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State-dependent evolutionary models reveal 
modes of solid tumour growth

Maya A. Lewinsohn    1,2  , Trevor Bedford1,2,3, Nicola F. Müller    2,4    
& Alison F. Feder    1,4 

Spatial properties of tumour growth have profound implications for 
cancer progression, therapeutic resistance and metastasis. Yet, how spatial 
position governs tumour cell division remains difficult to evaluate in 
clinical tumours. Here, we demonstrate that faster division on the tumour 
periphery leaves characteristic genetic patterns, which become evident 
when a phylogenetic tree is reconstructed from spatially sampled cells. 
Namely, rapidly dividing peripheral lineages branch more extensively 
and acquire more mutations than slower-dividing centre lineages. We 
develop a Bayesian state-dependent evolutionary phylodynamic model 
(SDevo) that quantifies these patterns to infer the differential division rates 
between peripheral and central cells. We demonstrate that this approach 
accurately infers spatially varying birth rates of simulated tumours across 
a range of growth conditions and sampling strategies. We then show that 
SDevo outperforms state-of-the-art, non-cancer multi-state phylodynamic 
methods that ignore differential sequence evolution. Finally, we apply 
SDevo to single-time-point, multi-region sequencing data from clinical 
hepatocellular carcinomas and find evidence of a three- to six-times-higher 
division rate on the tumour edge. With the increasing availability of 
high-resolution, multi-region sequencing, we anticipate that SDevo will be 
useful in interrogating spatial growth restrictions and could be extended to 
model non-spatial factors that influence tumour progression.

Tumours develop and progress via an evolutionary and ecological pro-
cess wherein cellular sub-populations expand and diversify. Over the 
course of tumour development, tumour cells acquire genetic mutations 
and new phenotypes that potentially help them compete for resources 
and adapt for success in their microenvironment. Understanding this 
process is critical to predicting clinically important events such as 
if, how and when cells metastasize or develop resistance to therapy.

Although tumour cell growth and success are often attributed to 
genetic and epigenetic aberrations, an additional important deter-
minant of cell growth is physical location within the tumour. Position 
governs access to oxygen, nutrients, pro-growth signalling from the 

stroma, pH, cell–cell interactions and degree of immune exposure, 
all of which can affect cellular proliferation1–7. Taken together, these 
effects may combine to create an environment in which cells on the 
boundary of a tumour have higher growth rates compared to those in 
the centre (that is, ‘boundary-driven growth’).

Cancer biologists have long been interested in boundary-driven 
growth because it changes the evolutionary processes and genetic 
signatures of tumour progression. The evolutionary impact of 
boundary-driven growth has been explored via evolutionary theory8,9, 
microbial experiments10–12, and decades of cancer computational and 
mathematical models1–4,13–18. Such investigations have revealed that 
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centre, and lineages can transition between states as the tumour grows. 
Crucially, we introduce an extension that links cell birth and mutation, 
and therefore incorporates rates of sequence evolution that depend on 
each cell lineage’s inferred history of spatial locations (that is, spatial 
states). We provide this state-dependent evolution model (SDevo) 
as a package in the popular open-source Bayesian software BEAST 2  
(ref. 62). We show that SDevo substantially improves our ability to infer 
boundary-driven growth dynamics in simulated tumours compared to 
non-cancer multi-type birth–death models, and validate this approach 
across a broad array of biological and sampling conditions, including 
those encompassing selection for driver mutations, three-dimensional 
(3D) growth and clinical sampling strategies. Finally, we apply SDevo to 
spatially resolved multi-region sequencing data from hepatocellular 
carcinomas (HCCs)40 and estimate that cells on the tumour boundary 
may have birth rates up to three to six times faster than those in the 
interior. More broadly, SDevo is a general tool for quantifying growth 
processes linked to any discrete state, and future investigations will 
expand beyond boundary-driven growth.

Results
Boundary-driven growth creates distinct tree structures
In order to characterize signatures of boundary-driven growth in 
tumour trees, we simulate spatially constrained growth via a cellular 
agent-based model in a two-dimensional (2D) lattice, following a rich 
literature of studying cancer dynamics via Eden models13,17,63,64. Simu-
lated tumours grow from single cells over discrete time steps and gain 
mutations at cell division. Under spatially constrained boundary-driven 
growth, a cell can only divide if there is an empty lattice spot in its Moore 
(eight-cell) neighbourhood, effectively tying its fitness to neighbour-
hood density (Extended Data Fig. 1). Therefore, extant lineages closer 
to the tumour periphery have progressively higher mean birth rates 
than those in the centre (Fig. 1a). For comparison, we simulated a 
non-spatially constrained unrestricted growth model (Fig. 1d), in which 
all cells can divide regardless of density and push their neighbours to 
create space.

We first investigated how such growth processes affect the shape 
and structure of cancer phylogenetic trees to identify detectable tree 
signals of boundary-driven growth. We considered two types of tree 
representation: (1) time trees (Fig. 1b,e), where the branch lengths are 
in units of simulation time; and (2) genetic trees (Fig. 1c,f), where the 
branch lengths are in units of number of mutations. We first compared 
the time tree of a tumour simulated under boundary-driven growth 
(Fig. 1b) with one simulated with no spatial restrictions (Fig. 1e). In 
the boundary-driven growth tree, we observed certain leaves (cells) 
with long terminal branches (that is, cell 1) and other leaves with much 
shorter terminal branches (that is, cell 2). These differential terminal 
branch lengths directly correspond to both mean lineage birth rate 
and spatial position within the tumour. Intuitively, lineages trapped 
in dense centre neighbourhoods (that is, cell 1; Fig. 1a,b) divide slowly 
and therefore exhibit longer times since diverging from another sam-
pled cell. Conversely, lineages at the tumour boundary (that is, cell 2) 
divide rapidly, and are therefore more likely to be recently related to 
another sampled cell. We quantified terminal branch lengths in the 
simulated tumour time trees and found that the asymmetries in birth 
rates due to spatial constraints result in an overall higher variance in 
terminal branch lengths under boundary-driven growth than under 
unrestricted growth (Fig. 1h).

In Fig. 1c,f, we reconstruct the genetic trees from the same 
boundary-driven and unrestricted tumour simulations. From this rep-
resentation of the tumour trees, we observe that if mutation is linked 
to cellular division, then asymmetries in birth rates across tumour 
space logically correspond to varying rates of sequence evolution  
(Fig. 1g). This leads to repeated ladder-like patterns of genetic diver-
gence that arise across multiple subclades of the boundary-driven 
growth tree in which fast-dividing cells on the tumour boundary 

boundary-driven growth blunts the efficacy of natural selection in 
selecting for beneficial (that is, driver) mutations and purging slower 
growing (but potentially drug-resistant) lineages19. Boundary-driven 
growth should also enhance the effectiveness of adaptive therapy20,21 
and cell–cell competition in the tumour interior. Further, such growth 
patterns should distort our expectations for the neutral variant allele 
frequency (VAF) spectrum22, which has been used as a null model for 
identifying signatures of natural selection23, and it has been qualita-
tively suggested in tumour simulation studies that boundary-driven 
growth could be misinterpreted as selection on tumour trees17. There-
fore, establishing and incorporating these null expectations and mod-
els for boundary-driven tumour growth is essential in the context of 
the increasing interest in applying evolutionary theory to clinical 
disease, for example, in designing adaptive therapy24, identifying driver 
events25,26 or estimating timings of metastases16,27.

An extensive history of clinical and experimental observations 
supports the importance of boundary-driven growth in tumour 
populations. These observations date back to the pioneering work 
of Thomlinson and Gray, which first identified necrotic structures 
with surrounding boundaries of growing cells from histological sec-
tions28, and subsequent cell staining approaches that found markers 
of cell division cluster preferentially on the tumour periphery29,30. 
Similar patterns have been noted in cultured tumour spheroids31,32 
and organoids33,34. Since then, analysis of both clinical samples—via 
immunohistochemistry35,36, spatial transcriptomics37–39 and genetic 
analysis40,41—and experimental systems, such as fluorescentlytracked 
xenografts7,42–44, have further supported spatial heterogeneity and 
preferential expansion on the tumour periphery in some tumours.

However, more recent studies have hinted at more complex modes 
of clinical tumour growth. One41 found that many colorectal tumours 
showed genetic patterns not consistent with boundary-driven growth, 
and a recent genetic analysis of renal cell carcinomas found the most 
recent common ancestors of metastatic lineages in the resected tumour 
interiors as opposed to the tumour boundaries45. Additionally, experi-
mental evidence suggests that although centre-bound cells may experi-
ence oxygen and nutrient deprivation, hypoxia-related signalling can 
be linked to stem-cell-like tumour phenotypes with increased survival 
and chemotherapy resistance46,47. These observations highlight that 
higher proliferation on the tumour edge is not necessarily synonymous 
with long-term lineage survival and progression48.

A primary challenge in reconciling these conflicting observations 
is that clinical sequencing often captures only a limited snapshot of 
tumour diversity and growth. However, this sampled tumour diversity 
still offers a window into past population dynamics via phylogenetic 
and phylodynamic tools. Phylogenetic approaches, which reconstruct 
how cells within a tumour are related, have already proved useful in 
interrogating cancer evolution—for example, in determining the rela-
tive ordering of driver mutations49–51, detecting parallel evolution of 
gene hits within a tumour52,53 and resolving whether metastases emerge 
early or late in tumour development54,55. In contrast, phylodynamic 
methods, which link shapes of phylogenetic trees to underlying popula-
tion dynamics, have only rarely been used in cancer genomics56, despite 
widespread application in other fields57,58.

Although phylodynamic approaches have high potential impact 
in cancer clinical settings, they are generally not adapted to study 
tumour biology or to incorporate the complexities of cancer’s spatial 
growth. To bridge this gap, we set out to develop a phylodynamic model 
suited for detecting boundary-driven growth in tumours. First, we 
quantify characteristic branching and genetic patterns in tumour trees 
simulated under boundary-driven growth, and demonstrate that these 
patterns correspond to cellular lineages spending different amounts of 
time on the faster-growing tumour edge versus in the tumour centre. 
To fully exploit these patterns for inference, we develop a novel phy-
lodynamic tool based on the multi-type birth–death process59–61, in 
which cells have different birth and death rates on the tumour edge and 

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 7 | April 2023 | 581–596 583

Article https://doi.org/10.1038/s41559-023-02000-4

accumulate more mutations than those in the interior (Fig. 1c). These 
patterns are not observed in the unrestricted growth tree (Fig. 1f). We 
quantified these patterns by measuring variance in mean clock rate 
(defined by total lineage mutations/simulation time) from extant 
cells in each simulation and demonstrate that clock rate is more vari-
able across trees derived from boundary-driven growth than in trees 
simulated under the unrestricted growth model (Fig. 1i).

Two-state birth–death process models boundary-driven 
growth
As tree structures differ between tumours simulated under 
boundary-driven and unrestricted spatial constraints, we sought a 
phylodynamic approach that could differentiate between these two 
growth modes. One such model is the multi-type birth–death model59–61,  
which ties differential rates of birth, death and sampling of lineages 
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Fig. 1 | Boundary-driven growth causes characteristic tree patterns 
associated with asymmetrical division. a,d, Representative simulated tumours 
(α = 0.004) showing variation in mean birth rate in 2D tumour space under 
boundary-driven growth via neighbourhood-based spatial constraints (a) and 
unrestricted growth (d). Brighter colours represent higher birth rate (total 
number of divisions in cell lineage/simulation time) throughout all panels.  
b, Time tree of the representative boundary-driven growth tumour (subsampled 
to 100 cells for visualization) shows high variation in branching rates, leading 
to long terminal branches of centre-trapped lineages. c, Genetic tree of the 
representative boundary-driven tumour (subsampled to the same 100 cells) 
shows ladder-like patterns due to mutation being tied to cell division. e,f, Time 

(e) and genetic trees (f) for the representative tumour under unrestricted growth 
(100 tips visualized) reveal less variation in branching rates and genetic distance. 
g, Cartoon schematic of the two signals of boundary-driven growth in trees left by 
asymmetric birth rates: variation in branching rates and variation in the number 
of mutations. h,i, Variance in terminal branch length (Var(TBL)); h) and clock 
rate (Var(CR)); i) in tumours under boundary-driven growth and unrestricted 
growth trees built from all extant tumour cells. Violin plots summarize statistics 
across 100 simulated tumours. Means (points) with 95% confidence intervals 
(error bars) are also indicated. Insets show distributions of TBL and CR signals for 
tumours plotted in a and b.
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to multiple discrete states. In our simulation studies, we observe that 
boundary-driven growth can be effectively simplified into two states. 
We find that the instantaneous cell birth rate under boundary-driven 
growth is elevated only in cells immediately adjacent to the tumour 
edge, but is uniformly low in all cells in the interior (Fig. 2a). We can 
further decompose the tree patterns observed in Fig. 1 into edge and 
centre-linked dynamics. As shown in the representative tumour from 
Fig. 1a, all edge-associated cells have short terminal branch lengths. 
Most of the variation in terminal branch length can be attributed to cells 
in the centre, and the mean terminal branch length of cells in the centre 
is more than five times that of cells on the tumour edge (Fig. 2b). If we 
trace the lineages of extant cells back to the root, the fraction of time 
cell lineages spend on the edge is highly correlated with the variation 
in mean clock rate observed in Fig. 1 (Fig. 2c; R2 = 0.63). In other words, 
the most mutated cells have spent the majority of their lineage history 
on the tumour edge. Under unrestricted growth (Fig. 2d), we observed 
no difference between edge and centre terminal branch lengths  
(Fig. 2e; ratio of centre-to-edge mean terminal branch lengths = 0.98), 
and lineage time spent in the edge state is not correlated to clock rate 
(Fig. 2f; R2 = 0.0016).

To investigate the robustness of these patterns, we next simu-
lated tumours under a wide range of cell turnover rates. Under 
boundary-driven growth, increasing cell turnover decreases spatial 
constraints and therefore lessens the growth advantage between edge 
and centre states (Extended Data Fig. 1 and Fig. 2g). We measured the 
ratio of mean centre-to-edge terminal branch lengths as in Fig. 2b,e 
across these different effect sizes and found that this ratio is a con-
sistent indicator of boundary-driven growth that decreases as spatial 
constraints are relaxed (Fig. 2h). The correlation between fraction 
of lineage time spent on the edge and mean clock rate is also spe-
cific to the boundary-driven growth model and sensitive to effect size  
(Fig. 2i). Therefore, we conclude that the patterns left by 
boundary-driven growth can be effectively approximated by a two-state 
birth–death model.

Phylodynamic models detect signals of spatial constraints
Two-state birth–death models incorporate how lineages divide, die, 
change states and are sampled. In this class of models, birth events cor-
respond to observed branching events on the tree, and the rate of these 
branching events depends on an underlying type or state. Although 
existing phylodynamic models, such as BDMM61,65 and BiSSE59, permit 
asymmetrical division rates based on state, they do not link birth and 
mutation. Therefore, although they are well-positioned to infer faster 
birth rates from branching structures, they cannot learn from differ-
ential rates of genetic divergence, a key hallmark of boundary-driven 
growth we observed in simulations. Additionally, branching patterns 
are prone to artificial inflation if more cells from a particular state 
are sampled in a clustered manner66. Thus, existing models both do 
not incorporate all potential signals (that is, clock rate differences) 
and, importantly, may be biased by sampling procedures in clinical 
tumour biopsies. To address these shortcomings, we introduce the 
SDevo model to directly tie state-dependent birth rates to clock rates. 
This enables the model to combine information, both from mutation 
and branching patterns that arise from boundary-driven growth  
(Fig. 3a). SDevo uses genetic sequences sampled from distinct spatial 
locations, alongside the label of the cell state (here, centre and edge). 
Using Markov chain Monte Carlo sampling, we explore the posterior 
distributions of phylogenetic trees jointly with the parameters of SDevo 
(Extended Data Fig. 2). Inferred trees are time trees, which encompass 
the order and timing of cellular divergence events and include inferred 
internal node states, representing the location of unsampled ancestral 
cells. Model parameters include state-dependent birth and death rates, 
and the rate at which cells transition between states.

We first demonstrate the utility of SDevo on simulated tumours 
undergoing boundary-driven growth. From the genetic sequences and 

labelled cell states for sampled cells isolated at a simulated tumour 
endpoint (Fig. 3b inset), SDevo reconstructs the most likely relation-
ship among sampled cells and the time at which those cells diverged  
(Fig. 3b). The birth rates for edge and centre-associated cells are 
inferred from the branching and mutational structure of sampled 
extant cells (leaves on the tree), permitting quantification of overall 
birth rate differences between the two spatial compartments (Fig. 3c). 
SDevo correctly identifies that boundary-linked cells have a higher 
birth rate than centre-linked cells (mean edge birth rate advantage = 
0.22, 95% highest posterior density (HPD) interval = 0.12–0.35, true 
value = 0.27 in the representative simulation). SDevo additionally 
reconstructs the probability of each spatial state (centre versus edge) 
for the ancestors of the sampled population (plotted as pie charts on 
the internal nodes of Fig. 3b). These reconstructions suggest that the 
majority of ancestors divided on the tumour edge, consistent with the 
findings of ref. 41 and our expectations of boundary-driven growth. We 
further quantify confidence in its ancestral reconstructions: ancestral 
cells with the highest posterior probability of existing on the tumour 
edge were indeed likely to have divided there (Fig. 3d). On the other 
hand, cells with more uncertain ancestral reconstructions are less 
likely to have been on the tumour edge at division (Fig. 3d). Finally, 
we applied SDevo to tumours simulated under a range of spatial con-
straints (Methods). We find that at a moderate sample size (n = 50), 
SDevo is able to accurately quantify birth rate differences, whereas a 
two-state birth–death model without a state-dependent clock (esti-
mated using BDMM-Prime and a strict clock model) fails (Fig. 3e and 
Extended Data Fig. 3). We further observed that SDevo remains accurate 
for as few as ten samples, whereas a strict clock model requires >100 
samples to reach close to the same accuracy (Fig. 3f).

SDevo is robust to variation in sampling and growth modes
To evaluate SDevo’s strengths and limitations in clinical tumours, we 
sought to validate that SDevo detects boundary-driven growth under 
various sampling strategies. Whereas in the initial simulation studies 
we maximized the distance between sampled cells (that is, diversi-
fied sampling), we also implemented a random sampling scheme as 
might be present in single-cell studies (Extended Data Fig. 4a). Under 
random sampling, cells sampled close together provide minimal addi-
tional genetic information but may create spurious signatures of rapid 
branching. Despite this, SDevo successfully estimates edge-driven 
birth advantages from randomly sampled cells (Extended Data  
Fig. 4b). In contrast, even with a large number of cells sampled (n = 100), 
the strict clock multi-type birth–death model often fails to detect the 
same birth rate differences (Extended Data Fig. 4b). We also assessed 
SDevo’s robustness to punch biopsy sampling, in which a population of 
nearby cells are captured. We biopsy-sampled our simulated tumours, 
and only called mutations exceeding a 0.3 cellular fraction threshold 
within a punch (Methods). We find that while punch-style sampling 
adds more random error due to variation in sampled diversity, espe-
cially in tumours with high turnover rates, SDevo largely still detects 
state-dependent birth rate effects (Fig. 4b).

Next, we assessed SDevo’s robustness to more complex growth 
models by exploring an off-lattice model, a more flexible class of spatial 
models also employed to study tumour evolutionary dynamics67–69. We 
simulated under a continuous space model of tumour growth imple-
mented using the agent-based cellular engine PhysiCell70. To mimic 
boundary-driven conditions, we linked the cellular division probabil-
ity to mechanical pressure—cells crowded by their neighbours could 
not divide (Methods and Fig. 4c). As in the lattice-based simulations, 
higher cell turnover relaxes mechanical pressure, modulating spatial 
constraints. We first verified that SDevo continued to identify birth 
rate differences in these more complex simulations. We simulated 2D 
neutral growth and found that SDevo sensitively detects an elevated 
birth rate at the tumour edge, even when birth rate differences were 
minimal (Fig. 4d). However, SDevo slightly underestimates the birth 
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Fig. 2 | Asymmetries in cell birth rate and signals of boundary-driven growth 
in trees can be modelled by two-state dynamics. a, Histogram of instantaneous 
cell birth rate as a function of distance from the tumour edge (normalized by 
maximum distance). Rates are averages over ten simulations under boundary-
driven growth (α = 0.004) with standard error bars. Points represent individual 
simulation means. b, Distributions of normalized terminal branch lengths (TBL) 
in a representative tumour under boundary-driven growth (Fig. 1a) categorized 
by leaf edge or centre state. c, Mean clock rate (total number of mutations/
time) of cells in the example boundary-driven tumour versus the fraction of 
time a cell lineage spends on the tumour edge. Colour gradient spans mostly 
centre-associated lineages in blue to mostly edge-associated lineages in maroon. 
Dashed line is y = x. d, Histogram of instantaneous cell birth rate versus binned 
distance from tumour edge in unrestricted growth simulations (average over 

ten simulations with standard error bars, α = 0.004). e, Distributions of terminal 
branch lengths for edge and centre leaves in the representative unrestricted 
tumour (Fig. 1d). f, Average lineage clock rates versus the fraction of time a 
lineage spends on the tumour edge in the example unrestricted tumour. Insets 
show representative phylogenetic patterns observed in time (b and e) and 
genetic (c and f) trees. g, Schematic comparing simulated spatial constraints 
under boundary-driven growth (coral) and unrestricted growth (black). h, 
Ratios of centre-to-edge mean terminal branch lengths across simulations with 
decreasing spatial constraints (as modulated by cell death rate) under either 
boundary-driven or unrestricted growth modes. i, Correlations (measured via R2) 
between the fraction of the lineage time spent on the edge and mean clock rate 
across the same range of spatial constraints and growth modes.
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with ancestral states (state probabilities represented by node pie charts) and 
estimates model parameters. SDevo links state-dependent clock rates to birth 
rates. b, Reconstructed time tree estimated by SDevo on an example simulated 
tumour (α = 0.012). At each internal node, the posterior probabilities for 
ancestral edge or centre states are shown as a pie chart. Clade posterior support 
is indicated if less than 99%. The inset shows the sampling scheme for the tumour. 
c, Marginal posterior distributions of estimated edge and centre birth rates, 
which are summarized by birth rate differences between edge and centre cells 

(inset, dashed line indicates the true difference). d, Posterior probabilities of 
ancestral state reconstructions versus true state assignments. e, SDevo (green) 
estimates of birth rate differences between edge and centre samples across 
a variety of true per-day birth rate differences (α varies between 0 and 0.036, 
n = 50) compared with estimates under a strict clock (gold). Points and bars 
represent mean and 95% HPD intervals, respectively. Dashed line is y = x. f, Mean 
squared error (MSE) of estimated birth rate differences in simulated tumours  
(α varies between 0 and 0.036) versus input number of cells sampled per tumour 
for SDevo (green) and strict clock sequence evolution (gold) models. Error bars 
represent the standard error of MSE and are summarized across 17 simulations 
per sample size.
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rate differences at high death rates (that is, low birth rate differences). 
We also confirmed that SDevo was robust to spatial division rate het-
erogeneity induced by increasing cell migration, as opposed to cell 
death (Extended Data Fig. 5a), and to a sigmoidal pressure threshold 
for cell proliferation (Extended Data Fig. 5c,d). We next simulated 
tumours grown in 3D and sampled across multiple z-slices, mimicking 
clinical sampling approaches. We determined that SDevo accurately 
reconstructs birth rate differences, albeit with wider posterior intervals 
(Fig. 4e). We note that trees reconstructed from the 3D simulations 
tend to deviate more from expected edge-biased branching patterns 
than those from the 2D simulations (Extended Data Fig. 6), reflecting 
more complicated growth dynamics and potential obfuscation via the 
sampling scheme. These observations further highlight the necessity 
of incorporating both branching and clock rate patterns to quantify 
boundary-driven growth in clinical scenarios.

Finally, we tested the extent to which SDevo detects boundary- 
driven growth dynamics when both spatially determined and 

cell-intrinsic fitness differences influence growth, as the action of 
strong positive selection has been previously shown to distort the 
shape of tumour phylogenetic trees17,40,41. We find that SDevo con-
tinues to detect differences in birth rates between centre and 
periphery-associated cells even in the presence of strong selection 
(Fig. 4f, Extended Data Fig. 5b and Methods). Notably, even as lineages 
with driver mutations expand, these cells are still subject to spatial 
constraints. As a result, similar patterns of branching and clock rate 
differences between centre and periphery-associated cells re-emerge. 
However, we anticipate that if cell death is sufficiently high, a driver 
mutation could lead to rapid expansion of a centre-bound lineage and 
mask signals of boundary-driven growth.

Boundary-driven growth in HCCs
To quantify boundary-driven growth in a clinical tumour setting, we 
applied SDevo to multi-region sequencing data of two HCC cancers pub-
lished by ref. 40 (Fig. 5). The authors sequenced two HCC tumours from 
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divide, generating boundary-driven growth. d–f, SDevo recovers growth rate 
differences generated through variable death rates under neutral 2D growth (d), 
neutral 3D growth (e) and 2D growth in the presence of strong driver mutations 
(f; μdriver = 0.01, n = 100 cells per tumour, driver fitness advantage = 10%; 
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darker colours represent cells with driver mutations. Points and bars represent 
means and 95% HPD intervals, respectively, for all plots.
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a single patient, carried out 3D spatial micro-biopsy sampling followed 
by whole-genome sequencing (Fig. 5a,e), and classified punches as 
‘edge’ or ‘centre’. The genetic maximum likelihood trees of each tumour 
(Fig. 5b,f) qualitatively demonstrate an increased genetic divergence 
at edge punches. To apply SDevo, we created input pseudo-sequences 
for each punch using three independent 25,000 single nucleotide 
variant (SNV) random subsets of those identified in the original study. 
We assumed unidirectional transition from edge to centre, in line with 
biological expectations of solid tumour growth, to constrain death 
and transition rate parameter space (Methods). SDevo jointly recon-
structed tumour time trees along with the most likely ancestral inter-
nal node states. From these results we infer that while most ancestral 
cells divided on the tumour periphery, some population expansion 
occurred in the tumour centre. We note that we do not use a predefined 
outgroup for this analysis, so there are slight differences in rooting 
for these time trees compared with the genetic maximum likelihood 
trees. SDevo found strong support for birth rate differences between 
edge and centre in both tumours (Fig. 5d,h). We estimated that cells 
on the edge have a mean 6.35× birth rate advantage over centre cells in 
Tumour 1 (95% HPD interval = 4.53–8.32×) and a mean 2.83× birth rate 
advantage in Tumour 2 (95% HPD interval = 2.35–3.32×) summarized 
across all SNV subsets. To assess how sensitive these results were to 
differences in state classifications or punch heterogeneity, we also 
called alternative edge/centre states based on a threshold of 10% of 

the tumour diameter ( ~2 mm and ~1.5 mm for Tumour 1 and Tumour 2, 
respectively) from the schematic boundary (Extended Data Fig. 7a,e). 
We found consistent results for Tumour 2, but observed that Tumour 
1’s alternative edge/centre classifications showed more variable and 
reduced support for boundary-driven growth, which was not unex-
pected given that the alternative states updated the classification of 
previously centre-assigned punches with less genetic divergence to 
edge (Extended Data Fig. 7d,h). We further found consistent results 
when removing a single punch from Tumour 1 (Extended Data Fig. 8), 
which may have captured multiple subclones (Extended Data Fig. 9).

Although we inferred a higher birth rate on the edge in these clini-
cal tumours, the branching rate patterns in tumours 1 and 2 qualitatively 
did not match our expectations from simulations. These branching pat-
terns are potentially influenced by selection, as noted originally in ref. 40,  
or by the non-uniform sampling scheme (Fig. 5a,e). Probably due to 
these branching patterns, we find a strict clock model, which assumes 
independence of sequence evolution and cell division, did not detect 
boundary-driven growth. Instead, it estimated that centre cells have 
a slightly higher birth rate (Extended Data Fig. 10). We note that the 
sample sizes of Tumour 1 and Tumour 2 were well below the sample 
size requirements in simulations to detect boundary-driven growth 
with a strict clock model (Fig. 3f). In addition, we found that incor-
porating a state-dependent sequence evolution model changed the 
estimated internal node timings (Extended Data Fig. 10c,f). Specifically, 
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reconstructed centre-bound nodes were estimated to have occurred 
more recently under a strict clock than under a state-dependent evo-
lution model in which centre cells would be expected to divide less 
frequently.

Discussion
Tumour evolutionary progression is a complex process driven by 
genetic, epigenetic, environmental and immune factors. Quantitatively 
disentangling the contribution of spatial factors to tumour growth 
dynamics is an important component of both reconstructing tumour 
clinical histories and predicting future growth. Our understanding 
of spatial drivers of tumour growth has largely been informed by 
experimental models, as we have had limited ability to assay for these 
effects in clinical tumours. Here, we introduce SDevo, a new Bayesian 
phylodynamic model that learns differential cell birth rates of dis-
crete classes (here, tumour periphery or centre-associated). Although 
SDevo is general in scope and applicability, here we demonstrate that 
it successfully infers birth rate differences between the tumour edge 
and centre from multi-region sequencing data. We show that SDevo 
is relatively robust to sampling choices (that is, punch biopsies and 
locations) and biological factors (that is, cancer driver mutations and 
3D versus 2D growth modes). We further find quantitative evidence 
for boundary-driven growth in clinically derived HCCs resected at a 
single time point.

Our assessment of boundary-driven growth in HCCs quantitatively 
expands the observations of ref. 40. The authors originally hypoth-
esized that Tumour 1’s tree structure matched a simulated scenario of 
boundary-driven growth followed by the expansion of a selected clone 
in the centre and that Tumour 2’s tree structure matched dominant 
boundary-driven growth. The authors made these assessments by 
simulating tumours and comparing the distributions of clones and 
variant allele frequencies to the sequenced tumours. They further 
noted that genetic divergence was higher in punches collected from 
the tumour periphery.

Our study quantifies these patterns by estimating these birth rate 
differences directly with joint inference of tree topology and sequence 
evolution. Notably, although small sample sizes, clustered sampling 
and the hypothesized selection for an internal clone in Tumour 1 may 
have distorted the branching structure of the trees, SDevo is able to 
detect past boundary-driven growth from clock rate differences. By 
explicitly incorporating the mutational process, SDevo leverages data 
more effectively than models that only learn from state-dependent 
branching. This approach is particularly important when only a few 
areas of a tumour are sequenced. These findings, along with previ-
ous in silico evidence that selection changes the shapes of tumour 
trees17,71, highlight the importance of employing multiple tree patterns 
to quantify interacting modes of tumour growth. Although future 
work should more comprehensively profile how multiple spatial and 
non-spatial drivers of growth can impact observed tree patterns, our 
analysis of non-neutral tumours (Fig. 4f and Extended Data Fig. 5b) sug-
gests that SDevo can detect boundary-driven growth in the presence  
of selection.

Quantifying the impact of spatial restrictions on clinical tumour 
growth informs how we understand, predict and control cancer evolu-
tion. A robust literature has established that boundary-driven growth 
modulates the efficiency of positive and purifying selection19,72, alters 
overall growth rates43,73, and increases the efficacy of adaptive ther-
apy20–22. Spatial restrictions also change the expected distribution 
of genetic variation in solid tumours13,15,16,72 and impact how clinically 
informative biopsies should be collected74. Although we find robust 
evidence for boundary-driven growth in HCCs, its prevalence and 
strength probably vary by stage of tumour growth and tumour type18. 
For example, increased vascularization, cellular migration, physical 
anatomical structures or tumours reaching a local carrying capacity 
could alter spatial growth restrictions. Further applications of SDevo 

to other tumour cases and types will enable us to explore the nuances 
of these growth phenomena.

Importantly, the utility of SDevo is not limited to understanding 
the impact of boundary-driven growth, but in fact can be applied in any 
instance in which sequenced tumour samples can be classified into dis-
crete, observable states. Immediately, SDevo could be extended to test 
other proposed tumour growth modes—for example, growth against 
a solid surface, such as bone in osteosarcoma, along a unidirectional 
invasive front75, or in different glandular compartments76. Because 
tumours can grow under a wide variety of anatomical constraints, 
integrating system-specific factors can help assign biologically rel-
evant environmental states for the application of SDevo (that is, edge 
categorization may constitute those cells that have penetrated the 
basal layer as opposed to those that are most radially extreme). Even 
more broadly, SDevo could be applied to study the growth impacts of 
other environmental or cell-intrinsic factors, for instance, immune 
invasion, hypoxia, metastatic versus primary sites or genetic features, 
by decomposing complex phenotypes into discrete states.

Phylodynamic approaches such as SDevo have major advantages 
compared with our current approaches for estimating evolutionary 
information from tumours, namely approximate Bayesian computa-
tion (ABC)77 or other approaches that compare simulated and clinical 
tumours via summary statistics18. To be clear, these approaches have 
yielded extensive insights into tumour evolution, including patterns 
under boundary-driven growth14,15,17,41. However, these approaches are 
computationally costly, requiring the generation of often tens or hun-
dreds of thousands of simulated tumours, on which one must compute 
extensive summary statistics. In addition, ABC comes with technical 
challenges, including the necessary choice (and potential unavail-
ability) of low-dimensional sufficient summary statistics. Although 
Bayesian phylodynamics comes with its own technical challenges (that 
is identifiability, sensitivity to model assumptions, choice of priors; 
see refs. 78,79), it does not require tumour simulation. Furthermore, the 
generality of discrete traits affecting growth dynamics means it is easily 
adaptable to answer new questions. While both ABC and phylodynam-
ics offer ways to understand clinically derived samples, the full promise 
of phylodynamics has yet to be widely exploited.

Phylodynamic approaches to understanding tumour evolution 
offer additional benefits. (1) Used in conjunction with well-calibrated 
molecular clocks, inferred trees can help estimate the timing of clini-
cally important events, such as the emergence of subclones or meta-
static events. While these analyses have been employed in the context 
of uniform growth rates56,80,81, the expansion of tree models to permit 
differential birth rates could improve timing accuracy. (2) Incorporat-
ing differential growth rates across a tree can lead to more accurate tree 
topologies, as has been demonstrated in influenza evolving in multiple 
host species82. (3) Inferring ancestral states can elucidate population 
history and tumour evolutionary processes at time points that cannot 
be clinically sampled. A recent study45 analysed the intra-tumour spatial 
and genetic architecture of renal cancers and concluded cells in the 
tumour centre are more likely to seed metastasis. However, the study 
was limited to observing the extant position of these samples, whereas 
SDevo reconstructs these states at the time of clinical events (that is, 
divergence of a metastatic clone). These three points suggest more 
broadly how tumour trees can be leveraged to gain new quantitative 
insights into tumour evolution, and demonstrate the broad utility of 
modelling evolutionary processes on trees.

Beyond its application to cancer evolution, SDevo is a novel phylo-
dynamic model with broad usefulness to incorporate state-dependent 
clock rates into evolutionary inference. While the field of phylogenet-
ics has developed a broad array of clock models, to our knowledge, 
SDevo represents the first model in which clock rate is linked to birth 
rate. SDevo could be particularly useful in microbial and viral popula-
tions where diversification and mutational accumulation operate on 
similar timescales, and may be linked to underlying state variables (for 
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example, location). We demonstrated that incorporating clock rate 
differences, instead of relying solely on tree diversification rates (as in 
BDMM and other multi-state birth–death models59,61,65), can improve 
inference in cases where sampling may be non-uniform. This may be 
particularly important when sampling rates vary, for example, coun-
tries with variable rates of molecular surveillance for SARS-CoV-2. To 
facilitate broad application, SDevo is built as a package in the popular 
Bayesian phylogenetic platform BEAST 262. As with all phylodynamic 
models, identifiability represents a pervasive concern, but incorporat-
ing biological knowledge for determining priors can help constrain the 
model space. In our analysis of HCCs, we use information about cell 
transition and death rates to distinguish between multiple parameters 
that impact trees and estimation in interrelated ways.

Biological complexity within tumours can complicate SDevo’s 
application and interpretation via spatially or temporally vary-
ing selection. First, strong selection can destroy or alter signals of 
boundary-driven growth17,40. For example, a hard bottleneck, as in 
the cases of surgery or chemotherapy, would probably temporarily 
destroy signals of boundary-driven growth. Such signals would prob-
ably also re-emerge were the tumour to regrow via boundary-driven 
growth. Second, gain of driver mutations will lead to cell-intrinsic 
fitness differences that may not correlate with spatial location. Third, 
disentangling boundary-driven dynamics from other environmental 
or cell-intrinsic factors could be especially difficult under time-varying 
selection. For example, angiogenesis could increase resources to centre 
cells later in tumour growth83, and complex cell-to-cell interactions 
may create frequency dependencies that further complicate observed 
spatial patterns21,48,84. We have shown that SDevo can detect signals of 
boundary-driven growth even with driver-induced selection, but future 
work should further probe this robustness.

Although SDevo is a powerful tool, we note several important 
limitations that require further caution when applying it to data. First, 
SDevo assumes mutations occur at cell division. If, instead, most muta-
tions emerge due to exogenous processes85, birth-driven genetic diver-
gence could be masked. While this might decrease SDevo’s power, 
exogenous mutational processes distributed evenly across a tumour 
are unlikely to generate false positive signals of boundary-driven 
growth. Second, extensive cell mobility could weaken signatures of 
boundary-driven growth even if boundary-associated cells have birth 
rate advantages. Third, as we demonstrate in Fig. 3, sample sizes must 
be sufficient to detect state-dependent effects. We maximize lim-
ited sample sizes by choosing priors that are biologically informed 
(for example, unidirectional state transitions), but larger sample 
sizes will enable inference with less informative priors. Data sets that 
meet this requirement are becoming rapidly available, so we antici-
pate phylodynamic models such as SDevo becoming increasingly  
powerful.

The expanded application of phylodynamics to cancer sequencing 
data relies both on developing methods to exploit single-cell sequenc-
ing data86,87, and understanding the relationship between sequenced 
multi-region punches and the many single cells that comprise them. 
As has been noted previously, multi-region sequence trees are not 
phylogenies88, and punch-wide genetic composition does not neces-
sarily capture all cellular genotypes89. Although SDevo is fairly robust 
to our simulated punch-style sampling and we analysed HCC data 
from small, largely homogeneous punch biopsies, best practices for 
applying phylodynamic models to trees of deconvoluted clones are an 
important area for future research.

Applying phylodynamic methods to tumour populations is in its 
infancy, but new methods that overcome the barriers of working with 
tumour data will help extend the applicability of these approaches86,90. 
Here, we demonstrate the utility of phylodynamic models in quan-
tifying spatial factors driving cancer progression. As technologies 
enabling the widespread and high-throughput generation of tumour 
trees advance71,91, we expect adapted phylodynamic approaches such 

as SDevo to provide a rigorous analytical toolkit for extracting quan-
titative insights from these data.

Methods
Tumour simulations
Eden model. An agent-based model was implemented in Python3, 
which places simulated cells on a 2D lattice. Simulations are initiated 
with a single cell in the centre of the lattice. At each time step (2 h) 
cells have a probability of dying (α) and a probability of attempting 
division given survival (λ). Under boundary-driven growth, cells only 
successfully divide if there is an empty lattice spot in their Moore 
neighbourhood. If multiple neighbouring spaces are available then 
a cell randomly chooses the location for its daughter cell from open 
neighbouring spaces. Under unrestricted growth, if a cell attempts 
division, its daughter cell will occupy an empty lattice spot in the 
Moore neighbourhood if available, but if not, the cell will still divide 
and push cells in a random direction to make space. Overlapping cells 
are pushed in the same direction until a neighbouring lattice spot is 
available, which the pushed cell will occupy. In both simulations, if a cell 
divides, each daughter cell can gain mutations with probability μ (per 
division per genome). Mutations are then drawn from a Jukes–Cantor 
model of sequence evolution and follow an infinite-sites assumption. 
Therefore, each time a mutation is gained, a site is added to all cells in 
the simulation. Simulations are stopped when the number of living 
cells is more than 1,000. The ground truth birth rates are assessed at 
discrete time points in the simulation by recording the current state 
of each cell and the proportion of cells that have progeny in the next 
time step. True birth rates are considered to be the mean across all time 
steps weighted by the number of cells in each category. This method 
calculates effective birth and death rates on the edge and centre given 
the simulated spatial constraints by calculating empirical division 
rates on the edge and centre of cells through simulated time. Effective 
spatial constraints in the boundary-driven model were controlled by 
changing the probability of cell death, where increased cell turnover 
allows centre-trapped cells to divide more readily (Extended Data  
Fig. 1). To evaluate the accuracy of parameter estimation, we ran 
1,000-cell tumour simulations where the probability of cell death per 
time step, α, varied from 0 to 0.036, the probability of attempting divi-
sion given survival, λ, was 0.04 and the rate of mutation per division 
was μ = 1. Not accounting for spatial constraints, these birth and death 
parameters translate to an approximate 0.32–0.40 per day probability 
of division (per cell) and a range of 0–0.35 per day (per cell) probability 
of death. Although clinical tumours have large variability in rates of 
proliferation, death and mutation, these parameters fit within this 
biological range13,92–94.

Eden tree statistics. Tree statistics in Figs. 1 and 2 were calculated 
from simulated tumour trees that include all extant cells. Normalized 
terminal branch lengths were calculated by dividing terminal branch 
lengths of tumour time trees by total simulation time. Clock rates were 
calculated by dividing the total number of mutations accumulated in 
each alive cell by simulation time. Edge and centre states for terminal 
branch lengths are defined by cell location at the end of the simulation, 
where edge cells are defined by being the most extreme cell on either 
the X or Y spatial axis for each row and column, respectively, or within 
one cell of this boundary. The fraction of the lineage time spent on the 
edge is determined by averaging across all lineage node states weighted 
by time tree branch lengths.

Continuous space model. To probe the robustness of SDevo to more 
complex selective events and higher dimensions, we implemented 
an additional set of simulations in the physics-based cellular simu-
lator, PhysiCell70. Briefly, PhysiCell is an open-source, agent-based 
model implemented in C++ in which cell movement is governed by 
biomechanical interactions among cells. To simulate boundary-driven 
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growth, we created a PhysiCell instance in which cells are only able 
to divide when under low mechanical pressure, using the cell-state 
variable, simple_pressure. As a result, similar to the Eden model, most 
cell division is restricted to the tumour periphery, or to cells with 
adjacent space created by the recent death of a neighbouring cell. 
Cells initially divide at a rate we arbitrarily set to 1, except when above 
the pressure threshold, τ, in which case they divide at rate 0. We also 
explored a sigmoidal relationship between pressure and birth, where 
the birth rate b = 1 − (1 + exp(−5(pressure − τ)))−1. Cells die at rate d, 
regardless of their pressure status. To simulate selection, during each 
cell division, a daughter cell can acquire a driver mutation conferring 
a 10% fitness advantage95 with probability μdriver, which acts multipli-
catively (that is, a cell with two drivers has a 21% faster growth rate 
than one with 0)96. Tumours are grown to a final size of N extant cells, 
of which n are sampled. After the simulation, a Poisson-distributed 
number of neutral mutations is augmented to each cell division with 
λ = μpassenger. Using the continuous space model, we investigated all 
pairwise combinations of 2D and 3D, neutral and selective scenarios, 
and ran 25 tumour simulations for each combination of parameters 
(τ = 1, d = (0, 0.1, 0.2,…0.8), μpassenger = 1, n = 100), except for 3D selec-
tion, where we simulated d = (0, 0.2, 0.6, 0.8) with 10 tumours each. For 
the 2D models, N = 10, 000, and for the 3D model, N = 15, 000. For the 
selective model, μdriver = 0.01, and for the neutral models, μdriver = 0. Note, 
we used a value of μdriver well above expected rates of driver mutations 
(~10−5)92 to conservatively test SDevo in an extreme case of selection. 
To probe SDevo’s performance when cellular constraint is reduced 
by migration instead of cell death, we performed 10 simulations at 
d = 0.2, where cells migrate at 0, 0.5, 1, 1.5 or 2μm min−1 at an angle 
drawn from [0, 2π] and updated on average each minute (all other 
parameters as above). To probe SDevo’s robustness under a sigmoidal 
relationship between pressure and birth rate, we ran 10 simulations 
with d = (0, 0.2, 0.4, 0.6), and all other parameters as above. One out-
lier in the 3D boundary-driven growth simulations was removed due 
to convergence on a local optimum. Ground truth edge and centre 
birth rates were determined by first classifying cells as within 10 μm 
(approximately 1 cell width) of the tumour periphery as edge, and 
those more than 10 μm from the edge as centre. The average birth rate 
was computed separately within each of those classes over multiple 
discrete time points (10–40, depending on the overall rate of tumour 
growth) and combined by a weighted average according to the number 
of cells at each time point. Cells under too much pressure to divide at 
the sampled time (simple_pressure > τ) were calculated as having an 
instantaneous birth rate of 0.

Sampling procedures. 2D simulations were sampled by maximizing 
the distance between sampled single cells in physical space (diversified 
sampling). This ensures that a sufficient number of edge and centre 
classified cells were sampled and that sampled cells were not clustered. 
Bulk punch biopsy sampling was mimicked by choosing a centre cell 
and a target of eight cells immediately surrounding that were grouped 
into a single punch. Punches were iteratively drawn and shifted if they 
overlapped with a previously punched group of cells. Sampling ended 
when the target number of punches was reached (50 punches) or 
sampling was no longer possible without significant overlap. Punch 
sequences were generated using all mutations above a cellular fraction 
cutoff of 0.3. 3D sampling was approximated by taking five simulated 
slices through the tumour z-plane at 2/8, 3/8, 4/8, 5/8 and 6/8 of the 
range of the z values of a given tumour. Within each slice, cells were 
sampled to maximize the inter-cell distance, as described above, and 
the number of cells per slice was proportional to the number of cells 
in the slice relative to the number of cells across all slices.

Multi-type birth–death models of boundary-driven growth
The birth–death process describes how lineages duplicate (birth), die 
(death) and are sampled (where samples are tips on a phylogenetic 

tree)97. The multi-type birth–death model extends this by consider-
ing birth, death and sampling to occur in different states (sometimes 
also referred to as different sub-populations, traits or types) and how 
lineages jump between these states. The rates of birth, death and 
sampling vary depending on the state of a lineage. For the case of 
boundary-driven growth, we model a two-state process, with one state 
denoting cells in the centre of the tumour and the other state denoting 
cells on the edge of the tumour.

Posterior probability
To perform Bayesian inference, we define the posterior probability 
P(T, σ, θ∣D) of the timed phylogenetic tree T, the evolutionary model 
and parameters (σ), and the population model and parameters θ, given 
the data, D. This posterior probability is typically expressed as:

P(T,σ,θ|D) = P(D|σ,T)P(T|θ)P(σ)P(θ)
P(D) . (1)

In the case of the state-dependent multi-type birth–death model, we 
cannot assume the tree likelihood (D∣σ, T) and the tree prior P(T∣θ) to 
be independent, as the rate of evolution directly depends on the popu-
lation model. In other words, how fast evolution happens on a lineage 
depends directly on the state of that lineage. We therefore define ℋ as 
a mapped state transition history that contains a random mapping of 
state change events given a set of parameters θ of the multi-type birth–
death model. We then define the tree likelihood as P(D|σ,θ,T,ℋ). Addi-
tionally, we say that instead of computing P(T∣θ) directly, we only 
compute the tree prior for one realization of the state transition history, 
that is, P(T,ℋ|θ). The posterior probability then becomes:

P(T,ℋ,σ,θ|D) = P(D|σ,θ,T,ℋ)P(T,ℋ|θ)P(σ)P(θ)
P(D) . (2)

Performing Markov chain Monte Carlo (MCMC) inference to char-
acterize this posterior probability distribution would require integrat-
ing over all transition histories ℋ using MCMC. This is overall incredibly 
slow and limits the application of the method. Instead, we formally 
integrate over all possible histories ℋ, to get the following posterior 
probability:

P(T,σ,θ|D) =
∫ℋP(D|σ,T,ℋ)∫ℋP(T,ℋ|θ)P(σ)P(θ)

P(D) . (3)

P(T|θ) = ∫ℋP(T,ℋ|θ) is computed as described in ref. 61, which is achieved 
by treating the states of lineages probabilistically instead of 
discretely.

Last, we set ∫ℋP(D|σ,T,ℋ) = E [P(D|σ,θ,T,ℋ) = P(D|σ,θ,T, E[ℋ]), with 
E[ℋ] being the expected/average state transition history, which con-
tains, for each lineage i in the phylogeny, its expected time spent in 
each state s. This leaves us with:

P(T,σ,θ|D) = P(D|σ,θ,T, E[ℋ])P(T|θ)P(σ)P(θ)
P(D) . (4)

Modelling birth-dependent evolution
In order to model different rates of evolution for different states, we 
first compute the expected time each lineage in the phylogenetic tree 
T spent in each state. To do so, we use a stochastic mapping approach 
related to those described in refs. 98,99. We first compute the probability 
g i,bs  of each lineage i in the phylogenetic tree being in any possible state 
s over time t from the tips to the root (denoted with b for backwards in 
time) as described in ref. 61. These state probabilities are conditional 
only on events that occurred more recently than t and therefore not on 
all events in the phylogeny. During this backwards propagation, we 
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keep track of the time-dependent transition matrix Q(t)i that describes 
the rate of probability flow between any two states at time t due to  
state transitions or birth events between states. As a result, once we 
reach the root, g i,bs  contains all events in the phylogeny and is therefore 
equal to g i, fs , that is, the forward in time probability f of lineage i being 
in state s.

Following ref. 100, we first define qiab as:

qiab = μab
gb(t)

i
a

gb(t)
i
b

with μab being the rate of state change due to state transitions or 
cross-birth events between states a and b.

We then compute the probabilities of any lineage being in any 
possible state conditional on all events in the phylogeny gi,fs  forwards 
in time as:

dg i, fs
dt

=
states
∑
a=1

(qiasg
i, f
a − qisag

i, f
s ) .

By keeping track of the forward probabilities gi,fs  on each lineage, 
we can then compute the expected time tis that lineage i spends in any 
of the possible states s. The values for tis make up the entry for E[ℋ] in 
the posterior distribution (equation (4)). We then say that cs is the rate 
of evolution, that is, the clock rate, of a lineage in state s. Next, we 
compute the average rate of evolution on branch i, ci, as:

ci =
states
∑
s
tis × cs.

At each replication, an error in copying the genetic material of a 
cell can occur. These errors tend to be more likely in cancer cells, where 
cellular control mechanisms are often faulty. Phylogenetic methods 
typically assume the evolutionary processes to be independent of 
population processes, such as cell replication. To model mutations 
happening at birth events, we assume that the birth rate bs in state s 
and the clock rate in state s are proportional such that c1 = cavgb1, c2 =  
cavgb2,…, cn = cavgbn.

Implementation
We implemented the multi-type birth–death model with state- 
dependent clock rates as an addition to the Bayesian phylogenet-
ics software BEAST 2 (https://github.com/nicfel/SDevo). SDevo 
depends on BDMM-Prime v0.0.30 (https://github.com/tgvaughan/
BDMM-Prime) to compute the tree prior P(T∣θ) and is built in Beast 
v2.6.6. To model mutations occurring at cell division, we set the relative 
rate of evolution in the different compartments (edge and centre) to 
be proportional to the birth rates in these compartments. The imple-
mentation itself does not explicitly require this assumption and the 
relative rates of evolution can also be treated as a distinct parameter in 
the inference. All SDevo analyses were performed using SDevo v0.0.2. 
SDevo can be installed through the interface BEAUti.

Validation
To validate the implementation, we perform a well-calibrated simu-
lation study. In it, we simulate phylogenetic trees under a two-state 
birth–death model in which we assume the rate of evolution to be pro-
portional to the birth rate in either compartment. We randomly sample 
the birth, death and transition rates from the prior distribution, while 
fixing the sampling rate to 0.001, and then simulate a phylogenetic tree 
using MASTER101. We then simulate genetic sequences on top of the 
phylogenetic trees using different rates of evolution depending on the 
lineage’s compartment. Next, we infer the birth, death and transition 
rates from the genetic sequences and show that the 95% HPD interval 
covers the truth in 95% of the 100 runs (Extended Data Fig. 2).

SDevo application to simulated tumours
We applied SDevo to outputs of the Eden and PhysiCell simulations 
generated as described above. For each simulated tumour we calcu-
lated clock rate (mutations/tree length/sequence length) and edge and 
centre sampling rates (sampled/alive cells). We set exponential priors 
on birth, death and transition rates. Full parameterization can be repro-
duced from XML templates. MCMC chains were run to convergence. 
We used only chains that had a minimum effective sample size for 
birth rate parameters greater than 200 for analysis. We also excluded 
rare (n < 5) cases that converged to local optima. We summarized the 
output posterior distributions by mean and 95% HPD intervals. We 
further inferred maximum clade credibility (MCC) trees with median 
heights using BEAST 2.6.2 TreeAnnotator62. TreeAnnotator also gives 
posterior state probabilities for each MCC internal node.

SDevo application to HCC tumours
To apply SDevo to the HCC data, we labelled punches based on edge/
centre state labels as published by ref. 40, Table S8 (reproduced in 
Fig. 5a,e). For alternative states (Extended Data Fig. 7a,e), we labelled 
punches as edge if they were located within approximately 10% ( ~2 mm 
for Tumour 1 and ~1.5 mm for Tumour 2) of the tumour diameter from 
the schematic boundaries. Slices were reported to be from tumour 
hemispheres. Assuming a 0.2 mm slice thickness, we estimated that 
slices Tumour 1Z and Tumour 2Z fell within the boundary region. The 
original amplicon genotyping panel artificially increases the apparent 
diversity within some clones relative to others, so to avoid incorporat-
ing this bias into the model, we used only whole-genome sequenced 
punches. Ref. 40 identified a large number of SNVs (254,268 for Tumour 
1 and 142,032 for Tumour 2). To reduce computational requirements 
and improve convergence, we generated input pseudo-sequences by 
randomly subsampling 25,000 variable sites. We summarized results 
across three independent subsamples for each tumour. We called pres-
ence or absence of a variant at each site based on a VAF cutoff of 0.05. 
VAF histograms displayed single-peaked distributions characteristic of 
a single major clone per sample, with the exception of tumour sample 
T1L13 (Extended Data Fig. 9). To ensure Tumour 1 results were not driven 
by over-counting mutations across multiple subclones of T1L13, we 
repeated the analysis excluding this sample and found quantitatively 
similar results (Extended Data Fig. 8).

We use a GTR + Γ4 site model, a fixed clock rate of 0.3 (units are 
arbitrary as we only use sites that are variable relative to healthy cells) 
and estimate sampling proportion (uniform prior). We use log-normal 
priors for birth (mean = 20, S = 0.5) and death rates (mean = 15, S = 0.5), 
with S denoting the standard deviation of the log-transformed distribu-
tions. We used an exponential prior for the edge-to-centre transition 
rate (mean = 1). Note that these units are also arbitrary and are not cali-
brated to clinical time. In applying SDevo to these tumours, we con-
strain the parameter space in several ways to adapt to having relatively 
few samples, only a single observed time point and unknown sampling 
proportion. (1) We assume unidirectional transition so that cells can 
only move from edge to centre but not vice versa. As we only have a few 
observed state transition events, the transition rates would otherwise 
be relatively poorly informed. (2) We set priors on mean birth, death 
and transition rates across the two states. Birth and death priors are 
identical across both states, while transition rates priors are asym-
metrical to inform unidirectional transition and enable convergence 
in a complex parameter space. Full parameterization can be found in 
the XML template. We combined posterior estimates across three 
independent runs for each tumour. We inferred MCC trees with ances-
tral state reconstructions with TreeAnnotator. In addition to the 
SDevo-inferred trees and parameters, we also generated maximum 
likelihood trees using FastTree102 and Augur103 under a Jukes–Cantor 
model for each tumour using all reported variable sites. Homoplastic 
sites contributed to lower support for one node in the maximum likeli-
hood tree of Tumour 1 (Fig. 5b) and we masked homoplastic sites to 

http://www.nature.com/natecolevol
https://github.com/nicfel/SDevo
https://github.com/tgvaughan/BDMM-Prime
https://github.com/tgvaughan/BDMM-Prime


Nature Ecology & Evolution | Volume 7 | April 2023 | 581–596 593

Article https://doi.org/10.1038/s41559-023-02000-4

enable convergence in Tumour 1 and Tumour 2 SDevo inferences. 
Homoplastic sites represented <1% (Tumour 1) or 6% (Tumour 2) of all 
sites across all tumour samples. In Tumour 2, more than two-thirds of 
homoplasies were between two edge-associated punches (Z1 and Z13) 
potentially pointing to subclonal mixing, which is supported by their 
proximal spatial locations. The remainder of homoplasies in Tumour 
2 and all of the homoplasies in T1 were evenly distributed across 
punches. As a result, the removal of homoplasies did not act to bias 
branch lengths across the tree, with the exception of T2Z1 and T2Z13. 
As these punches are on the edge of the tumour, this masking should 
a priori result in lower estimated birth rates on the edge and thus con-
servatively bias the results towards a more equal birth rate between 
edge and centre.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data required to reproduce analyses are available at https://github.
com/blab/spatial-tumor-phylodynamics, including variant allele fre-
quencies and input BEAST 2 XML files. Raw sequencing data are publicly 
available (GSA-Human: HRA000188) as published by ref. 40. SNVs used 
for the HCC analysis are provided in a de-identified format on GitHub. 
Please cite ref. 40 if using these data.

Code availability
Custom scripts were used for simulation studies and data analyses. 
All code to generate figures is publicly available. Scripts to repli-
cate analyses and figures are available at https://github.com/blab/
spatial-tumor-phylodynamics, including a local R package tumortree 
(https://github.com/blab/spatial-tumor-phylodynamics/tree/main/
tumortree), which can be installed to build trees from the simulation 
outputs. SDevo is built as a BEAST 2 package and can be installed from 
https://github.com/nicfel/SDevo. The source code to run spatially con-
strained PhysiCell simulations and generate trees can be found here at 
https://github.com/federlab/PhysiCellTrees. All other packages used 
for analysis and visualization are also open-source104,105.
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Extended Data Fig. 1 | Cellular density creates fitness differences in 
expanding lattice based simulations. A. Fitness, here approximated by the 
probability a cell has a daughter cell in the population (P(progeny)) versus the 
number of adjacent free cells at birth under boundary-driven growth. Spatial 
impacts on cell fitness are relaxed with increasing cell death rate α (color tint).  

B. Under unrestricted growth, most cells are born into a dense neighborhood  
(free cells = 0), but fitness is not impacted by spatial location. For both plots, 
means and standard error bars are summarized across n=10 simulated tumors 
per death rate.
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Extended Data Fig. 2 | Simulation study to validate SDevo implementation. 
Birth, death, and transition rates, and ratios of state-dependent birth rates 
estimated by SDevo versus true population parameters of phylogenetic trees 
simulated under a two-state birth-death model (see Methods). Medians (points) 
and 95% HPD intervals (bars) of estimated values are plotted for each parameter 
(columns) while either fixing or jointly inferring the tree topology (rows). Trees 

were simulated under a birth-death with migration model with rates drawn from 
log-normal distributions for birth (mean=5, S=0.5), death (mean=1, S=0.5), and 
migration (mean=0.5, S=0.5). The sampling proportions were also drawn from 
a log-normal distribution (mean=0.15, S=0.5). This process leads to trees with 
between 32 and 72 tips.
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Extended Data Fig. 3 | Multi-state diversification model without 
state-dependent clocks does not sensitively detect birth rate differences 
in simulated tumors. A. Schematic of BDMM-Prime, which does not link 
state-dependent effects on division to sequence evolution. B. True versus 

estimated means (points) and 95% HPD intervals (bars) of per day birth rate 
differences between the edge and center of simulated boundary-driven tumors 
over a range of sample sizes (n = 50, 60, 70, 80, 90, 100, see headers). Dashed line 
is y = x.
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Extended Data Fig. 4 | SDevo improves birth rate estimation with more 
variable (random) sampling over a strict clock model. A. Example 2D tumors 
under either diversified or random sampling schemes. Cells are colored by 
edge (maroon) or center (blue). Grey-highlighted cells are sampled. Diversified 
sampling maximizes the physical distance between sampled cells. B. Estimated 

means (points) and 95% HPD intervals (bars) of per day birth rate differences 
between the edge and center of simulated boundary-driven tumors based on n 
= 100 sampled cells versus true state-dependent effects (α varies between 0 and 
0.036). We compare SDevo (green) with a strict clock model (gold) for either 
diversified or random sampling (rows).
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Extended Data Fig. 5 | Investigation of extended modes of spatial tumor 
growth in PhysiCell simulations. A. Mean (points) and 95% HPD intervals 
(bars) of birth rate differences estimated by SDevo when spatial constraints 
are relaxed by increasing cell motility (purple to orange gradient) compared 
to when spatial constraints are relaxed by cell death (grey). N = 100 per tumor 
for all simulations. The x-axis is the effective true birth rate difference in both 
scenarios. B. True versus SDevo-estimated birth rate differences in simulations 
with both boundary-driven growth and positive selection of driver mutations 

(n = 100 sampled cells per tumor). We compare simulations in 2D (grey) and 3D 
(red). C. Schematic of simulated relationships between cell pressure and division 
probability for either a binary (left) or sigmoidal (right) gradient in PhysiCell 
simulations. D. True versus estimated birth rate differences of simulated tumors 
(n = 100 sampled cells per tumor) with either a binary (grey) or sigmoidal (red) 
pressure threshold. For A, B, and D. points and bars represent the mean and 95% 
HPD interval of each estimate.
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Extended Data Fig. 6 | Complex growth and sampling in 3D tumors lead 
to more variable branching patterns. A. Example inferred phylogeny of 2D 
PhysiCell tumor with reconstructed ancestral edge and center states (d = 0.1). 
Node pie charts represent posterior support for each state. 100 cells were 
sampled to maximize the distance between cells (diversified sampling). B. 
Example inferred phylogeny of 3D PhysiCell tumor with reconstructed ancestral 
edge and center states (d = 0.1). Cells were sampled to maximize distance in 2D 
space across z-slices of the simulated tumor as described in Methods. For both 
trees, posterior node support is indicated if less than 99%. C, E. Comparisons 

of inferred terminal branch lengths between cells sampled on the edge and 
center of the example 2D and 3D tumors. Points and error bars represent 
means and 95% confidence intervals for n = 75 center and n = 25 edge terminal 
branches. D. Distribution of the relative ratio of center-to-edge mean terminal 
branch lengths across multiple simulations with equivalent spatial constraints. 
Asymmetric branching between edge and center states is observed more often 
in 2D (gold) than 3D (navy) tumors. Points and error bars represent means and 
95% confidence intervals for n = 38 center and n = 62 edge terminal branches, 
respectively.
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Extended Data Fig. 7 | Detection of boundary-driven growth in 
hepatocellular carcinoma with variation in edge/center state calling. We 
called an alternative set of states based on a distance of < 10% of each tumor 
diameter from the edge instead of published edge/center labels. A. Multi-region 
sampling map for Tumor 1 adapted from Li et al.40 with alternative state labels. 
Asterisk indicates a change in state from published states (Fig. 5A). B. Inferred 
tumor phylogeny and reconstructed ancestral spatial states for a single SNV 
subset. Clade posterior supports are indicated at nodes. C. Marginal posterior 
distributions for edge (maroon) and center (blue) birth rates estimated from 

the Tumor 1 WGS data across three independent SNV subsets. D. Posterior 
distribution of edge/center birth rate ratio. Dashed line indicates ratio of 1. 
We estimate a mean 1.15x higher birth rate on the edge compared to center. E. 
Multi-region sampling map with alternative states for Tumor reproduced from 
Li et al.40. F. Tumor 2 MCC tree and ancestral edge/center states inferred from the 
sampled populations. G. Marginal posterior distributions for edge and center 
estimated birth rates and H. edge/center ratio. We estimate a mean 3.89x higher 
birth rate on the edge versus center based on the alternative state calls.
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Extended Data Fig. 8 | SDevo analysis excluding heterogeneous punch T1L13 
also estimates birth rate differences between edge and center. To ensure our 
results are not driven by an edge-associated sample (T1L13), which potentially 
contains multiple subclones, we repeated the analysis of Tumor 1 without this 
punch. A. Marginal posterior distributions or edge (maroon) and center (blue) 

birth rates estimated from the Tumor 1 WGS data excluding T1L13 inferred for 
three SNV subsets. B. We estimate a 8.99x higher birth rate on the edge compared 
to center (95% HPD interval 6.37-11.91x, summarized across the same three 
independent inferences). C. Inferred MCC tumor phylogeny and reconstructed 
ancestral spatial states. Posterior clade support is indicated at each node.
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Extended Data Fig. 9 | Variant allele frequency (VAF) histograms reveal 
punches are largely clonal. Variant allele frequencies for all non-truncal 
(opaque) and truncal (transparent) mutations observed in tumor punches from 

Tumor 1 (A) and Tumor 2 (B) reveal that punches contain only a single high-
frequency clone, with the exception of T1L13. Punches are colored by their edge 
(maroon) or center (blue) status. State labels correspond to Li et al.40, Table S8.
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Extended Data Fig. 10 | SDevo infers boundary-driven growth in HCC tumors 
where a strict clock fails and changes inferred node timings. We compared 
estimates of birth rate differences between edge and center under a state-
dependent birth-death model (BDMM-Prime) using both our novel state-linked 
sequence evolution model or a strict clock (state-independent) sequence 
evolution model. For Tumor 1 (A), Tumor 2 (D), posteriors of edge and center 
birth rate estimates for each sequence evolution model are shown in maroon and 
blue, respectively. Means and 95% HPD intervals (points and bars) for the inferred 

birth rate ratios between edge and center states for Tumor 1 (B) and Tumor 2 
(E). Posteriors are inferred across three independent SNV subsets. Dashed lines 
indicate ratio of 1. Note, power analyses on simulated tumors  
(Fig. 3 and Extended Data Fig. 3) suggest that the strict clock model should be 
under-powered and sensitive to sampling variation at these sample sizes (Tumor 
1: n = 16, Tumor 2: n = 9). C. and F. Scatterplots show ancestral node heights 
inferred under strict clock versus heights inferred by SDevo colored by most 
probable ancestral state. Nodes are compared based on matching a subset of tips.
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