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SUMMARY
The SARS-CoV-2 pandemic has resulted in numerous virus variants, some of which have altered receptor-
binding or antigenic phenotypes. Here, we quantify the degree to which adaptive evolution is driving the
accumulation of mutations across the genome. We correlate clade growth with mutation accumulation,
compare rates of nonsynonymous to synonymous divergence, assess temporal clustering of mutations,
and evaluate the evolutionary success of individual mutations. We find that spike S1 is the focus of adaptive
evolution but also identify positively selectedmutations in other proteins (notably Nsp6) that are sculpting the
evolutionary trajectory of SARS-CoV-2. Adaptive changes in S1 accumulated rapidly, resulting in a remark-
ably high ratio of nonsynonymous to synonymous divergence that is 2.53 greater than that observed in influ-
enza hemagglutinin HA1 at the beginning of the 2009 H1N1 pandemic. These findings uncover a high degree
of adaptation in S1 and suggest that SARS-CoV-2 might undergo antigenic drift.
INTRODUCTION

After 20 months of global circulation, basal lineages of SARS-

CoV-2 have been almost completely replaced by derived, variant

lineages. These lineages are classified by theWorld Health Orga-

nization as variants of concern (VOCs) or variants of interest

(VOIs) on the basis of genetic, phenotypic, and epidemiological

differences (Konings et al., 2021). The effort to track the spread

of these variants (and of the pandemic in general) through

genomic epidemiology has resulted in a massive corpus of

sequenced viral genomes. In the GISAID EpiCoV database

alone, there are 2.5 million sequences and counting as of the

end of July 2021 (Shu and McCauley, 2017). This thorough sam-

pling offers an opportunity to investigate the evolutionary dy-

namics of a virus as it entered a naive population, spread

rampantly, and subsequently began to transmit through previ-

ously exposed hosts. Here, we are particularly interested in

whether SARS-CoV-2 viruses show phylogenetic evidence of

adaptive evolution during the first year and a half of transmission

in humans.

Seasonal influenza and seasonal coronaviruses both exhibit

continual adaptive evolution during endemic circulation in the

human population. In the case of influenza H3N2, transmission

through an exposed host population results in adaptive evolution

within hemagglutinin (HA). The HA1 subunit of HA both mediates

binding to host cell receptors and is the primary target for

neutralizing antibodies. Thus, in the context of an exposed

host, selection for receptor binding avidity (Hensley et al.,
Cell Ho
2009) and for escape from humoral immunity (Bedford et al.,

2014) drives the fixation of mutations in the HA1 subunit. The co-

ronavirus protein subunit equivalent in function to HA1 is spike

S1. Previously, we showed that at least two seasonal coronavi-

ruses (229E and OC43) exhibit adaptive evolution concentrated

in the S1 subunit of spike (Kistler and Bedford, 2021). By demon-

strating that strong immune responses to a particular historical

isolate of 229E do not neutralize 229E viruses that circulate years

afterward, Eguia et al. confirmed that 229E evolves antigenically

(Eguia et al., 2021).

Standard methods used for detecting adaptive evolution in

seasonal influenza and seasonal coronaviruses rely on the fixa-

tion (or near fixation) of nonsynonymous changes and thus

require years or decades of evolutionary time. These methods

are ill fit to identify early adaptive evolution of a virus that has

experienced a recent spillover event. For example, the common

ancestor of globally circulating SARS-CoV-2 viruses is currently

no earlier than January 2020, corresponding to the base of clade

20A or lineage B.1 (https://nextstrain.org/ncov/gisaid/global).

Here, we present a method for identifying genomic regions un-

dergoing adaptive evolution, which is well suited to early time

points. This method correlates clade success with the accumu-

lation of protein-coding changes in certain genes. Focusing on

the period of VOC and VOI emergence, we apply this method

to SARS-CoV-2 genomic data from December 2019 to

May 2021.

With this method, we aim to present a rigorous quantification

of the evolutionary process during this time and to show that
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the observed success of variant viruses is a result of adaptive

rather than neutral evolution. We conduct these analyses across

the SARS-CoV-2 genome to identify foci of adaptive evolution.

We complement these results with analyses of dN/dS (ratio of

nonsynonymous to synonymous divergence) accumulation,

evolutionary dynamics, and convergent evolution to provide ev-

idence that genetic changes are contributing to viral fitness and

identify genomic regions that are responsible.

RESULTS

Accumulation of nonsynonymous mutations in spike S1
correlates with clade success
RNA viruses are known for their remarkably high error rates and

thus the rapid generation of mutations. Despite possessing

some proof-reading capacity (a relatively rare function for

an RNA virus), SARS-CoV-2 has been accumulating roughly

24–25 substitutions per year (https://nextstrain.org/groups/

blab/ncov/adaptive-evolution/2021-05-15; Hadfield et al.,

2018). The null hypothesis is that these substitutions reflect

neutral evolution: the result of genetic drift acting on randommu-

tations. To determine whether this is true, or whether adaptive

evolution is also contributing to the accumulation of mutations,

we started by comparing substitution rates in different regions

of the genome.

We built a time-resolved phylogeny with a balanced

geographic and temporal distribution of samples, including

9,544 viruses, collected between December 2019 and May

15, 2021 (Figure S1). For every internal branch on the phylog-

eny, we tallied the total number of mutations that occurred

between the phylogeny root and that branch. We grouped

deletion events with nonsynonymous single-nucleotide poly-

morphisms (SNPs) because they are protein changing and

contribute to the evolution of some regions of the genome (Fig-

ure S2). Plotting mutation counts over time shows that spike S1

accumulates nonsynonymous changes at a rate of 8.4 3 10�3

substitutions/codon/year or about 5.5 substitutions/year (Fig-

ure 1A). This is a disproportionate percentage of the genome-

wide estimate of 24 substitutions/year. As a control, we

counted S1 synonymous mutations and found that they accu-

mulate at 2.0 3 10�4 substitutions/codon/year, close to the

naive expectation from the base composition that 22% of mu-

tations should be synonymous. The per-codon rate of nonsy-

nonymous mutation in S1 is roughly 173 higher than in RNA-

dependent RNA polymerase (RdRp).

We hypothesize that adaptive evolution is driving the high rate

of S1 nonsynonymous substitutions relative to S1 synonymous

substitutions and RdRp nonsynonymous substitutions. And,

although each S1 substitution will have a different effect on

fitness, this observation suggests that this class of mutations

is, on average, under positive selection. If this is the case, we

would expect a correlation between S1 substitutions and a

clade’s evolutionary success: clades that happened to accumu-

late more S1 substitutions should have, on average, higher

fitness (and hence faster growth in frequency) than clades that

have accumulated fewer S1 substitutions. On the basis of this

logic, we introduce a method for detecting adaptive evolution,

which looks for genomic regions where mutation accumulation

is associated with clade frequency growth. Because positive
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selection causes alleles or clades to increase in frequency in a

logistic (rather than linear) fashion, we measure logistic growth

rate and plot this against mutation accumulation.

Clade success and the number of nonsynonymous S1 muta-

tions are positively correlated with a correlation coefficient r of

0.46 (Figure 1B). To test whether this correlation is greater than

expected, we randomized the placement of mutations across

branches of the phylogeny and computed a p value between

the empirical r and the distribution of r values from 1,000 ran-

domizations. The positive correlation between S1 mutations

and logistic growth rate is statistically significant in comparison

with the expected distribution (p = 0.003) but is absent for S1

synonymous mutations and is not significant for RdRp substitu-

tions (p = 0.256) (Figure 1C).

We applied this method to every protein encoded by the

SARS-CoV-2 genome (Table 1 and Figure S3A). The highest

nonsynonymous mutation rate is observed in ORF8. However,

ORF8 substitutions are not correlated with clade success

(Table 1), and many lineages acquire premature stop codons in

ORF8, indicating that the high rate of ORF8 substitutions is

most likely due, at least in part, to a lack of functional constraints.

Mutations within other regions of the genome, including spike S2

and nucleocapsid (N), also accumulate at reasonably high levels

but do not correlate well with clade success (Table 1). Besides

S1, only Nsp6 (r = 0.35, p = 0.011) and ORF7a (r = 0.43,

p < 0.001) have a strong correlation with clade growth rates

(Table 1 and Figure S3).

Although ORF7a substitutions appear highly correlated with

clade success, this correlation is driven solely by the rapidly

growing Delta variant, which possesses three mutations in

ORF7a. Removing Delta clades from the analysis drops the r

for ORF7a from 0.43 to 0.16, whereas the r values for S1 and

Nsp6 dip from 0.46 to only 0.41 and from 0.35 to 0.32, respec-

tively. This indicates that the correlation between S1 and Nsp6

substitutions and clade success is a general feature of SARS-

CoV-2 lineages. Thus, the metric presented here provides evi-

dence that SARS-CoV-2 is evolving adaptively and that the pre-

dominant locus of this evolution is spike S1.

The ratio of nonsynonymous to synonymous divergence
is highest in S1
A classical method for assessing the average directionality of

natural selection on some region of the genome is dN/dS,

measuring the divergence of nonsynonymous sites relative to

synonymous sites. A dN/dS value less than 1 indicates that the re-

gion is, on average, under purifying selection, whereas a dN/dS

greater than 1 indicates positive selection on the region.

Because even the most rapidly evolving proteins are still subject

to structural and functional constraints, it is rare for an entire pro-

tein to have a dN/dS ratio greater than 1. For instance, the HA1

subunit of H3N2, which is the prototypical example of an adap-

tively evolving viral protein, has a dN/dS of 0.37 (Wolf et al., 2006).

For various regions of the SARS-CoV-2 genome, we

computed the accumulation of nonsynonymous and synony-

mous divergence in 2-month windows between January 1,

2020, and May 15, 2021 (Figure 2A). This measures the dN/dS

of branches leading to tips sampled within each 2-month win-

dow and captures the progressive enrichment of mutations by

natural selection, i.e., mutations that persist and contribute to

https://nextstrain.org/groups/blab/ncov/adaptive-evolution/2021-05-15
https://nextstrain.org/groups/blab/ncov/adaptive-evolution/2021-05-15


Figure 1. Accumulation of nonsynonymous S1 mutations is correlated with clade success
(A) For every clade in the phylogeny, mutations relative to the root of the phylogeny are tallied and plotted against the date of the base of that clade. Non-

synonymous S1, synonymous S1, and nonsynonymous RdRp mutations are plotted separately. Nonsynonymous mutations include nonsynonymous SNPs and

deletions. The primary axis (left, black ticks) displays mutations per codon, and the secondary axis (right, gray ticks) shows the absolute number of mutations

accumulated in each clade. Each point is colored according to the lineage it belongs to. Points are fit by linear regression.

(B) For every clade, mutation accumulation (as in A) is plotted against logistic growth rate, and the points are fit by linear regression.

(C) The empirical correlation coefficient r between mutation accumulation and logistic growth rate (colored bar) is compared with an expected distribution (gray)

to yield a p value. Expected r values are determined from randomizing mutations across the phylogeny by using a multinomial draw with mutation likelihood

proportional to relative branch length. The results of 1,000 iterations are shown.
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the viral population will be captured in this measure, whereas

mutations that die out will be excluded. The dN/dS ratio within

RdRp, S2, and the structural proteins Envelope (E), Membrane

(M), and Nucleocapsid (N) is consistently under 1 at all time

points (Figure 2B). However, the dN/dS within S1 increases

over time: there was an apparent inflection point in mid-2020,

the dN/dS ratio exceeded 1 in late 2020 and 2021, and the

most recent time point measured at 1.80. For comparison, we

used the same methodology to compute dN/dS for influenza

H3N2, influenza H1N1pdm, and seasonal coronavirus OC43

from 2009 to 2021 (Figure S4). We observe that after the 2009

emergence of influenza H1N1pdm in humans, the dN/dS in HA1

subunit peaked at 0.72 roughly a year after the beginning of

that pandemic and declined in the following 4 years, whereas

endemic viruses H3N2 and OC43 showed relatively stable

dN/dS over this same time period.

The increase over time in SARS-CoV-2 S1 dN/dS could be due

to a variety of reasons. Two non-mutually exclusive hypotheses
include (1) the appearance of a new selective pressure on S1

substitutions and (2) the acquisition of mutations that change

the mutational landscape to be more permissive toward S1 sub-

stitutions. Regardless of the cause, this change suggests a tem-

poral structure to the adaptive evolution in the S1 subunit of

SARS-CoV-2.

Nonsynonymous mutations in spike S1 cluster
temporally
We can see a hint of this temporal structure by tracing individual

mutational paths through the tree from root to tip. Figure S5 plots

the accumulation of nonsynonymous S1 mutations along ten

representative paths, leading to ten different emerging lineages

(Rambaut et al., 2020). Along each of these paths, there appears

to be an initial period of relative quiescence followed by a burst of

S1 substitutions. To test whether this temporal clustering of

mutations differs from what would be expected given the

phylogenetic topology and the total number of observed S1
Cell Host & Microbe 30, 545–555, April 13, 2022 547



Table 1. Genome-wide correlation between nonsynonymous

mutation accumulation and logistic growth rate

Protein

Nonsynonymous evolution rate

(substitutions/codon/year)a rb p Value

Nsp1 0:13 10�3 0.05 0.431

Nsp2 0:23 10�3 �0.10 0.881

Nsp3 1:33 10�3 0.30 0.083

Nsp4 0:83 10�3 0.28 0.057

Nsp5 0:53 10�3 �0.09 0.833

Nsp6 3:43 10�3 0.35 0.011c

Nsp7 0:33 10�3 �0.42 0.998

Nsp8 0:33 10�3 0.04 0.443

Nsp9 0:73 10�3 0.06 0.299

Nsp10 0:13 10�3 �0.05 0.807

RdRp 0:53 10�3 0.15 0.256

Nsp13 0:83 10�3 0.20 0.153

Nsp14 0:33 10�3 �0.03 0.698

Nsp15 0:33 10�3 0.15 0.230

Nsp16 0:33 10�3 �0.22 0.963

S1 8:43 10�3 0.46 0.003c

S2 3:53 10�3 0.24 0.105

ORF3a 1:83 10�3 �0.06 0.865

E 1:63 10�3 0.03 0.388

M 0:73 10�3 0.29 0.045

ORF6 0:23 10�3 0.01 0.528

ORF7a 1:53 10�3 0.43 <0.001c

ORF7b 1:73 10�3 0.22 0.050

ORF8 16:53 10�3 0.19 0.185

N 6:103 10�3 0.21 0.222

ORF9b 2:103 10�3 0.27 0.050
aEvolutionary rate of nonsynonymous substitutions (and deletions) per

codon per year.
bCorrelation coefficient of mutation accumulation with logistic

growth rate.
cStrong correlation. p < 0.025

Figure 2. Ratio of nonsynonymous to synonymous divergence (dN/

dS) is highest in S1

The dN/dS accumulation within various coding regions is calculated over time.

The phylogeny of 9,544 viral sequences is divided into overlapping 2-month

windows between January 1, 2020, and May 15, 2021.

(A) The phylogeny is colored to indicate the paths on which divergence

accumulation is calculated for two of these time windows. The dashed blue

lines indicate the time windows centered at April 1, 2020 (left), and January 1,

2021 (right). Every internal branch within these windows and the phylogenetic

path that connects that branch back to the root is highlighted in red. The

accumulation of divergence is calculated along these paths. Nonsynonymous

divergence is calculated as the nonsynonymous Hamming distance between

the sequence of an internal branch and the root sequence and normalized by

the total possible number of nonsynonymous sites. The same is done for

synonymous divergence.

(B) The dN/dS ratio is calculated for various coding regions within the genome.

Each point shows the mean and 95% confidence interval of this ratio for all

internal branches present in a 2-month window (centered at the date indicated

on the x axis).
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substitutions, we calculated wait times between mutations

(diagrammed in Figure 3A). In brief, we created a null expectation

by running 1,000 iterations of mutation randomization in which

the phylogenetic placement of every observed mutation was

shuffled. The distribution of wait times is dependent on tree to-

pology and the total number of mutations, so the expectation

is different for each category of mutations (Figure S6).

If mutations are clustered, there should be an excess of short

wait times in the empirical data relative to the expectation. This is

what we observe for S1 nonsynonymous mutations, where the

distribution of wait times is left skewed with an overabundance

of short wait times compared with the expected distribution (Fig-

ure 3B). The mean wait time between observed S1 substitutions

is significantly lower than the expected mean wait time

(p < 0.001), but there is no significant difference for S1 synony-

mous or RdRp wait times (Figure 3Ci). This difference is driven

by short wait times because there is a significant difference be-

tween the proportion of observed versus expected wait times

under 0.3 years for S1 nonsynonymous, but not S1 synonymous
548 Cell Host & Microbe 30, 545–555, April 13, 2022
or RdRp, mutations (Figure 3Cii). These results indicate a tempo-

ral structure to the adaptive evolution of SARS-CoV-2 within the

S1 subunit, which is characterized by mutation clustering.

Specific mutations associated with successful clades
We next sought to identify specific adaptive mutations

throughout the genome. We note that convergent evolution is a

good indicator of positive selection because each additional in-

dependent occurrence on the phylogeny of the mutation is

increasingly unlikely under neutral evolution. As other groups

have reported, many mutations shared by the VOCs have arisen

via convergent evolution (van Dorp et al., 2020; Martin et al.,

2021; Rochman et al., 2021). Here, we combine this observation

of convergent evolution with logistic growth rate to find muta-

tions that have arisen in the SARS-CoV-2 population multiple, in-

dependent times and expand into successful clades after each

occurrence.

In this analysis, we focused on the evolutionary dynamics of

SARS-CoV-2 during the period of time between the emergence

of this virus in humans andmid-May 2021.We estimate that, dur-

ing this period of time, VOC viruses were primarily competing

with basal SARS-CoV-2 viruses. This allowed us to examine



Figure 3. S1 substitutions are temporally clustered

(A) Timeline showing accumulation of S1 nonsynonymous, synonymous, and RdRp nonsynonymous mutations between the root and a representative tip (isolate

USA/ME-HETL-J3202/2021); wait times between mutations are illustrated below. The exact date of a mutation is randomly selected along the branch that the

mutation occurs on.

(B) Distribution of wait times between S1 nonsynonymous, S1 synonymous, and RdRp nonsynonymous mutations. Empirical wait times (in color) are plotted

along with expected wait times (gray). Expected wait times are determined from randomizing mutations across the phylogeny by using a multinomial draw with

mutation likelihood proportional to relative branch length. The results of 1,000 iterations are shown.

(C) (i) The mean empirical wait time from 1,000 iterations of the analysis (colored bar) is compared with the distribution of mean expected wait times (gray) to

yield a p value. (ii) The proportion of observed wait times under 0.3 years (colored bar) is compared with the distribution of expected wait times under

0.3 years (gray).
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the overall fitness effects of specific mutations in viral lineages

that are successful during this period of time. After May 2021,

VOCs make up the majority of the global virus population, and

similar analyses on later time points would speak to the relative

competitiveness of the variants.

For every deletion and substitution observed on the phylog-

eny, we tallied the number of independent occurrences and

found the mean logistic growth rate of all clades where this mu-

tation occurred.We limited this analysis to internal brancheswith

15 or more descending samples to limit the influence of stochas-

ticity and sequencing errors that often occur on terminal

branches. As expected, the bulk (84%) of the mutations

occurred just once. Roughly 4% of mutations arose four or

more times, and the majority of these mutations were located

in S1 (Figure 4A). For seven of these convergently evolved muta-

tions, the mean growth rate was higher than the tree-wide

average growth rate. For three of these mutations (S:95I,

S:452R, and ORF1a:3675-3677del), the mean growth rate ex-

ceeded the 90th percentile of mean growth rates expected

from a mutation that occurs the same number of times on a ran-

domized tree (Figure 4B).
This analysis reveals influential mutations during a snapshot of

time in the ongoing adaptive evolution of SARS-CoV-2. In

mid-May 2021, the Delta variant was rising in frequency. Both

S1 mutations that we identified as important drivers of adaptive

evolution (S:95I and S:452R) are present in the Delta variant as

well as a handful of other emerging lineages (Figure S7). The

specific mutations identified by this analysis will vary

over time and depend on a multitude of factors (genetic, epide-

miological, and otherwise) that determine clade success. How-

ever, ORF1a:3675-3677del consistently appears as a top hit

(Figures 4C and S8). Remarkably, this deletion, which ablates

amino acids 106–108 of Nsp6, arose eight independent times,

and emerging lineages descend from each branch that this dele-

tion occurs on (Figure S7).

Because recombination is common in coronaviruses (M€uller

et al., 2022; Turkahia et al., 2021), we investigated the possibility

that these eight occurrences of the ORF1a:3675-3677 deletion

were due to recombination rather than convergent evolution.

We considered all pairs of lineages containing this mutation as

potential recombinants and compared informative mutations in

the potential donor and acceptor. The closest informative
Cell Host & Microbe 30, 545–555, April 13, 2022 549



Figure 4. A 3-amino-acid deletion in Nsp6 displays convergent evolution and occurs in successful clades

(A) Every mutation observed on internal branches of the phylogeny is plotted according to the number of times this mutation occurs on the tree and the mean

logistic growth rate of all clades it occurs in. Convergently evolved mutations that appear four or more times across the phylogeny are shown in the inset. The

average growth rate of all clades is shown with a dotted line.

(B) Observedmean growth rates of convergently evolvedmutations are compared with the mean growth rate expected for amutation occurring on the phylogeny

the same number of times. Convergently evolvedmutations that have amean growth rate falling at or above the 90th percentile of the expected values are labeled.

(C) The analysis shown in (A) was completed for five time points spanning 2 months. Each date represents the maximum date of sequences included in the

analysis. Mutations that occur at least four times (convergent mutations) and result in a higher-than-average mean growth rate are shown in dark yellow. Mu-

tations that display convergent evolution but do not result in high growth rates are in light yellow. The primary analysis was done at time point 2021-05-15 (outlined

in red).

ll
Article
mutations flanking ORF1a:3675-3677del are not shared by any

pairs of lineages, offering a lack of evidence for recombination

and strong support for convergent evolution.

A 3-amino-acid deletion in Nsp6 is associated with
accumulation of S1 substitutions
The ORF1a:3675-3677 deletion in Nsp6 exhibits striking conver-

gent evolution and consistently precedes successful viral

lineages. Because we have shown that accumulation of the S1

mutation is also associated with clade success, we next

asked whether there is a relationship between clades with

ORF1a:3675-3677del and a high number of S1 substitutions.

We created an expectation for the mean number of S1 muta-

tions that should be observed in clades with ORF1a:3675-

3677del by generating 100 randomized trees where themutation

occurred on eight branches selected by a multinomial draw. To

make the expectation as fair as possible, we constrained the ran-

domized branches to be on or after the date when the first Nsp6

deletion was observed. Under this expectation, there is no differ-

ence between the mean number of S1 or RdRp substitutions in

clades that have the ORF1a:3675-3677 deletion and clades

that do not (Figure 5A, left). However, in the empirical phylogeny,

there are significantly more S1 substitutions in clades with the

Nsp6 deletion than in clades without it (Figure 5A, right).
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That clades with ORF1a:3675-3677del have higher numbers

of S1 substitutions does not speak to the directionality of this

relationship. In other words, it is possible that ORF1a:3675-

3677del occurs in lineages that already have a lot of S1 substitu-

tions or that a lot of S1 mutations accumulate in clades that

already have ORF1a:3675-3677del. To determine the direction-

ality of this difference, we considered every phylogenetic path

that contains the Nsp6 deletion and found the difference be-

tween the final number of S1 substitutions on that path and the

number of S1 substitutions that had accumulated before the

deletion. On average, around 2.5 S1 nonsynonymous mutations

accumulated after ORF1a:3675-3677del (Figure 5B). This is the

second largest increase in S1 mutation accumulation following

any convergently evolved mutation, behind S:681R. These re-

sults do not indicate that the deletion directly causes S1 substi-

tutions, but they do add to the observations of convergent

evolution and high clade growth rates in suggesting that

ORF1a:3675-3677del is an adaptive mutation and an influential

factor in the evolution of SARS-CoV-2.

DISCUSSION

Detecting adaptive evolution is both highly interesting from a

basic scientific perspective as we seek to understand how and



Figure 5. Clades with the 3-amino-acid

deletion in Nsp6 have a high number of S1

mutations

(A) The mean number of S1 mutations (top) or

RdRp mutations (bottom) that occur in clades that

have (blue or orange) or do not have (gray) the

3-amino-acid deletion in Nsp6. The expected dif-

ference is shown on the left, and empirical data

are shown on the right. Expectation is based on

100 randomizations of the tree. Error bars show

the standard deviation.

(B) The difference in the number of nonsynony-

mous S1 (dark blue), S1 synonymous (light blue),

and nonsynonymous RdRp (orange) mutations

that occur before or after a convergently evolved

mutation is shown. Error bars show 95% confi-

dence intervals.
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when this type of evolution occurs and highly relevant from a

public health perspective as we strive to curb the transmission

of infectious diseases. As widespread SARS-CoV-2 circulation

continues, our best defense is through vaccination. The SARS-

CoV-2 vaccines showed high efficacy in clinical trials, but we

must be proactive to ensure their continued effectiveness. Vac-

cines against viruses that undergo antigenic drift, such as influ-

enza, must be continually updated to match circulating variants.

Therefore, the propensity of SARS-CoV-2 to evolve adaptively in

spike S1 (the location ofmost neutralizing antibody epitopes) has

important bearing on whether the SARS-CoV-2 vaccine will also

need to be regularly updated.

SARS-CoV-2 exhibits convergent evolution (van Dorp et al.,

2020; Martin et al., 2021; Rochman et al., 2021), and some of

the notable mutations that have occurred multiple times inde-

pendently (e.g., S:501Y and S:484K) appear in multiple VOCs,

suggesting positive selection on these mutations. In the context

of deep mutational scanning (DMS) experiments, mutations at

501 increase ACE2 binding affinity (Starr et al., 2020), and muta-

tion to site 484 escapes antibody binding (Greaney et al., 2021).

Recurrent mutations at S:681 enhance S1/S2 subunit cleavage

(Liu et al., 2021; Lubinski et al., 2021), a protein modification

that is essential for spike-mediated cell entry (Hoffmann et al.,

2020) and thus is thought to contribute to increased viral replica-

tion (Liu et al., 2021).Many other convergently evolvedmutations

are also shared by VOCs and possess demonstrably different

phenotypes, often altering antigenicity (Li et al., 2020; McCarthy

et al., 2021; Wang et al., 2021).

Despite the demonstrably advantageous effects of observed

mutations, it is too soon evolutionarily to pick up strong signals

of adaptive evolution by classical methods that rely on the fix-

ation of nonsynonymous mutations. Instead, we capitalize on

the high temporal and geographic density of SARS-CoV-2

sequencing data to create a method for identifying adaptive

evolution and genomic regions where this evolution is localized.

This method identifies genes where amino acid substitutions

significantly correlate with the clade growth rate. This can be

intuitively interpreted as genes with high rates of amino acid

substitutions (suggestive of positive selection) that result in

more successful viruses (suggestive of a positive fitness effect)

are undergoing adaptive evolution and is effectively a contin-
uous analog to partitioning differences between polymorphism

and divergence in the classical McDonald-Kreitman test

(McDonald and Kreitman, 1991). We find that the spike S1 sub-

unit shows strong signals of adaptive evolution by this method

(Figure 1).

Our inference of adaptive evolution is based on a correlation

between the accumulation of S1 substitutions and clade suc-

cess that falls well outside the null expectation (Figure 1C). It is

important to emphasize that these results speak to the average

evolutionary effect of S1 substitutions. This does not mean that

every S1 substitution is selectively advantageous, and it is likely

that somemutations have larger effects on fitness than others. In

fact, it is possible that successful viruses contain some S1 sub-

stitutions that do not contribute to their evolutionary success.

One possibility is that these mutations could have arisen during

long-term infections where they were advantageous within a sin-

gle host. For instance, S1 mutations 484K and 501Y have been

observed to arise from continued evolution within a single host

(Choi et al., 2020). It is therefore possible that the parallel evolu-

tion of these particular mutations is due to a selective advantage

at a within-host rather than between-host level. Within-host se-

lection pressures could help to explain why some mutations

such as 484K occur again and again across the phylogeny (Fig-

ure 4). However, the context in which S1 mutations arose does

not affect our finding that viruses withmore nonsynonymousmu-

tations in S1 are more successful, on average, within the global

population of SARS-CoV-2 viruses.

Phylogenetic inferences of evolution can be biased by the

samples included in the analysis. To reduce sampling biases,

our study is based on a phylogeny of 9544 SARS-CoV-2 ge-

nomes sampled evenly over space and time. The strong correla-

tion between S1 mutation accumulation and clade growth rate

persists if the number of genomes included in the phylogeny is

doubled (Figure S9), indicating that our results are not biased

by the number of samples included in the analysis. We also

find that global adaptive evolution in S1 is not driven solely by

certain geographic regions. Using phylogenies that include

only samples from a particular geographic region, we observe

that clade success strongly correlates with S1 substitutions in

Asia, Europe, North America, Oceania, and South America (Fig-

ure S10). The only region where this correlation is not observed
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at this time point is Africa, where the declining frequency of a

particular clade of Beta drives an overall lack of correlation.

In addition to sampling biases, there are several limitations to

our approach presented here. First, our analysis intentionally

considers the average effect of mutations in different regions

of the genome on viral fitness with the goal of taking a popula-

tion-genetics approach to quantifying the adaptive evolution of

SARS-CoV-2. This means that, although we observe a signifi-

cant correlation, given a correlation coefficient of r = 0.46, our

results cannot predict the fitness of specific variants solely on

the basis of S1 mutation counts. Similarly, as mentioned above,

this means that it is likely that some successful viral clades

contain S1 substitutions that, rather than being advantageous,

are hitchhiking along with positively selected mutations. Addi-

tionally, our analysis focuses on the period of VOC and VOI

emergence from December 2019 to May 2021. So, although

we can speculate on how our findings of high adaptive potential

in S1 will translate to future evolution of the virus, we cannot

directly predict how the pace of adaptive evolution will change

over time.

We observe temporal structure in the adaptive evolution of

SARS-CoV-2. We find that the correlation between clade suc-

cess and S1 substitutions changes over time but showed strong

signals of adaptive evolution from January to September 2021

(Figure S11). Enrichment of the dN/dS ratio in S1 also increases

over time (Figure 2). Additionally, substitutions within S1 cluster

temporally (Figure 3) rather than accrue at a steady rate. This

temporal structure potentially indicates a changing evolutionary

landscape either through the emergence of new selective pres-

sure or through the occurrence of permissive mutations that

made adaptive mutations more accessible.

Although the overall dN/dS ratio in S1 is 0.70, the dN/dS is 1.66

along persistent lineages in 2021 (Figure 2). This high ratio is

remarkable in comparison with that of the antigenically evolving

HA1 subunits of influenza H3N2 and H1N1pdm or the S1 subunit

of seasonal coronavirus OC43 (Figure S4). We estimate the

meandN/dS ratio for HA1 in influenzaH3N2 to be 0.36 (Figure S4),

which is similar to the 0.37 estimated previously (Wolf et al.,

2006). However, influenza H3N2 has been endemic in the human

population for over 50 years, and its current evolution is largely

driven by antigenic changes (Smith et al., 2004).

Viral evolution directly after spillover into a new host species

can differ from evolution at endemicity. For instance, for 2

years following its emergence in 2009, the evolution of influ-

enza H1N1pdm was thought to largely have been adaptation

to a new host, whereas adaptive evolution after 2011 has

been dominated by antigenic changes (Su et al., 2015).

Accordingly, we observe that the dN/dS ratio in the

H1N1pdm HA1 subunit peaked at 0.72 in 2010 shortly after

pandemic emergence and then declined to a more stable

value of �0.3 beginning in 2014. An initially high rate of pro-

tein-coding changes is consistent with the idea that, soon after

a spillover event, many evolutionarily accessible mutations are

advantageous in the new host environment. It is unclear

whether the observed dN/dS ratio in SARS-CoV-2 S1 will

persist or whether it is a feature of this virus’s recent emer-

gence and will drop in the years to come.

Together, the results presented in Figures 1, 2, and 3 offer

phylogenetic evidence that SARS-CoV-2 is evolving adaptively
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and that the primary locus of this adaptation is in S1. Our results

are consistent with experimental demonstration of phenotypic

changes conferred by VOC spike mutations (Greaney et al.,

2021; Liu et al., 2021; McCarthy et al., 2021; Wang et al.,

2021). Adaptive evolution in the S1 subunit during the period

we focus on (December 2019 to May 2021) is most likely driven

by selection to adapt to a new host by increasing infectivity of hu-

man cells. However, the amount of immunity to SARS-CoV-2 is

rising globally, increasing the selection for antibody escape.

Given the virus’s demonstrated propensity for adaptive change

in S1, antigenic drift will most likely begin to sculpt the evolution

of SARS-CoV-2. The potential antigenic impact of adaptive S1

mutations, which are accruing at pace over four times that of

influenza H3N2 (Figures 2 and S4), suggests that it might

become necessary to update the SARS-CoV-2 vaccine strain.

Indeed, the emergence of the Omicron VOC demonstrated a

SARS-CoV-2 virus with an extraordinarily high number of S1

substitutions (Viana et al., 2022) that spread rapidly across the

world and showed significantly lower neutralization titers than

preceding variants (Cele et al., 2022). With Omicron, we now

know that significant antigenic variants can emerge with highly

modified S1 domains. However, the observed pace of adaptive

evolution in S1 perhaps should have suggested the potential

for emergence of such a variant.

Our results suggest that, in addition to S1, substitutions within

Nsp6 and ORF7a could significantly contribute to the success of

viral clades (Table 1). We expand on these gene-wide results by

identifying specific adaptive mutations by using the confluence

of convergent evolution and clade success. This analysis turned

up many S1 mutations that have been extensively studied,

along with mutations to nucleocapsid (N), another target of

antibody-recognition (Kang et al., 2021), and a couple mutations

in Nsp6, Nsp4, and M (Figure 4). The non-S1 mutations

ORF1a:3255I (in Nsp4), M:82T, and N:205I in particular show

compelling evidence of positive selection. These sites enrich

our understanding from gene-wide analyses presented in Fig-

ures 1, 2, and 3 and Table 1: although S1 is the primary genomic

locus of adaptive evolution, a handful of positively selected

mutations in other genes are also influencing the evolution of

SARS-CoV-2 in the human population.

Our analysis of specific adaptive mutations suggests the pos-

sibility of differences betweenwithin-host selection for viral repli-

cation and between-host selection for transmission. Viruses

belonging to Delta have shown greater between-host transmis-

sion rates than other VOC or VOI viruses (Campbell et al.,

2021) but are lacking mutations that have occurred repeatedly

and that were associated with increased clade growth (notably

ORF1a:3675-3677del, S:484K, and S:501Y). It is possible that

some mutations display a large degree of parallelism as a result

of specific within-host pressures that occur in secondary infec-

tions of partially immune individuals despite having only modest

effects on between-host transmission.

It is important to note that the precise mutations that appear

most influential depend on when the analysis is done

(Figures 4C and S9). The fitness effect of a mutation is not an ab-

solute quality—it depends on amultitude of influences, including

the genetic background of the viral lineage, other co-circulating

lineages, existing host immunity, and epidemiological factors

(such as geographically heterogeneous mitigation efforts).
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Additionally, lineages can grow in frequency as a result of sto-

chastic effects. Therefore, it is expected that mutations associ-

ated with successful clades will change over time and that these

changes reflect both a changing fitness landscape and the sto-

chastic nature of evolution. Mutations that transcend this or, in

other words, are associated with successful lineages at multiple

time points are more likely to have important, adaptive functions.

One such mutation is ORF1a:3675-3677del (Figures 4C and S9).

The ORF1a:3675-3677 deletion removes three amino acids

(SGF) from a predicted transmembrane loop (Benvenuto

et al., 2020) of the Nsp6 protein. Across the coronavirus family,

the Nsp6 protein, in coordination with Nsp3 and Nsp4, forms

double-membrane vesicles that are sites for viral RNA synthe-

sis (Snijder et al., 2020). In SARS-CoV-2, Nsp6 suppresses the

interferon-I response (Xia et al., 2020). It is unclear whether

ORF1a:3675-3677del affects either of these functions. This

deletion is not observed in other sarbecoviruses, residues

3675 and 3676 are 100% conserved, and only synonymous

and conservative changes are seen at 3677 in this subgenus

(Jungreis et al., 2021). However, in SARS-CoV-2, this deletion

exhibits close to the highest level of convergence, presence

in VOCs, mean logistic growth rate, and increase in S1 muta-

tions in descending lineages. Future experimental study of

this deletion would increase our understanding of what func-

tions, apart from enhanced cell entry and potential antibody

escape, were highly advantageous during the early adaptive

evolution of SARS-CoV-2.

So far, ORF1a:3675-3677del has not been observed in Delta

viruses, and our results suggest that the appearance of a Delta

sublineage possessing ORF1a:3675-3677del could outcompete

basal Delta viruses. However, the Omicron variant, which ap-

peared in late November 2021 and spread rapidly, possesses

a very similar deletion, where Omicron viruses from the primary

BA.1 PANGO lineage exhibit ORF1a:3674-3676del. This pro-

vides yet another example of an association between deletion

to this region of Nsp6 and consequential VOC viruses.

Limitations of this study
This study examined adaptive evolution during the period of

December 2019 to May 2021. The results presented in this

manuscript are therefore limited to this temporal range and do

not directly predict how the pace of adaptive evolution will

change in the future. In addition, the results presented in Fig-

ures 1 and 2 speak to the average evolutionary effect of S1 sub-

stitutions. As discussed above, this does not mean that every S1

substitution is selectively advantageous, and it is likely that some

mutations have larger effects on fitness than others.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GISAID EpiCoV SARS-CoV-2 sequence isolates GISAID full list of contributing labs and accessions: Mendeley

Data: 10.17632/mxjt9nhgmj.1

Software and algorithms

Augur, version 12.0.0 Huddleston et al., 2021 https://github.com/nextstrain/augur

TreeTime, version 0.8.2 Sagulenko et al., 2018 https://github.com/neherlab/treetime

IQ-TREE, version 2.1.2 Nguyen et al., 2015 https://github.com/Cibiv/IQ-TREE

Nextclade Aksamentov et al., 2021 https://clades.nextstrain.org

Custom code this paper https://github.com/blab/sarscov2-adaptive-evolution/
RESOURCE AVAILABILITY

Lead contact
Inquiries for further information should be directed to the lead contact, Kathryn Kistler (kkistler@fredhutch.org).

Materials availability
This study did not generate any new reagents.

Data and code availability
d This paper analyzes existing, publicly accessible data. The accession numbers are listed in Table S1, which is available from

Mendeley Data: 10.17632/mxjt9nhgmj.1.

d Source code for all analyses presented in this manuscript is available at https://github.com/blab/sarscov2-adaptive-evolution.

This repository has been archived at Zenodo: 10.5281/zenodo.6126495 and is publicly available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHODS DETAILS

Phylogenetic reconstruction of a subsampling of global SARS-CoV-2 genome sequences
All primary analyses in this manuscript were performed using data downloaded from the GISAID EpiCoV database (https://www.

gisaid.org/; Shu and McCauley, 2017) on July 29, 2021 and curated by the Nextstrain nCoV ingest pipeline (https://github.com/

nextstrain/ncov-ingest). This dataset contained 2,459,376 viral genomes and associated metadata. These genomes were aligned

with Nextalign (https://docs.nextstrain.org/projects/nextclade/en/latest/user/nextalign-cli.html) and masked to minimize error in

phylogenetic inference associated with problematic amplicon sites. Masked alignments were filtered to exclude strains that were

known outliers, sequenced due to ‘‘S dropout,’’ mis-annotated with an admin division of ‘‘USA,’’ shorter than 27,000 bp of A, C,

T, or G bases, missing complete date information, annotated with a date prior to October 2019, flagged with more than 20 mutations

above the expected number based on the mutational clock rate, or flagged by Nextclade (https://docs.nextstrain.org/projects/

nextclade/en/latest/user/algorithm/07-quality-control.html; Aksamentov et al., 2021) with one or more clusters of 6 or more private

differences in a 100-nucleotide window. After filtering 2,213,085 genomes remained.

After filtering, SARS-CoV-2 genomes were evenly sampled across geographic scales and time. Specifically, a maximum of 1,600

strains were sampled from each continental region including Africa, Asia, Europe, North America, Oceania, and South America for an

approximate total of 9,600 genomes per phylogeny. For each region except North America and Oceania, strains were sampled from

each distinct combination of country, year, and month. For North America and Oceania, genomes were sampled from each distinct

combination of division (i.e., state-level geography), year, and month.

Time-resolved phylogenies were inferred using Augur 12.0.0 (Huddleston et al., 2021), IQ-TREE 2.1.2 (Nguyen et al., 2015), and

TreeTime 0.8.2 (Sagulenko et al., 2018). Ancestral sequences were inferred with TreeTime using the joint inference mode. The pri-

mary analysis was conducted on 9,544 genomes collected on or before May 15, 2021, and the phylogeny reconstructed from these

data can be found at https://nextstrain.org/groups/blab/ncov/adaptive-evolution/2021-05-15. Phylogenies used for secondary
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analyses of convergent evolution (Figures 4C and S9) can be viewed using the date drop-down menu in the left-hand sidebar. The

secondary analyses included isolates sequenced up until April 15, 2021 (9,467 genomes), May 1, 2021 (9,449 genomes), June 1, 2021

(9,343 genomes), and June 15, 2021 (9,401 genomes). All isolates used in these analyses are listed in Table S1.

Quantification of mutation accumulation
For every internal branch on the phylogeny, the number of mutations that accumulated between the root of the tree and that branch

was counted. For this and all subsequent analyses, deletions are grouped with nonsynonymous substitutions. Deletions that span

multiple, adjacent amino acids are counted as one mutation. Mutations to a premature stop codon are also counted as one mutation

event. Mutations were separated by which gene they occur in (according to theWuhan-Hu-1 reference sequence, found at ‘‘analysis/

reference_seq_edited.gb’’) and whether they are synonymous or nonsynonymous. Genomic locations of the 15 NSPs were found in

the NC_045512.2 annotation of the ORF1ab polyprotein (http://www.ncbi.nlm.nih.gov/gene/43740578). Code for mutation accumu-

lation counting and plotting of Figure 1A is found in ‘‘fig1-muts_by_time_and_growthrate.ipynb.’’

Estimation of the logistic growth rate of clades
Logistic growth of individual clades was estimated from the time-resolved phylogeny and the estimated frequencies for each strain in

the tree. Frequencies were estimated with Augur 12.0.0 (Huddleston et al., 2021) using the KDE estimation method that creates a

Gaussian distribution for each strain with amean equal to the strain’s collection date and a variance of 0.05 years. At weekly intervals,

the frequencies of each strain at a given date were calculated by summing the corresponding values in their Gaussian distributions

and normalizing the values to sum to 1. The frequency of each clade at a given time was the sum of its corresponding strain fre-

quencies at that time.

Logistic growth was calculated for each clade in the phylogeny that was currently circulating at a frequency >0.0001% and < 95%

and that had at least 50 descendant strains. Each clade’s frequencies for the last 6 weeks were logit transformed and used as the

dependent variable for a linear regression where the independent variable was the corresponding date value for each transformed

frequency. The logistic growth of the clade was then annotated as the slope of the linear regression of the logit-transformed

frequencies.

Calculation of correlation between mutations and clade growth rate
For internal branch on the phylogeny, the logistic growth rate was plotted against the number of nonsynonymous S1 mutations per

codon. The correlation coefficient r for the linear regression was computed. This empirical r value is then compared to a distribution of

1,000 expected r values to yield a p value. The expected correlation coefficients were determined by stripping all observed nonsy-

nonymous S1 mutations from the phylogeny and then randomly assigning each mutation to an internal branch of the phylogeny by a

multinomial draw where the likelihood of a mutation occurring on a branch is proportional to the branch length. The was repeated for

every gene in the genome. The code to compute the empirical r and p value for each gene and to reproduce Table 1 is at ‘‘table1-

comprehensive_mut_accumulation_analysis.ipynb.’’

Calculation of nonsynonymous to synonymous divergence ratio
A time-course of dN/dS ratios was calculated in non-overlapping time windows by splitting all internal branches included in the

phylogeny according to their date.Within each gene, the nonsynonymous and synonymous Hamming distanceswere found between

the reference sequence and every internal branch. The Hamming distances were normalized by the total number of possible non-

synonymous or synonymous sites within that gene to give a measure of divergence. The nonsynonymous divergence was divided

by synonymous divergence. Then, for each time window, the mean of this ratio was found for all internal branches within the window.

For SARS-CoV-2, the timewindowswere 2months and overlap by 1month. The code to run this analysis and reproduce Figure 2 is at

‘‘fig2-divergence.ipynb.’’

Phylogenies for seasonal influenza A/H3N2 and A/H1N1pdm were built using the Nextstrain pipeline from https://github.com/

nextstrain/seasonal-flu. They include 2,274 and 2,169 genomes, respectively, that were sampled between 2009 and 2021 to capture

the earliest sequences from the H1N1pdm pandemic (March 2009). The OC43 phylogeny was built from all available OC43 lineage A

genomes sampled in 2009 or later (214 genomes) using the workflow in https://github.com/blab/seasonal-cov-adaptive-evolution/

tree/master/oc43/separate_lineages. Divergence accumulation ratios were computed from the root of each tree using 1-year time

windows overlapping by 0.5 years. These phylogenies can be found in ‘‘seasonal-flu_trees/.’’ The code in ‘‘fig2supp-divergence_

seasonalflu.ipynb’’ reproduces Figure 2.

Randomization of mutations across the phylogeny for wait time calculations
For each type of mutation (S1 nonsynonymous, S1 synonymous, and RdRp nonsynonymous), the total number of mutations

observed on the phylogeny was randomly scattered across phylogeny. Only internal branches with 3 or more descending tips

were used. Randombrancheswere selected by amultinomial draw, where the likelihood of a branch having amutation is proportional

to its branch length in years. Multiple mutations were allowed to occur on the same branch, just as with the empirical phylogeny.

Randomizations were run 1,000 times for each mutation type used in Figures 3B and 3C and ten times for the distributions shown

in Figure S6. Code for this analysis is in ‘‘fig3-wait_times.ipynb.’’
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Calculation of wait times
Wait times were counted for the following classes of mutations: S1 nonsynonymous, S1 synonymous, and RdRp nonsynonymous.

For each class of mutation, a wait time was calculated between each branch that has a mutation of this type and its first child branch

on each descending path that has a mutation of this type. A wait time was also calculated between the tree root and the first branch

on any independent path that has a mutation of this type. Conceptually, the result of this is that wait times are computed between

every sequential mutation that occurs along every path on the tree (as diagrammed in Figure 3A), without double counting any pairs of

branches. Only mutations on internal branches (defined as having three or more descending tips) are considered.

A wait time is simply the time between mutations and is calculated by subtracting the date (in decimal years) of the earlier mutation

from the date of the later mutation. Because the exact date a mutation occurred cannot be known, each mutation is assigned a

random date along the branch it occurred on. If multiple mutations of the same type occurred on one branch, each mutation is as-

signed a different random date and the wait times between mutations on that branch are calculated.

Empirical and expected wait times were calculated for each type of mutation 1,000 times and the results of all 1,000 iterations can

be found in ‘‘wait_time_stats/.’’ Code to calculate wait times and reproduce Figures 3B, 3C, and S6 is found in ‘‘fig3-

wait_times.ipynb.’’

Quantification of convergent evolution and logistic growth rates across the phylogeny
Every substitution that occurred on an internal branch with at least 15 descending tips was tallied. For every substitution that was

observed at least 4 times on internal branches, the average growth rate of clades containing this mutation was calculated by taking

the mean logistic growth rate of clades where this mutation occurred. Code to count occurrences, calculate mean logistic growth,

and determine which emerging lineages descend from recurrent mutations is found in ‘‘fig4-convergent_evolution.ipynb.’’ This code

will reproduce Figures 4A, S8, and S9.

Randomization of recurrent mutations across the phylogeny
One hundred randomized trees were created by shuffling the phylogenetic positions of each substitution that was observed on

an internal branch with at least 15 descending tips (those calculated above and shown in Figure 4A). Randomized branches

were also limited to internal branches with at least 15 descending tips. The position of each randomized substitution was

constrained to branches that ‘‘make phylogenetic sense’’: meaning, a given substitution cannot occur twice on the same

path. This results in a tree with exactly the same distribution of mutation occurrences as the empirical phylogeny, but where

those mutations occur on different branches. Code to implement these randomizations and reproduce Figure 4B is in ‘‘fig4-

convergent_evolution.ipynb.’’

Consideration of recombination as an alternative to convergent evolution of Nsp6 deletion
For each occurrence of the ORF1a:3675-3677 deletion, all nucleotide mutations that occurred between the root and the branch

where the deletion occurred were recorded. Then, recombination between every pair of the 8 inferred occurrences of

ORF1a:3675-3677del was considered. For each pair, informative mutations that did not occur in a common ancestor of the potential

recombinant lineages were identified. The informative mutations closest to the Nsp6 deletion on the upstream side were compared

between potential donor and acceptor (and the same was done for the downstream side). If the closest mutations were shared be-

tween any donor/acceptor pair, this would be evidence that this mutation and the Nsp6 deletion were transferred from the donor to

the acceptor by recombination. If the closest mutations are not shared between the donor and acceptor, the only way the acceptor

could have acquired the ORF1a:3675-3677del through recombination is if both recombination break points occurred within a

genomic window defined by the closest informative mutations on either side of the Nsp6 deletion. Code for this analysis as well

as a table summarizing the results is in ‘‘nsp6del_recombination.ipynb.’’

Calculation of the mean number of S1 mutations per clade
The phylogeny was divided into clades that have the ORF1a:3675-3677 deletion and those that do not, and the mean number of S1

and RdRp substitutions was computed for each category. The tree was limited to only branches occurring on or after the date of the

first ORF1a:3675-3677del occurrence. The expectation was created by randomizing the locations of the eight occurrences of

ORF1a:3675-3677del as was done above in ‘‘randomization of recurrent mutations across the phylogeny.’’ Code for this analysis

is in ‘‘fig5-nsp6del_s1mutations_correlation.ipynb.’’

Calculation of S1 mutations that precede and follow specific mutation events
For each convergently-evolved mutation, every path through the phylogeny containing this mutation was considered. The total num-

ber of S1 mutations accumulated between the root and the occurrence of the convergently-evolved mutation is considered to be the

number of S1 mutations before the event. The number of mutations after is the final number of S1 mutations present on the path. The

before total is subtracted from the after total to give the increase in S1 mutations after the event. The mean of this increase is

calculated for every path containing the convergently-evolved mutation. Code to implement this analysis is in ‘‘fig5b-

s1_muts_before_vs_after.ipynb.’’
e3 Cell Host & Microbe 30, 545–555.e1–e4, April 13, 2022
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Consideration of sampling biases
The impact of phylogeny size on the results presented in this manuscript was tested by running the same analyses on a phylogeny

containing twice as many samples. This phylogeny was built according to the same methods described in the ‘‘phylogenetic recon-

struction of a subsampling of global SARS-CoV-2 genome sequences’’ section above, except that a maximum of 3,300 strains were

sampled from each continental region. This resulted in a tree with a total of 19,694 genomes, sampled on or before May 15, 2021 and

distributed roughly evenly over geography and time (https://nextstrain.org/groups/blab/ncov/adaptive-evolution/2021-05-15/20k).

The correlation between mutation accumulation in eight genes (or subunits) and clade success (Figure S9A) is done in ‘‘fig1supp-

20ktree.ipynb.’’ The dN/dS ratio was calculated on the 19,694-tip tree (Figure S9B) as described in the ‘‘calculation of nonsynony-

mous to synonymous divergence ratio’’ section, and this analysis is in ‘‘fig2supp-divergence-20k.ipynb.’’ Convergently-evolved mu-

tations (Figure S9C) were identified on this larger tree in ‘‘fig4supp-convergent_evolution-20k.’’

The impact of specific geographic regions on the results presented in Figure 1B was analyzed by computing the correlation coef-

ficient r between S1 substitution accumulation and logistic growth rate for each geographic region separately. This was done by con-

structing a separation 10,000-sample tree for each of the six continental regions: Africa, Asia, Europe, North America, Oceania, and

South America. Samples are from May 15, 2021 or earlier and are roughly evenly distributed over time. Each regional tree was built

according to ‘‘phylogenetic reconstruction of a subsampling of global SARS-CoV-2 genome sequences,’’ except that all sequences

were restricted to that geographic region. The Asia-specific tree can be interactively-viewed at https://nextstrain.org/groups/blab/

ncov/adaptive-evolution/2021-05-15/asia, and other regional trees can be accessed by substituting the region’s name at the end

of the URL. Code to conduct the analysis presented in Figure S10 is in ‘‘fig1-followup-regional.ipynb.’’

Analysis of duration of correlation between clade success and S1 substitutions
The correlation coefficient r between S1 substitution accumulation and logistic growth rate was computed over time using 13 phy-

logenies spanning a year of time surrounding the primary analysis. Trees for this analysis were built according to the methods in

‘‘phylogenetic reconstruction of a subsampling of global SARS-CoV-2 genome sequences’’ except that end date was changed to

the 15th of the month, for each month between November 15, 2020 and November 15, 2021. The November 15, 2020 tree can be

viewed at https://nextstrain.org/groups/blab/ncov/adaptive-evolution/2020-11-15, and all other dates can be accessed by changing

the date at the end of the URL. Code to conduct the analysis presented in Figure S11 is in ‘‘fig1-followup-timeseries.ipynb.’’

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis of correlation between growth rate and number of mutations
The p value for the correlation between growth rate and number of mutations was determined by comparing the empirical correlation

coefficient r to the distribution of expected r values. If the observed correlation is just due to chance, the empirical r should not differ

from the expectation. The null expectation is created by stripping all observed mutations from the phylogeny and then randomly as-

signing them to branches of the phylogeny as explained in ‘‘calculation of correlation between mutations and clade growth rate.’’

Using the randomized phylogeny, the logistic growth rate is compared to the number of mutations on every internal branch using

linear regression. The p value of the empirical correlation is then computed as the number of expected r values that are greater

than the observed r, divided by 1,000. This method of statistical analysis is shown visually in Figure 1C and is used to provide the

p values listed in Table 1 and those shown in Figures S3B, S10, and S12.

Statistical analysis of wait times
For S1 nonsynonymous, S1 synonymous and RdRp nonsynonymousmutations, the statistical significance of themean wait time and

proportion of wait times under 0.3 years was evaluated by comparing the empirical values to those generated from 1,000 phylogenies

where the location of mutations on the phylogeny were randomized as described above in ‘‘randomization of recurrent mutations

across the phylogeny.’’

Statistical analysis of growth rates associated with convergent mutations
The mean logistic growth rate of clades possessing convergent mutations that arose four or more times was compared to the ex-

pected value, given that the mutation occurred that many times as described in ‘‘randomization of recurrent mutations across the

phylogeny.’’ Mean growth rates that fall in the 90th percentile or higher of the expected distribution are labeled in Figure 4B.

ADDITIONAL RESOURCES

Interactive versions of all phylogenies used in this study can be found at https://nextstrain.org/groups/blab/ncov/adaptive-evolution/

2021-05-15. The drop-down menus on the side can be used to select a different build date, appending ‘‘/20k’’ to the URL will bring

up the phylogeny containing �20,000 samples, and appending ‘‘/africa’’ (or any of the other geographic regions considered in

Figure S10) will show the region-specific phylogeny.
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