel/MascotSkyline-Tutorial.457

SIR simulation study458

We use a two-state model to aid the interpretability of the results. We simulate outbreaks in two459

states, each with an R0 of 1.5, a recovery rate of 52, and a random total population size sampled from460

a uniform distribution between 500 and 10000. The migration rates are sampled from an exponential461

distribution with a mean of 5 (low migration rate scenario) or 25 (high migration rate scenario). We462

simulate phylogenetic trees using the SIR model in MASTER (Vaughan and Drummond, 2013).463

We then use either 250 or 500 samples per state for inference from the phylogenetic trees. Or use a464

constant sampling rate, conditioning on at least 50 samples per state. On average, the simulations465

had 389 (low migration) and 431 (high migration) tips. In the constant sampling scenario, we466

simulated trees with 4000 tips per state. We then subsampled the tips to have 250 samples per467

state, sampled evenly across time. Importantly, the samples per state will potentially impose implicit468

constraints on the possible values for other simulation parameters, such as a state’s population size.469

We performed discrete trait analyses (DTA) using the BEAST v1.10.4 (Suchard et al., 2018;470

Drummond and Rambaut, 2007). For all analyses, we use a coalescent skygrid tree prior (Gill et al.,471
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2013). We estimate the mean migration rate and the relative migration rates between locations. We472

use an exponential prior on the mean migration rate. We use either 5 (low migration rate scenario)473

or 25 (high migration rate scenario) for the mean of the exponential prior. We use an exponential474

prior with a mean of 1 for the relative migration rates. This parameterization of the migration rates475

is necessitated by the parameterization of DTA likelihood calculation, which normalizes relative476

migration rates.477

Next, we infer the migration rates and the effective population size dynamics using MASCOT-478

Skyline. We use a Gaussian Markov Random Field (GMRF) smoothing prior to the Ne’s over time479

and estimate the variance. We estimate the Ne at 26 points in time. For the migration rates, we use480

an exponential distribution with the mean equal to the mean migration rates in the simulations,481

i.e., 5 or 25.482

Software483

All other plots are done in R using ggplot2 (Wickham, 2016), ggtree (Yu et al., 2017), and484

ggpubr (Kassambara, 2018). Convergence is assessed using conda (Plummer et al., 2006). The485

scripts to set up analyses and plot the results in this manuscript are available from https:486

//github.com/nicfel/MascotSkyline-Material.487
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J., et al. (2014). The early spread and epidemic ignition of hiv-1 in human populations. science, 346(6205), 56–61.522

Faria, N. R., Quick, J., Claro, I., Theze, J., de Jesus, J. G., Giovanetti, M., Kraemer, M. U., Hill, S. C., Black, A., da Costa, A. C.,523
et al. (2017). Establishment and cryptic transmission of zika virus in brazil and the americas. Nature, 546(7658), 406–410.524
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Figure S1: Inferred vs. true effective population sizes and forward in time migration
rates for non-parametric Ne dynamics. A Inferred vs. true effective population size estimates.
B Inferred vs. true forward in time migration rates. The coverage (cov) of the true value by the
95% highest posterior density interval is shown on the top.
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Figure S2: Miss-interpretation of population dynamics as population structure. A In-
ferred node states when assuming a two-state structured coalescent model with two constant pop-
ulations. B Inferred effective population sizes of the two populations. C Inferred migration rates
between the two constant populations.D Inferred node states when assuming a two-state structured
coalescent model, allowing the two states to grow exponentially. E Inferred effective population sizes
over time of the location where all samples were taken from (orange). The Ne of the blue location
is sampled under the prior and therefore not shown in the figure. F Migration rates between the
location where samples were taken and a second (blue) location.
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Figure S3: Parameter inference for three states with exponential growth. A Inferred vs.
true effective log population size at the present. B Inferred vs. true growth rates. C Inferred vs.
true forward in time migration rates. The coverage (cov) denotes how often the true, simulated
value was part of the 95% highest posterior density intervals.
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Figure S4: Inferred Ne trajectories for a two-state structured coalescent model when
population structure is ignored. Here, we infer the effective population size (Ne) trajectory for
tree simulation under a two-state structured coalescent model with time-varying population size.
We do so once modeling the two states (state 0 in orange and state 1 in blue) and once ignoring
any population structure (combined in green).
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Figure S5: Repeated spillover of MERS-CoV from camels to humans when removing lo-
cal outbreak clusters. Here, we show the inferences of the transmission dynamics of MERS-CoV
between humans and camels when we remove local outbreak clusters in the camel compartment
defined as sequences sampled from the same location in the same month. A Maximum clade cred-
ibility (MCC) trees inferred using MASCOT-Skyline for different amounts of samples from camels
and humans, from left to right). Each branch is colored by the most likely location of the child
node of that branch. B Inferred effective population size trajectories using MASCOT-Skyline for
different amounts of samples from camels and humans. C Maximum clade credibility (MCC) trees
inferred using DTA.
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Figure S6: Posterior support for true tip state between MASCOT-Skyline and DTA. We
compare the posterior support for the true sampling location inferred using MASCOT-Skyline and
DTA for the four locations in our SARS-CoV-2 dataset. For the inference, the sampling location of
random samples in the dataset was masked, and the location was re-inferred. The posterior support
for the true location then denotes how much posterior weight the MCMC algorithm is putting on
the inferred sampling location between the true sampling location. The dotted lines denote the
percentage of samples from each geographic location that is in the analyses, i.e., a line at 0.25
would indicate that 25% of samples in the dataset are from that location.
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Figure S7: Simulated Prevalence for the two states in the SIR model, part 1. Comparison
between simulated prevalences for the two states and the inferred log Ne’s for the two states using
MASCOT-Skyline. The trajectories are shown for the first 5 runs of the simulation scenarios denoted
on the left.
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Figure S8: Simulated Prevalence for the two states in the SIR model, part 2. Comparison
between simulated prevalences for the two states and the inferred log Ne’s for the two states using
MASCOT-Skyline. The trajectories are shown for the first 5 runs of the simulation scenarios denoted
on the left.
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Figure S9:Distribution of the posterior support for the true node states inferred by DTA
and MASCOT-Skyline. Here, we show the distribution of posterior support for the true node
states for the different SIR simulation settings. The posterior node supports are shown DTA and
MASCOT-Skyline. Each subplot uses different settings for the simulations: low or high migration
rates, where the mean migration rate was 5 resp. 25. 250 or 500 samples per state, or proportional.
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Figure S10: Correlations between the simulated and inferred migration rates for
MASCOT-Skyline and DTA. Here, we show the simulated (x-axis) and estimated (y-axis) mi-
gration rates using simulations under a two-state SIR model. The dots show the median estimate,
and the error bars show the 95% highest posterior density (HPD) interval. The person correlation
coefficients (R) are calculated separately for MASCOT-Skyline and DTA. The coverage of the true
value by the 95% HPD is shown after cov. The coefficients are calculated between the simulated
values and the median estimates. Each subplot uses different settings for the simulations: low or
high migration rates, where the mean migration rate was 5 resp. 25. 250 or 500 samples per state,
or proportional and constant sampling.
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Figure S11: Relative HPD interval width for MASCOT-Skyline and DTA. Here, we show
the simulated (x-axis) and estimated (y-axis) migration rates using simulations under a two-state
SIR model. The dots show the difference between the upper and lower bound of the 95% highest
posterior density interval divided by the median estimate. The red horizontal line shows the line
for the upper and lower bound of the 95% interval of an exponential distribution used as a prior
on the migration rates.
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Figure S12: Estimation of the mean migration rate from two state SIR simulations.
Here, we show the simulated (x-axis) and estimated (y-axis) migration rates using simulations
under a two-state SIR model. The dots show the median estimate, and the error bars show the 95%
highest posterior density (HPD) interval. The Pearson correlation coefficients (R) are calculated
independently for MASCOT-Skyline and DTA, are shown in the top left corner of each plot, and
are computed between the log of the true value and the log of the median estimate. We additionally
show how often the 95% HPD interval covers the true value (cov). The coefficients are calculated
between the simulated values and the median estimates. Each subplot uses different settings for
the simulations, i.e., low or high migration rates, where the mean migration rate was 5 resp. 25.
250 or 500 samples per state, or proportional and constant sampling.
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Figure S13: Simulated and inferred migration rate ratios using two state SIR simulations
for MASCOT-Skyline and DTA. Here, we compare the simulated migration rate ratio to the
estimated ratio of migration rates between the two states in the SIR model. The migration rate
estimates are shown for DTA, MASCOT-Skyline, and DTA with case correction, where we multiply
the ratio of migration rates with the ratio of cumulative incidence over the simulations to correct
for differences in population size. The dots show the median estimate of the migration ratios, and
the error bars show the 95% highest posterior density (HPD) interval. The Pearson correlation
coefficients (R) are calculated independently for MASCOT-Skyline and DTA and DTA with case
correction. The correlation coefficients are computed between the log of the true value and the log
of the median estimate. We additionally show how often the 95% HPD interval covers the true
value (cov). Each subplot uses different settings for the simulations, that is, low or high migration
rates, where the mean migration rate was 5 resp. 25. 250 or 500 samples per state, proportional,
and constant sampling.
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Figure S14: Description of how the effective population sizes are described over time.
Each location in the dataset has its own population size trajectory. The population size trajectory
is considered between the most recent sampled individual (mrsi) and the tree’s root. Here, we
consider two more effective population sizes (Ne) between these two points in time. In this case, we
estimate four Ne’s per location, with any number of Ne’s possible. Between the four points where
we estimate the Ne, we assume that the Ne to change through exponential growth or decline. For
the log of the Ne, that means we are using linear interpolation.
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