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Human influenza virus rapidly accumulates mutations in its major
surface protein hemagglutinin (HA). The evolutionary success of
influenza virus lineages depends on how these mutations affect
HA’s functionality and antigenicity. Here we experimentally mea-
sure the effects on viral growth in cell culture of all single amino
acid mutations to the HA from a recent human H3N2 influenza
virus strain. We show that mutations that are measured to be
more favorable for viral growth are enriched in evolutionarily
successful H3N2 viral lineages relative to mutations that are mea-
sured to be less favorable for viral growth. Therefore, despite
the well-known caveats about cell-culture measurements of viral
fitness, such measurements can still be informative for under-
standing evolution in nature. We also compare our measurements
for H3 HA to similar data previously generated for a distantly
related H1 HA and find substantial differences in which amino
acids are preferred at many sites. For instance, the H3 HA has
less disparity in mutational tolerance between the head and stalk
domains than the H1 HA. Overall, our work suggests that exper-
imental measurements of mutational effects can be leveraged
to help understand the evolutionary fates of viral lineages in
nature—but only when the measurements are made on a viral
strain similar to the ones being studied in nature.
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Seasonal H3N2 influenza virus evolves rapidly, fixing 3 to 4
amino acid mutations per year in its hemagglutinin (HA)

surface protein (1, 2). Many of these mutations contribute to
the rapid antigenic drift that necessitates frequent updates to
the annual influenza vaccine (3). This evolution is further char-
acterized by competition and turnover among groups of strains
called clades bearing different complements of mutations (4–
8). Clades vary widely in their evolutionary success, with some
dying out soon after emergence and others going on to take over
the virus population. Several lines of evidence indicate that suc-
cessful clades have higher fitness than clades that remain at low
frequency (4–6, 9). A key goal in the study of H3N2 evolution is
to identify the features that enable certain clades to succeed as
others die out.

Two main characteristics distinguish evolutionarily success-
ful clades from their competitors: greater antigenic change,
and efficient viral growth and transmission. In principle, experi-
ments could be informative for identifying how mutations affect
these features. Most work on influenza evolution to date has
used experimental data to assess the antigenicity of circulating
strains (11–16). However, the nonantigenic effects of muta-
tions also play an important role (5, 7, 9, 17). Specifically,
due to influenza virus’s high mutation rate (18–20) and lack of
intrasegment recombination (21), deleterious mutations become

linked to beneficial ones. The resulting accumulation of dele-
terious mutations can affect nonantigenic properties central to
viral fitness (9). However, there are no large-scale quantita-
tive characterizations of how mutations to H3N2 HA affect
viral growth.

It is now possible to use deep mutational scanning (22) to
measure the functional effects of all single amino acid muta-
tions to viral proteins (10, 23–27). However, the only HA for
which such large-scale measurements have previously been made
is from the highly laboratory-adapted A/WSN/1933 (H1N1)
strain (10, 23, 24). Here, we measure the effects on viral
growth in cell culture of all mutations to the HA of a recent
human H3N2 strain. We show that these experimental mea-
surements can help discriminate evolutionarily successful muta-
tions from those found in strains that quickly die out. How-
ever, the utility of the experiments for understanding natural
evolution depends on the similarity between the experimental
and natural strains: Measurements made on an H1 HA are
less informative for understanding the evolutionary fate of H3
viral strains.

Significance

A key goal in the study of influenza virus evolution is to fore-
cast which viral strains will persist and which ones will die out.
Here we experimentally measure the effects of all amino acid
mutations to the hemagglutinin protein from a human H3N2
influenza strain on viral growth in cell culture. We show that
these measurements have utility for distinguishing among
viral strains that do and do not succeed in nature. Overall,
our work suggests that new high-throughput experimental
approaches may be useful for understanding virus evolution
in nature.
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Results
Deep Mutational Scanning of HA from a Recent Strain of Human H3N2
Influenza Virus. We performed a deep mutational scan to mea-
sure the effects of all amino acid mutations to HA from the
A/Perth/16/2009 (H3N2) strain on viral growth in cell culture.
This strain was the H3N2 component of the influenza vaccine
from 2010–2012 (28, 29). Relative to the consensus sequence for
this HA in GenBank, we used a variant with two mutations that
enhanced viral growth in cell culture, G78D and T212I (see SI
Appendix, Fig. S1 and Dataset S1). The G78D mutation occurs
at low frequency in natural H3N2 sequences, and T212 is a site
where a mutation to Ala rose to fixation in human influenza
in ∼2011.

We mutagenized the entire HA coding sequence at the codon
level to create mutant plasmid libraries harboring an average of
∼1.4 codon mutations per clone (see SI Appendix, Fig. S2). We
then generated mutant virus libraries from the mutant plasmids
using a helper-virus system that enables efficient generation of
complex influenza virus libraries (10) (Fig. 1A). These mutant
viruses derived all their non-HA genes from the laboratory-
adapted A/WSN/1933 strain. Using WSN/1933 for the non-
HA genes reduces biosafety concerns and also helped increase
viral titers. To further increase viral titers, we used MDCK-
SIAT1 cells (Madin–Darby canine kidney cells overexpressing
2,6-sialyltransferase) (30) that we engineered to constitutively
express TMPRSS2 (Transmembrane Protease, Serine 2), which
cleaves the HA precursor to activate it for membrane fusion
(31, 32).

After generating the mutant virus libraries, we passaged them
at low multiplicity of infection (MOI) in cell culture to create a
genotype–phenotype link and select for functional HA variants
(Fig. 1A). All experiments were completed in full biological trip-
licate (Fig. 1B). We also passaged and deep sequenced library 3
in duplicate (library 3-1 and 3-2) to gauge experimental noise
within a single biological replicate. As a control to measure
sequencing and mutational errors, we used the unmutated HA
gene to generate and passage viruses carrying wild-type HA.

Deep sequencing of the initial plasmid mutant libraries and
the passaged mutant viruses revealed selection for functional

HA mutants. Specifically, stop codons were purged to 20% to
45% of their initial frequencies after correcting for error rates
estimated by sequencing the wild-type controls (Fig. 1C). The
incomplete purging of stop codons is likely because genetic com-
plementation due to co-infection (33, 34) enabled the persistence
of some virions with nonfunctional HAs. We also observed selec-
tion against many nonsynonymous mutations (Fig. 1C), with
their frequencies falling to 30% to 40% of their initial values
after error correction.

We next quantified the reproducibility of our deep mutational
scanning across biological and technical replicates. We first used
the deep sequencing data for each replicate to estimate the pref-
erence of each site in HA for all 20 amino acids as described
in ref. 39. Because there are 566 residues in HA, there are
566× 19=10, 754 distinct measurements [the 20 preferences at
each site sum to 1 (39)]. The correlations of the amino acid
preferences between pairs of replicates are shown in Fig. 1D.
The biological replicates were well-correlated, with Pearson’s
R ranging from 0.69 to 0.78. Replicate 1 exhibited the weak-
est correlation with other replicates; this replicate also showed
the weakest selection against stop and nonsynonymous muta-
tions (Fig. 1C), perhaps indicating more experimental noise. The
two technical replicates, 3-1 and 3-2, were only slightly more
correlated than pairs of biological replicates, suggesting that bot-
tlenecking of library diversity during viral passage contributes
most of the experimental noise.

Our Measurements Are Consistent with Existing Knowledge About
HA’s Evolution and Function. How do the HA amino acid pref-
erences measured in our experiments relate to the evolution of
H3N2 influenza virus in nature? This question can be addressed
by evaluating how well an experimentally informed codon sub-
stitution model (ExpCM) using our measurements describes
H3N2 evolution compared with standard substitution models
(35, 40). Table 1 shows that an ExpCM using the across-replicate
average of our measurements greatly outperforms conventional
substitution models. This result indicates that our experiments
authentically capture some of the constraints on HA evolu-
tion. A substitution model in which the amino acid preferences

A

B C D

Fig. 1. Deep mutational scanning of the Perth/2009 H3 HA. (A) We generated mutant virus libraries using a helper-virus approach (10) and passaged the
libraries at low MOI to establish a genotype–phenotype linkage and to select for functional HA variants. Deep sequencing of the variants before and after
selection allowed us to estimate each site’s amino acid preferences. (B) The experiments were performed in full biological triplicate. We also passaged
and deep sequenced library 3 in duplicate. (C) Frequencies of nonsynonymous, stop, and synonymous mutations in the mutant plasmid DNA, the passaged
mutant viruses, and wild-type DNA and virus controls. (D) The Pearson correlations among the amino acid preferences estimated in each replicate.
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Table 1. Substitution models informed by the experiments
describe HA’s evolution better than traditional models

Model ∆AIC LnL Stringency ω

ExpCM 0.0 −8,441 2.47 0.91
GY94 M5 2,094 −9,482 — 0.36 (0.30, 0.84)
ExpCM, site average 2,501 −9,692 0.67 0.32
GY94 M0 2,536 −9,704 — 0.31

Shown are the maximum likelihood phylogenetic fits to an alignment of
human H3N2 HAs using ExpCM (35), ExpCM in which the experimental mea-
surements are averaged across sites (site average), and M0 and M5 versions
of the Goldman–Yang (GY94) model (36). Models are compared by Akaike
information criterion (AIC) (37) computed from the log likelihood (LnL) and
number of model parameters. The ω parameter is dN/dS for the Goldman–
Yang models and the relative dN/dS after accounting for the measurements
for the ExpCM. For the M5 model, we give the mean followed by the shape
and rate parameters of the gamma distribution over ω.

were averaged across all sites (ExpCM, site average) performs
no better than conventional substitution models, demonstrat-
ing that the reason that our measurements are informative is
because they capture site-specific constraints. The relative rate of

nonsynonymous to synonymous substitutions (dN/dS or ω) is
�1 for conventional substitution models (Table 1). However,
the relative rate of nonsynonymous to synonymous substitutions
after accounting for the amino acid preferences measured in
our experiments (ω for the ExpCM) is close to 1 (Table 1),
indicating that most purifying selection against nonsynonymous
substitutions is accounted for in the deep mutational scanning.
The ExpCM stringency parameter (35) is 2.47 (Table 1), indi-
cating that natural selection favors the same amino acids as the
experiments but with greater stringency. Throughout the rest of
this paper, we use the amino acid preferences rescaled (35, 40) by
this stringency parameter. These rescaled preferences are shown
in Fig. 2.

Examination of Fig. 2 reveals that the experimentally mea-
sured amino acid preferences generally agree with existing
knowledge about HA’s structure and function. For instance, sites
that form structurally important disulfide bridges (sites 52 and
277, 64 and 76, 97 and 139, 281 and 305, 14 and 137-HA2, 144-
HA2 and 148-HA2) (43) strongly prefer cysteine. At residues
involved in receptor binding, there are strong preferences for
the amino acids that are known to be involved in binding sialic
acid, such as Y98, D190, W153, and S228 (44–47). A positively

domain (DOM) epitope site? (epi)

HA1 ecto. HA2 ecto. TM cyto. tail sig. pep. epitope non-epitope
epi

DOM

epi
DOM

epi
DOM

epi
DOM

epi
DOM

epi
DOM

epi
DOM

-16 -6 5 15 25 35 45 55 65

75 85 95 105 115 125 135 145

155 165 175 185 195 205 215 225

235 245 255 265 275 285 295 305

315 325 (HA2)6 (HA2)16 (HA2)26 (HA2)36 (HA2)46 (HA2)56

(HA2)66 (HA2)76 (HA2)86 (HA2)96 (HA2)106 (HA2)116 (HA2)126 (HA2)136

(HA2)146 (HA2)156 (HA2)166 (HA2)176 (HA2)186 (HA2)196 (HA2)206 (HA2)216

Fig. 2. The site-specific amino acid preferences of the Perth/2009 HA measured in our experiments. The height of each letter is the preference for that
amino acid, after taking the average over experimental replicates and rescaling (35) by the stringency parameter in Table 1. The sites are in H3 numbering.
The top overlay bar indicates whether or not a site is in the set of epitope residues delineated in ref. 38. The bottom overlay bar indicates the HA domain
(sig. pep., signal peptide; HA1 ecto., HA1 ectodomain; HA2 ecto., HA2 ectodomain; TM, transmembrane domain; cyto. tail, cytoplasmic tail). The letters
directly above each logo stack indicate the wild-type amino acid at that site.
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charged amino acid at site 329 is important for cleavage of the
HA0 precursor into the mature form (48), and this site strongly
prefers arginine.

However, there are also some differences between the amino
acid preferences measured in our experiments and amino acid
frequencies in natural H3 HA sequences (see SI Appendix, Fig.
S3). Most surprisingly, the start codon does not show a partic-
ularly strong preference for methionine (Fig. 2). We validated
that a virus carrying a mutation at this site from methionine
to lysine does in fact reach appreciable titers (see SI Appendix,
Fig. S4), perhaps because of alternative translation-initiation at
a downstream or upstream start site as has been described for
other HAs (49). Our measurements also suggest mutational tol-
erance at some other sites that are relatively conserved among
natural HAs, such as the N-linked glycosylation motifs near the
beginning of HA1 and the transmembrane domain (Fig. 2). We
validated that viruses with mutations to the glycosylation motifs
at sites 22 or 38, or a site in the transmembrane domain, do in
fact grow to high titers (SI Appendix, Figs. S5 and S6, respec-
tively). The disparity between the relative conservation of these
sites in nature and their mutational tolerance in our study could
be because cell culture does not fully capture the constraints on
HA function in nature or could be because these sites are not
under strong immune pressure and so mutations at them are not
positively selected in nature.

There Is Less Difference in Mutational Tolerance Between the HA
Head and Stalk Domains for H3 than for H1. Our experiments mea-
sure which amino acids are tolerated at each HA site under
selection for viral growth. We can therefore use our experimen-
tally measured amino acid preferences to calculate the inherent
mutational tolerance of each site, which we quantify as the Shan-
non entropy of the rescaled preferences. In prior mutational
studies of H1 HAs, the stalk domain was found to be substan-
tially less mutationally tolerant than the globular head (10, 23,
24, 50).

We performed a similar analysis using our new data for the
Perth/2009 H3 HA. Surprisingly, the head domain of the H3
HA is not more mutationally tolerant than the stalk domain

(Fig. 3). Specifically, whereas solvent-exposed residues in the
head domain are substantially more mutationally tolerant than
those in the stalk domain for the WSN/1933 H1 HA, the trend is
actually reversed for the Perth/2009 H3 HA (Fig. 3B). This dif-
ference between the relative mutational tolerances of the H1 and
H3 HAs is robust to the cutoff used to define surface residues
(see SI Appendix, Fig. S7). For instance, for the H3 HA, the short
helix A in the stalk domain is as mutationally tolerant as many
surface-exposed residues in the head domain—something that is
not the case for the H1 HA. Helix A forms part of the epitope of
many broadly neutralizing antistalk antibodies (51–53).

We also see high mutational tolerance in many of the known
antigenic regions of H3 HA (54). For instance, antigenic region
B is an immunodominant area, and many recent major anti-
genic drift mutations have occurred in this region (14, 15, 55).
We find that the most distal portion of the globular head near
the 190-helix, which is part of antigenic region B, is highly tol-
erant of mutations (Fig. 3A). Antigenic region C is also notably
mutationally tolerant.

Many residues inside HA’s receptor binding pocket are known
to be highly functionally constrained (45, 56), and our data indi-
cate that these sites are relatively mutationally intolerant in both
H3 and H1 HAs (Fig. 3A). In contrast, the residues surround-
ing the receptor binding pocket are fairly mutationally tolerant,
which may contribute to the rapidity of influenza’s antigenic evo-
lution, since mutations at these sites can have large effects on
antigenicity (14, 54).

Our Measurements Can Help Distinguish Between Mutations That
Reach Low and High Frequencies in Nature. Mutations occurring
in the H3N2 virus population experience widely varying evolu-
tionary fates (Fig. 4). Some mutations appear, spread, and fix in
the population, while others briefly circulate before disappear-
ing. We take the maximum frequency reached by a mutation
as a coarse indicator of its effect on fitness, since favorable
mutations generally reach higher frequencies than unfavorable
ones (57). Here, we follow the population genetic definition of
“mutation” and track the outcome of each individual mutation
event; for example, although R142G occurs multiple times on the

A B

Fig. 3. Mutational tolerance of each site in H3 and H1 HAs. (A) Mutational tolerance as measured in the current study is mapped onto the structure of the
H3 trimer [Protein Data Bank (PDB) ID code 4O5N (41)]. Mutational tolerance of the WSN/1933 H1 HA as measured in ref. 10 is mapped onto the structure
of the H1 trimer [PDB ID code 1RVX (42)]. Different color scales are used because measurements are comparable among sites within the same HA but not
necessarily across HAs. Both trimers are shown in the same orientation. For each HA, the structure at Left shows a surface representation of the full trimer,
while the structure at Right shows a ribbon representation of just one monomer. The sialic acid receptor is shown in red sticks. (B) The mutational tolerance
of solvent-exposed residues in the head and stalk domains of the Perth/2009 H3 HA (purple) and WSN/1933 H1 HA (gold). Residues falling in between the
two cysteines at sites 52 and 277 were defined as belonging to the head domain, while all other residues were defined as the stalk domain. A residue was
classified as solvent exposed if its relative solvent accessibility was ≥0.2. The results are robust to the choice of solvent accessibility cutoff (see SI Appendix,
Fig. S7). Note that the mutational tolerance values are not comparable between the two HAs but are comparable between domains of the same HA.
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Fig. 4. Frequency trajectories of individual mutations and their relation to
the experimentally measured effects of these mutations. Top shows the sub-
set of the full H3N2 HA tree in SI Appendix, Fig. S8 from 2004 to 2014. Circles
indicate individual amino acid mutations and are colored according to the
mutational effect measured in our deep mutational scanning (negative val-
ues indicate mutations measured to be deleterious to viral growth). The
Perth/2009 strain is labeled with a star, and nodes in the clade containing
the Perth/2009 strain were excluded from our analyses. Bottom shows the
frequency trajectory of each mutation, with trajectories colored according
to the mutational effects as in Top. It is clear that most mutations that reach
high frequency are measured to be relatively favorable in our experiments.
SI Appendix, Fig. S11 shows a similar layout but colors mutations by whether
they are in HA’s head or stalk domain.

phylogeny, we track each of these mutations occurring on differ-
ent backgrounds separately. As such, each mutation is shown as a
separate circle on a separate branch in Fig. 4. However, because
multiple mutations on the same phylogeny branch cannot be dis-
entangled, when multiple mutations occurred on a single branch,
we assigned a single mutational effect based on the sum of effects
of each mutation.

After annotating mutations and their frequencies on the phy-
logeny in this way (Fig. 4), it is visually obvious that there
are relatively few circulating mutations that we measure to be
strongly deleterious—and that such deleterious mutations rarely
reach high frequency when they do occur.

We next sought to quantify the correlation between a muta-
tion’s experimentally measured effect and the maximum fre-
quency it attained during natural evolution. To calculate a given
mutation’s effect, we simply took the logarithm of the ratio of
the preferences for the mutant and wild-type amino acids at
that site. To minimize effects related to the genetic background
of the strain used in the experiment, we excluded mutations
closely related to the experimental strain itself and partitioned
the remaining mutations into 1,022 mutations predating and 299
mutations postdating the Perth/2009 strain (see SI Appendix, Fig.
S8). We additionally excluded mutations from the post-Perth
partition that were sampled in 2014 or after, since these muta-
tions have not had enough time for their evolutionary fates to
be fully resolved. We used these pre-Perth and post-Perth par-
titions to test the utility of our measurements for both post
hoc and prospective analyses, respectively. We quantified the
relationship between mutational effects and maximum muta-
tion frequencies in the H3N2 phylogeny via Spearman rank

correlation (Fig. 5A). In both pre-Perth and post-Perth time peri-
ods, we found a modest but statistically significant relationship
between mutational effect and maximum mutation frequency
(pre-Perth ρ=0.17, post-Perth ρ=0.15). The similar effect sizes
for both the pre- and post-Perth partitions show that our exper-
imental measurements can help explain the evolutionary fates
of mutations in strains that postdate the experimentally studied
strain as well as to retrospectively analyze mutations that precede
the experimental strain.

Many of the HAs in sequence databases are from viral iso-
lates that were passaged in cell culture or eggs, which can
cause laboratory-adaptation mutations that confound evolution-
ary analyses (58). To check that our results were robust to
such laboratory-adaptation mutations, we repeated our analy-
sis using only HA sequences derived from viruses that had not
been passaged in the laboratory. Because sequencing of unpas-
saged primary isolates has only recently become commonplace,
we could only perform this analysis for the post-Perth partition of
the phylogenetic tree. Fig. 5A shows that the correlation between
our measured mutational effects and the maximum frequency
was even stronger for mutations from unpassaged viral isolates
(ρ=0.24).

The trends in Fig. 5A are most strongly driven by the behavior
of substantially deleterious mutations. We investigated this fur-
ther by partitioning mutations into those that reach low, medium,
and high frequencies and those that fix in the population (Fig.
5B). The mutations that reach higher frequencies have a more
favorable mean effect. Mutations measured to be substantially
deleterious almost never reach high frequency. Overall, these
results demonstrate that measurements of how mutations affect
viral growth in cell culture are informative for understanding the
fates of these mutations in nature: In particular, if a mutation is
measurably deleterious to viral growth, that mutation is unlikely
to prosper in nature.

Measurements Made on an H1 HA Are Less Informative for Under-
standing the Evolution of H3 Influenza. To determine how broadly
experimental measurements can be generalized across HAs, we
repeated the foregoing analysis of H3N2 mutation frequencies
but using mutational effects measured in our prior deep muta-
tional scanning of the WSN/1933 H1 HA (10) (see SI Appendix,
Fig. S9), which is highly diverged from the Perth/2009 H3 HA
(the two HAs only have 42% protein sequence identity). Fig. 6
shows that the correlations between the H1 experimental mea-
surements and the maximum frequency that mutations reach
during H3N2 viral evolution are consistently weaker than those
using H3 experimental measurements (compare Fig. 6 to Fig.
5A). Therefore, the utility of an experiment for understand-
ing natural evolution degrades as the experimental sequence
becomes more diverged from the natural sequences that are
being studied.

There Are Large Differences Between H3 and H1 HAs in the Amino
Acid Preferences of Many Sites. An obvious hypothesis for why the
H1 deep mutational scanning is less useful for understanding the
evolution of H3N2 influenza viruses is that the effect of the same
mutation is often different between these two HA subtypes. To
determine if this is the case, we examined how much the amino
acid preferences of homologous sites have shifted between H3
and H1 HAs. Prior experiments have found only modest shifts in
amino acid preferences between two variants of influenza nucle-
oprotein with 94% amino acid identity (59) and variants of HIV
envelope (Env) with 86% amino acid identity (27). However, the
H1 and H3 HAs are far more diverged, with only 42% amino
acid identity (Fig. 7A). One simple way to investigate the extent
of shifts in amino acid preferences is to correlate measurements
from independent deep mutational scanning replicates on H1
and H3 HAs. Fig. 7B shows that replicate measurements on the
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Fig. 5. Experimental measurements are informative about the evolutionary fate of viral mutations. (A) Correlation between the effects of mutations as
measured in our deep mutational scanning of the Perth/2009 HA and the maximum frequency reached by these mutations in nature. The plots show
Spearman ρ and an empirical P value representing the proportion of 10,000 permutations of the experimental measurements for which the permuted ρ
was greater than or equal to the observed ρ. (B) The distribution of mutational effects partitioned by maximum mutation frequency. The vertical black line
shows the mean mutation effect for each category. The analysis is performed separately for pre-Perth/2009, post-Perth/2009, and unpassaged isolates from
the post-Perth/2009 partitions of the tree (see SI Appendix, Fig. S8).

same HA variant are more correlated than those on different
HA variants.

To more rigorously quantify shifts in amino acid preferences
after correcting for experimental noise, we used the statistical
approach in refs. 27 and 59. Fig. 7C shows the distribution of
shifts in amino acid preferences between H3 and H1 HAs after
correcting for experimental noise. Although some sites have
small shifts near zero, many sites have large shifts. These shifts
between H3 and H1 are much larger than expected from the
null distribution that would be observed purely from experimen-
tal noise. They are also much larger than the shifts previously
observed between two HIV Envs with 86% amino acid identity
(27). However, the typical shift between H3 and H1 is still smaller
than that observed when comparing HA to the nonhomologous
HIV Env protein. Therefore, there are very substantial shifts
in mutational effects between highly diverged HA homologs,
although the effects of mutations remain more similar than for
nonhomologous proteins.

Properties Associated with the Shifts in Amino Acid Preferences
Between H3 and H1 HAs. What features distinguish the sites with
shifted amino acid preferences between H3 and H1 HAs? The

sites of large shifts do not obviously localize to one specific
region of HA’s structure (Fig. 8A). However, at the domain
level, sites in HA’s stalk tend to have smaller shifts than sites
in HA’s globular head (Fig. 8B). The HA stalk domain is also
more conserved in sequence (60), suggesting that conservation
of amino acid sequence is correlated with conservation of amino
acid preferences. Consistent with this idea, sites that are abso-
lutely conserved across all 18 HA subtypes are significantly less
shifted than sites that are variable across HA subtypes (Fig. 8B).
Presumably these sites are under consistent functional constraint
across all HAs.

Despite their high sequence divergence, H1 and H3 adopt very
similar protein folds (61, 62). However, there are differences in
the rotation and upward translation of the globular head sub-
domains relative to the central stalk domain among different
HA subtypes (61, 62). Previous work has defined clades of struc-
turally related HA subtypes (61, 62). One such clade includes
H1, H2, H5, and H6, whereas another clade includes H3, H4,
and H14 HAs (Fig. 7A). Sites that are conserved at different
amino acid identities in these two clades tend to have excep-
tionally large shifts in amino acid preferences (Fig. 8B). The
clade containing H1 has an upward translation of the globular

pre-Perth/2009 post-Perth/2009 post-Perth/2009
(unpassaged)

-20 -10 0 10 20 -20 -10 0 10 20 -20 -10 0 10 20
mutational effectmutational effect mutational effect

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

 fr
eq

ue
nc

y

Fig. 6. Experimental measurements on an H1 HA are less informative about the evolutionary fate of H3N2 mutations. This figure repeats the analysis of
the H3N2 mutation frequencies in Fig. 5A but uses the deep mutational scanning data for an H1 HA as measured in ref. 10. SI Appendix, Fig. S10 shows the
histograms comparable to those in Fig. 5B. The empirical P value represents the result of 1,000 permutations.
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Fig. 7. There are large shifts in the effects of mutations between H1 and H3 HAs. (A) Phylogenetic tree of HA subtypes, with the WSN/1933 H1 and
Perth/2009 H3 HAs labeled. (B) All pairwise correlations of the amino acid preferences measured in the three individual deep mutational scanning replicates
in the current study and the three replicates in prior deep mutational scanning of the H1 HA (10). Comparisons between H3 replicates are in purple, those
between H1 replicates are in brown, and those across H1 and H3 replicates are in gray. R indicates the Pearson correlation coefficient. (C) We calculated the
shift in amino acid preferences at each site between H3 and H1 HAs using the method in ref. 27 and plotted the distribution of shifts for all sites. The shifts
between H3 and H1 (yellow) are much larger than the null distribution (blue) expected if all differences are due to experimental noise. The shifts are also
much larger than those previously observed between two variants of HIV Env that share 86% amino acid identity (pink). However, the shifts between H3
and H1 are less than the differences between HA and HIV Env (green).

head relative to the clade containing H3. This structural shift
has been attributed largely to the interaction between sites 107
and 75(HA2) (61, 62). Specifically, the clade containing H1 has
a taller turn in the interhelical loop connecting helix A and helix
B in the stalk domain, and this tall turn is stabilized by a hydro-
gen bond between Glu-107 and Lys-75(HA2) (Fig. 8C). In deep
mutational scanning of the H1 HA, site 107 has a high prefer-
ence for Glu and 75(HA2) strongly prefers positively charged
Lys and Arg. In contrast, the interhelical loop in H3 HA makes a
sharper and shorter turn that is facilitated by a Gly at 75(HA2).
In the deep mutational scanning of the Perth/2009 H3 HA, site
75(HA2) prefers Gly and to a lesser extent Val, while site 107 is
fairly tolerant of mutations. Therefore, some of the shifts in HA
amino acid preferences can be rationalized in terms of changes
in HA structure.

Discussion
We have measured the effects of all possible single amino acid
mutations to the Perth/2009 H3 HA on viral growth in cell
culture and demonstrated that these measurements have some
value for understanding the evolutionary fate of these muta-
tions in nature. Specifically, mutations measured to be more
beneficial for viral growth tend to reach higher frequencies in
nature than mutations measured to be more deleterious for viral
growth. The fact that our experiments can help identify evolu-
tionarily successful mutations suggests that they might inform
evolutionary forecasting. In their landmark paper introducing
predictive viral fitness models that accounted for both anti-
genic and nonantigenic mutations, Łuksza and Lässig (9) noted
that the models could in principle be improved by integrating
“diverse genotypic and phenotypic data” that more realistically
represented the effects of specific mutations. Our work sug-
gests that deep mutational scanning may be able to provide
such data.

It is important to emphasize that measurements of viral growth
in cell culture do not represent true fitness in nature. Indeed,
a vast amount of work in virology has chronicled the ways in
which experiments can select for laboratory artifacts or fail to

capture important pressures that are relevant in nature (63–66).
As an example, although we identified G78D as favorable for
viral growth in cell culture, this mutation never fixes in nature.
Mutations in viral genes other than HA are also important in
determining strain success (67, 68). Given these caveats, it might
seem surprising that measuring viral growth in cell culture can
be informative about the success of viral strains in nature. How-
ever, before our work, there were no comprehensive studies of
the functional effects of mutations to H3 HA on any property
that even resembled viral fitness in nature, and modeling work
has either omitted the nonantigenic effects of mutations (11–
13) or assumed that all nonepitope mutations had equivalent
deleterious effects (9). The strength of our measurements are
not that they perfectly capture fitness in nature but that they
are systematic and quantitative—and so represent an improve-
ment over no information at all. We suspect that performing
similar experiments using more realistic and complex selections
(e.g., ferrets or primary human airway cultures) might further
improve their utility and possibly their generalizability to more
divergent strains.

We measured the effects of all single amino acid mutations
to a specific HA and then generalized these measurements to
other H3N2 HAs from a 50-y timespan. These generalizations
will only be valid to the extent that the effects of mutations
are conserved during HA’s evolution. Extensive prior work has
shown that epistasis can shift the effects of mutations as pro-
teins evolve (69–75). Our work suggests that measurements on
a HA from a single human H3N2 viral strain can be usefully gen-
eralized to at least some extent across the entire evolutionary
history of human H3N2 HA. On the other hand, when we com-
pared our measurements for an H3 HA to prior measurements
on H1 HA, we found substantial shifts at many sites—much
greater than those observed in prior protein-wide comparisons
of more closely related homologs (27, 59). Further investiga-
tion of how mutational effects shift as proteins diverge will
be important for determining how broadly any given experi-
ment can be generalized when attempting to make evolutionary
forecasts.
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Fig. 8. Sites with strongly shifted amino acid preferences between H3 and
H1 HAs. (A) The shift in amino acid preferences between the H3 and H1 HA
at each site as calculated in Fig. 7C is mapped onto the structure of the H3
HA. (B) Amino acid preferences of sites in the stalk domain are less shifted
than those in the head domain. Sites absolutely conserved in all 18 HA sub-
types are less shifted than other sites. Sites with one amino acid identity in
the clade containing H1, H2, H5, and H6 and another identity in the clade
containing H3, H4, and H14 are more shifted than other sites. (C) Sites 107
and 75(HA2) help determine the different orientation of the globular head
domain in H1 versus H3 HAs. These sites are shown in spheres on the struc-
ture of H1 and H3 and colored as in A, and the experimentally measured
amino acid preferences in the H1 and H3 HAs are shown. One monomer
is in dark gray, while the HA1 domain of the neighboring monomer is in
lighter gray.

Our work did not characterize the antigenic effects of muta-
tions, which also play an important role in determining strain
success in nature (13, 14). However, our basic selection and
deep-sequencing approach can be harnessed to completely map
how mutations affect antibody recognition (76, 77). But so far,
experiments using this approach have not examined antibod-
ies or sera that are relevant to driving the evolution of H3N2
influenza (76, 77) or have used relevant sera but examined a non-
comprehensive set of mutations (16). Future experiments that
completely map how HA mutations affect recognition by human
sera seem likely to be especially fruitful for informing viral
forecasting.

Materials and Methods
Data and Computer Code. Deep sequencing data are available from the
Sequence Read Archive under BioSample accession nos. SAMN08102609
and SAMN08102610. Computer code used to analyze the data are at
https://github.com/jbloomlab/Perth2009-DMS-Manuscript.

HA Numbering. Sites are in H3 numbering, with the signal peptide in neg-
ative numbers, HA1 in plain numbers, and HA2 denoted with “(HA2).”
Sequential 1, 2, ... numbering of the Perth/2009 HA can be converted to
H3 numbering by subtracting 16 for the HA1 subunit and subtracting 345
for the HA2 subunit.

Creation of MDCK–SIAT1–TMPRSS2 Cells. When growing influenza virus in
cell culture, trypsin is normally added to cleave HA into its mature form.
To obviate the need for trypsin, we engineered MDCK–SIAT1 cells and
MDCK–SIAT1–CMV–PB1 (78) cells to constitutively express the TMPRSS2 pro-
tease, which cleaves and activates HA in the human airways (31, 32).

The human TMPRSS2 cDNA ORF was ordered from OriGene (NM 005656)
and cloned into a pHAGE2 lentiviral vector under an EF1α-Int pro-
moter followed by an IRES driving expression of mCherry to create
plasmid pHAGE2–EF1aInt–TMPRSS2–IRES–mCherry-W. We used the lentivi-
ral vector to transduce MDCK–SIAT1 or MDCK–SIAT1–CMV–PB1 cells and
sorted an intermediate mCherry-positive population by flow cytometry.
We refer to the sorted bulk population as MDCK–SIAT1–TMPRSS2 cells
or MDCK–SIAT1–CMV–PB1–TMPRSS2 cells. There is no selectable marker
for the TMPRSS2; however, we maintain the cells at low passage num-
ber and have seen no indication that they lose their ability to sup-
port the growth of viruses with H3 HAs in the absence of exogenous
trypsin.

Generation of HA Codon Mutant Plasmid Libraries. HA and NA genes for the
Perth/2009 viral strain were cloned from recombinant virus obtained from
BEI Resources (NR-41803) into the pHW2000 (79) influenza reverse-genetics
plasmids to create pHW-Perth09-HA and pHW-Perth09-NA.

We initially created a virus with the HA and NA from Perth/2009 and
internal genes from WSN/1933 and passaged it in cell culture to test its
genetic stability. To generate this virus, we transfected a coculture of 293T
and MDCK–SIAT1–TMPRSS2 in D10 media (DMEM, supplemented with 10%
heat-inactivated FBS, or fetal bovine serum, 2 mM L-glutamine, 100 U of
penicillin per milliliter, and 100 µg of streptomycin per milliliter) with
equal amounts of pHW-Perth09-HA, pHW-Perth09-NA, the pHW18* series of
plasmids (79) for all non-HA/NA viral genes, and pHAGE2–EF1aInt–TMPRSS2–
IRES-mCherry-W. The next day, we changed the media to influenza growth
media (IGM, consisting of Opti-MEM supplemented with 0.01% heat-
inactivated FBS, 0.3% BSA, 100 U of penicillin per milliliter, 100 µg of
streptomycin per milliliter, and 100 µg of calcium chloride per milliliter; no
trypsin was added since there was TMPRSS2) and then collected the viral
supernatant at 72 h posttransfection. This viral supernatant was blind pas-
saged in MDCK–SIAT1–TMPRSS2 a total of six additional times. We isolated
viral RNA from these passaged viruses and sequenced the HA gene. The pas-
saged HA had two mutations, G78D and T212I, which enhanced viral growth
as shown in SI Appendix, Fig. S1. The HA with these two mutations was
cloned into pHW2000 (79) and pICR2 (80) to create pHW-Perth09-HA-G78D-
T212I and pICR2-Perth09-HA-G78D-T212I. For all subsequent experiments,
we used viruses with the HA containing these two mutations to improve
titers and viral genetic stability, and this is the HA that we refer to as
Perth/2009. We used all non-HA genes (including NA) from WSN/1933 to
help increase titers and reduce biosafety concerns.

The codon-mutant libraries were generated using the approach in ref. 81
with the modifications in ref. 82. See SI Appendix, Supplementary Text for
full details.

Generation and Passaging of Mutant Viruses. The mutant virus libraries were
generated using the helper-virus approach described in ref. 10 with sev-
eral modifications, most notably the cell line used. Briefly, we transfected
5× 105 MDCK–SIAT1–TMPRSS2 cells in suspension with 937.5 ng each of
four protein expression plasmids encoding the ribonucleoprotein complex
(HDM–Nan95–PA, HDM–Nan95–PB1, HDM–Nan95–PB2, and HDM–Aichi68–
NP) (71) and 1,250 ng of one of the three pICR2-mutant-HA libraries (or
the wild-type control) using Lipofectamine 3000 (ThermoFisher L3000008).
We allowed the transfected cells to adhere in six-well plates and 4 h later
changed the media to D10 media. Eighteen hours after transfection, we
infected the cells with the WSN/1933 HA-deficient helper virus (10) by
preparing an inoculum of 500 TCID50 per microliter of helper virus (as com-
puted on HA-expressing cells) in IGM, aspirating the D10 media from the
cells, and adding 2 mL of the helper-virus inoculum to each well. After 3 h,
we changed the media to fresh IGM. At 24 h after helper-virus infection, we
harvested the viral supernatants for each replicate, froze aliquots at –80◦C,
and titered them in MDCK–SIAT1–TMPRSS2 cells. The titers were 92, 536,
536, and 734 TCID50 per microliter for the three library replicates and the
wild-type control, respectively.

We passaged 9× 105 TCID50 of the transfection supernatants at an MOI
of 0.0035 TCID50 per cell. To do this, we plated 4.6× 106 MDCK–SIAT1–
TMPRSS2 cells per dish in fifteen 15-cm dishes in D10 media and allowed the
cells to grow for 24 h, at which time they were at ∼ 1.7× 107 cells per dish.
We replaced the media in each dish with 25 mL of an inoculum of 2.5 TCID50

of virus per microliter in IGM. Three hours postinfection, we replaced the
inoculum with fresh IGM for replicates 1, 2, and 3-2. We did not perform a
media change for replicate 3-1. As can be seen in Fig. 1D, the media change
does not appear to have a substantial effect, as replicate 3-1 looks compa-
rable to the other replicates. We collected viral supernatant for sequencing
48 h postinfection.
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Barcoded Subamplicon Sequencing. To extract viral RNA from the three repli-
cate HA virus libraries and the wild-type HA virus, we clarified the viral
supernatant by centrifuging at 2,000 × g for 5 min, then ultracentrifuged
24 mL of the clarified supernatant at 22,000 rpm for 1.5 h at 4◦C in a
Beckman Coulter SW28 rotor, and extracted RNA using the Qiagen RNeasy
Mini Kit by resuspending the viral pellet in 400 µL of buffer RLT sup-
plemented with β-mercaptoethanol, pipetting 30 times, transferring the
liquid to a microcentrifuge tube, adding 600 µL 70% ethanol, and pro-
ceeding according to the manufacturer’s instructions. The HA gene was
reverse-transcribed with AccuScript Reverse Transcriptase (Agilent 200820)
using primers P09-HA-For (5′-AGCAAAAGCAGGGGATAATTCTATTAATC-3′)
and P09-HA-Rev (5′-AGTAGAAACAAGGGTGTTTTTAATTACTAATACAC-3′).
The barcoded-subamplicon library prep and deep sequencing were then
performed as in ref. 10. See SI Appendix, Supplementary Text for full
details.

Analysis of Deep Sequencing Data. We used the dms tools2 software pack-
age (39) (https://github.com/jbloomlab/dms tools2, version 2.2.5) to analyze
the deep sequencing data. The amino acid preferences are provided in
Dataset S3. Computer code and detailed plots about read depth and other
quality control metrics are at https://github.com/jbloomlab/Perth2009-DMS-
Manuscript/blob/master/analysis code/analysis notebook.ipynb.

Phylogenetic Model Comparison and Stringency Parameter. Phylogenetic
model comparisons and fitting of a stringency parameter were performed
using phydms as described in ref. 35. See SI Appendix, Supplementary Text
for full details.

Shannon Entropy and Relative Solvent Accessibility. We calculated Shannon
entropy hr for site r as hr =−

∑
x πr,x log(πr,x), where πr,x is the preference

for amino acid x at site r.
We quantified the absolute solvent accessibility of each site of the H3 HA

[PDB ID code 4O5N (41)] or the H1 HA [PDB ID code 1RVX (42)] structure
using DSSP (Define Secondary Structure of Proteins) (83). We then normal-
ized to a relative solvent accessibility using the absolute accessibilities in
ref. 84.

Quantification of Mutational Effects. The effect of mutating site r from
amino acid a1 to a2 was quantified as

log2

πr,a2

πr,a1

, [1]

where πr,a1 and πr,a2 are the rescaled preferences for amino acids a1 or a2 at
site r as shown in Fig. 2. The WSN/1933 H1 HA amino acid preferences are the
replicate-average values reported in ref. 10, rescaled by a stringency param-
eter of 2.05 (see https://github.com/jbloomlab/dms tools2/blob/master/
examples/Doud2016/analysis notebook.ipynb).

H3N2 Phylogenetic Tree and Maximum Mutation Frequencies. The pylo-
genetic tree was generated using Nextstrain’s augur pipeline (85), and
ancestral state reconstruction and branch length timing were performed
with TreeTime (86). Frequency trajectories of mutations were estimated fol-
lowing Nextstrain’s augur pipeline as first implemented in Nextflu (87). See
SI Appendix, Supplementary Text for full details.

Analysis of Mutational Shifts. We compared the preferences for the
Perth/2009 H3 and WSN/1933 H1 HAs using the approach in ref. 27. See SI
Appendix, Supplementary Text for full details.

Validation of Individual Point Mutants. To validate the viral growth of
Perth/2009 HA point mutants M(-16)K, C52A, C52C, T24F, T40V, S287A, and
C199(HA2)K, we examined the supernatant titers of each of these variants
after reverse-genetics generation in the context of PB1flank-GFP viruses (78,
88). See SI Appendix, Supplementary Text for full details.
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