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SUMMARY
Through antigenic evolution, viruses such as seasonal influenza evade recognition by neutralizing antibodies.
This means that a person with antibodies well tuned to an initial infection will not be protected against the
same virus years later and that vaccine-mediated protection will decay. To expand our understanding of
which endemic human viruses evolve in this fashion, we assess adaptive evolution across the genome of
28 endemic viruses spanning a wide range of viral families and transmissionmodes. Surface proteins consis-
tently show the highest rates of adaptation, and ten viruses in this panel are estimated to undergo antigenic
evolution to selectively fix mutations that enable the escape of prior immunity. Thus, antibody evasion is not
an uncommon evolutionary strategy among human viruses, and monitoring this evolution will inform future
vaccine efforts. Additionally, by comparing overall amino acid substitution rates, we show that SARS-CoV-
2 is accumulating protein-coding changes at substantially faster rates than endemic viruses.
INTRODUCTION

Because of their fast mutation rates and high offspring produc-

tion, many viruses are capable of rapidly evolving to persist

and thrive in a changing environment. In the context of human

health and disease, this rapid evolution means that viruses

from a different host species that cause sporadic human infec-

tions can sometimes optimize their cell entry, replication, and im-

mune evasion quickly enough to spread from human to human

and become a novel pathogen. Thus, the early stages of a

pandemic are often marked by high rates of adaptive evolution,

as was noted for the 2009 influenza H1N1 pandemic1–3 and dur-

ing the emergence and spread of variant viruses during the

SARS-CoV-2 pandemic in late 2020 and early 2021.4

After this initial adaptation to a new host, some viruses find a

niche as endemic viruses, where they are able to infect, replicate

in, and transmit between humans without continuous adaptive

evolution. However, other endemic viruses continue to evolve

adaptively.5–7 A well-recognized form of this continuing adapta-

tion is antigenic evolution, where the virus and the human adap-

tive immune system engage in a back-and-forth evolutionary

battle—the immune system to neutralize the virus and the virus

to evade neutralization. Viruses that evolve antigenically are

particularly capable of causing repeat infections and escaping

vaccine-mediated immunity.8 Therefore, understanding which

viruses evolve in this manner is highly relevant for managing viral

transmission and mitigating human disease.

Antigenic evolution is a well-noted phenomenon of influenza

A/H3N2, where this type of evolution necessitates nearly yearly
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reformulations of the seasonal influenza vaccine.5,9,10 Serolog-

ical testing has also demonstrated antigenic evolution in influ-

enza viruses A/H1N1pdm, B/Victoria, and B/Yamagata,11,12 as

well as in seasonal coronavirus 229E7 and SARS-CoV-2.13–15

On the contrary, measles16,17 and influenza C viruses18 are

known to be antigenically stable and do not undergo this mode

of continual adaptive evolution. Whether other endemic human

pathogenic viruses evolve antigenically is less well understood.

Here, we aim to survey the potential for antigenic evolution or

other continuous adaptive evolution across a broad diversity of

endemic human viruses. To do this, we use sequencing data

to estimate rates of adaptive evolution across each gene in the

genome of 28 viruses, which span 10 viral families and a variety

of modes of human-to-human transmission. We identify poten-

tial antigenically evolving viruses as those with high rates of

adaptation in the protein that mediates receptor binding, as

this is a primary location of antibody neutralization and the locus

of antigenic escape mutations in seasonal influenza vi-

ruses,9,19–21 coronavirus 229E,7 and SARS-CoV-2.22–25

We estimate rates of adaptive evolution from the genetic se-

quences of viral isolates that have been sampled over time using

a McDonald-Kreitman-based method26,27 that was formulated

for analyzing RNA viruses by Williamson28 and, later, Bhatt

et al.29,30 and then further improved in thismanuscript to account

for repeated mutations at the same nucleotide position. By esti-

mating rates of adaptation in units of adaptive mutations per

codon per year, this method allows us to directly compare adap-

tive evolution both across the genes of a genome and between

different viruses. We find that in addition to seasonal influenza
vember 8, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 1
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A and B viruses, norovirus, respiratory syncytial virus (RSV-A

and -B), two seasonal coronaviruses (229E and OC43-A), and

enterovirus D68 all have elevated rates of adaptation in their re-

ceptor-binding proteins, indicating potential antigenic evolution

in these viruses. Our results not only increase our understanding

of ongoing adaptive evolution in current endemic viruses but also

provide an expectation of antigenic evolution in other related vi-

ruses, including future pandemic viruses. In addition to this

manuscript, we have made our results viewable at blab.github.

io/atlas-of-viral-adaptation/, where interactive plots allow the

user to investigate the results as either a comparison of different

viruses or as a comparison across the genome of a single virus.

RESULTS

An extension of the McDonald-Kreitman method for
estimating rates of adaptation in viral genomes
Viruses that undergo antigenic evolution repeatedly evade

detection by host antibodies that were elicited by prior infection

or vaccination. Under this type of evolution, mutations that alter

viral proteins to escape neutralization while retaining necessary

viral functions are under positive selection. Thus, antigenic evo-

lution causes the viral genome to continually fix nonsynonymous

mutations in epitopes and can be detected as a high rate of

adaptive evolution in genes encoding the targets of neutralizing

antibodies.

To identify endemic human viruses that are evolving antigeni-

cally, we calculated rates of adaptation across the genomes of a

wide diversity of viruses using an extension of the McDonald-

Kreitman test.26,28 This method divides an alignment of viral se-

quences into temporal windows and compares the isolates in

each window with a fixed outgroup, which represents the histor-

ical genome sequence of that virus.29,30 The number of adaptive

mutations in each time window is calculated as an excess of

fixed (or nearly fixed) nonsynonymous mutations above the

neutral expectation. The rate of adaptation is then computed

as the slope of the linear regression fitting adaptive mutations

versus time. This temporal aspect means that recurrent fixations

or selective sweeps over time will yield a high rate of adaptation,

whereas a single adaptive fixation will not. Thus, this method is

well suited toward our goal of detecting continuous adaptation,

such as antigenic evolution.

However, because this method uses a fixed outgroup sequ-

ence, multiple mutations occurring within the same codon over

time can give inaccurate results for a couple of reasons. First,

whether a mutation is synonymous or nonsynonymous is deter-

mined by substituting that mutation into the outgroup sequence.

This can result in a false assignment if a mutation within that

codon has fixed previously. Additionally, repeated mutations at

the same nucleotide position will be counted as only a single mu-

tation because the method has no knowledge’ of previous time

windows. This flaw will cause a disproportionate underestima-

tion of the rate of adaptation in viral proteins where many sites

have sequentially fixed multiple mutations, as in rapidly evolving

viruses such as influenza A/H3N2 (Figure 1A).

To address both these issues, we havemodified themethod to

update the outgroup sequence each time a mutation fixes. Iso-

lates in later time windows are, thus, aware’ of any fixations

that occurred in the same codon during previous time windows.
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This modification substantially affects the rate of adaptation in

the influenza A/H3N2 hemagglutinin HA1 subunit, where 92

nucleotide sites have fixed nonsynonymous mutations since

1968, and 12 of these sites have seen multiple nonsynonymous

fixations (Figure 1A). The asymptoting shape of the inferred

accumulation of adaptive mutations in H3N2 HA1 reflects satu-

ration where many adaptive mutations at later time windows

occur at the same position as adaptive mutations that occurred

in previous time windows (Figure 1C). In contrast to H3N2 HA1,

there are zero nucleotide sites within the spike S1 subunit of sea-

sonal coronavirus 229E that have fixed multiple nonsynonymous

mutations. Fittingly, updating the outgroup sequence has little to

no effect on the estimated rates of adaptation in the 229E recep-

tor-binding subunit S1 (Figure 1F).

Influenza A/H3N29,20 and coronavirus 229E7 are both known

to undergo antigenic evolution through the fixation of mutations

in their receptor-binding proteins. Because one goal of this

manuscript is to quantitatively compare antigenic evolution be-

tween viruses by estimating rates of adaptive evolution in the re-

ceptor-binding proteins, we use the method that updates the

outgroup sequence throughout this study, as it better captures

the rate of a rapidly adapting protein, such as H3N2 HA1. How-

ever, it should be noted that the major findings and themes pre-

sented here do not depend on which version of the method is

used—both methods identify the same subset of viruses as anti-

genically evolving, although the relative pace of this evolution is

dependent on which method is used.

Estimation of the threshold of ongoing adaptive
evolution
Antigenic evolution occurs when a virus fixes mutations at or

near sites of antibody binding that abrogate those antibodies’

abilities to neutralize the virus. For viruses that have been

demonstrated to evolve antigenically, these escape mutations

occur in the viral protein that mediates receptor binding, which

is located on the virion’s surface and is typically a primary target

of neutralizing antibody binding. For instance, in influenza

A/H3N2, antigenic evolution occurs largely in HA1, the recep-

tor-binding subunit of hemagglutinin.9,19–21 Similarly, for sea-

sonal coronavirus 229E, escape mutations fix in S1, the re-

ceptor-binding subunit of spike.7 Thus, we hypothesize that

antigenic evolution results in a high rate of adaptation in the re-

ceptor-binding protein or subunit and that antigenically evolving

viruses can be distinguished from antigenically stable ones by

the rate of adaptation on the receptor-binding protein.

We calculated the rate of adaptive evolution in the receptor-

binding protein for three viruses that are known to evolve anti-

genically—influenza viruses A/H3N2 and B/Yam11 and coronavi-

rus 229E7—as well as for three viruses that are known to be

antigenically stable—measles,16,17 influenza C/Yamagata,18

and hepatitis A.31,32 All of the antigenically evolving viruses

have higher rates of adaptation than the antigenically stable vi-

ruses (Figure 2A), indicating that this method successfully differ-

entiates between viruses that evolve antigenically and those that

do not. We used these rates of adaptive evolution to estimate a

threshold of antigenic evolution (i.e., a rate above which we pre-

dict the virus to be evolving antigenically) using logistic regres-

sion (see STAR Methods for more details). We estimated that

the threshold of antigenic evolution is about 1.17310�3

http://blab.github.io/atlas-of-viral-adaptation
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Figure 1. A McDonald-Kreitman-based method to estimate the rate of adaptation in antigenically evolving viruses

(A) Time-resolved phylogeny of 2,104 influenza A/H3N2 HA sequences sampled between 1968 and 2022 and colored by nonsynonymousmutation accumulation

from the root, with darker reds symbolizing more mutations in the HA1 subunit. Within these samples, ninety-two nucleotide sites have completely fixed a

nonsynonymous mutation, and the pie chart indicates that 12 of these nucleotide sites have fixedmultiple nonsynonymous mutations during the past�50 years.

(B) Accumulation of adaptive mutations (per codon) in polymerase PB1 as calculated by the McDonald-Kreitman-based method that updates the outgroup

sequence at each fixation (dark red) or uses a constant outgroup sequence (gray). The rate of adaptation is the slope of the linear regression fitting these es-

timates.

(C) Estimated accumulation of adaptive mutations in HA1.

(D) Time-resolved phylogeny of 95 coronavirus 229E spike S1 sequences sampled between 1989 and 2022, colored as in (A). Pie chart indicates that, within these

samples, nine nucleotide sites have completely fixed a nonsynonymous mutation, and zero nucleotide sites have fixed multiple nonsynonymous mutations.

(E and F) Accumulation of adaptive mutations, as in (B) and (C), within the coronavirus 229E (E) polymerase (RdRp) and (F) receptor-binding subunit S1.
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mutations per codon per year in the receptor-binding protein.

We view this threshold not as an absolute but, rather, as our

best approximation of a rate that separates evolution with real

biological meaning from noise in the estimates. Although we

calculate this threshold based on proteins we know to be

evolving antigenically, the threshold should be applicable to

any viral protein undergoing any kind of ongoing adaptation

that is occurring on a similar timescale to antigenic evolution.

The relative rates of adaptation estimated here are consistent

with what is already known about the relative pace of antigenic

evolution in these viruses. Bedford et al.11 estimated that influ-

enza A/H3N2 evolves antigenically 2–3 times faster than the

influenza B viruses, and Eguia et al.7 found that coronavirus

229E escapes neutralization at a rate similar to influenza B. Addi-

tionally, our estimated rates of adaptation in HA1 of the various

influenza viruses reflect the frequencies at which these viruses

deviate antigenically enough to warrant an update to the vaccine

strain (Figure 2B). Influenza A/H3N2 exhibits the highest rate of

adaptation (5.7310�3 mutations per codon per year), followed

by A/H1N1pdm (3.2310�3 mutations per codon per year), then

B/Vic (1.8310�3 mutations per codon per year), and B/Yam

(1.4310�3 mutations per codon per year). Mirroring this, the

A/H3N2 component of the vaccine has been updated 8 times
(9 different strains) between 2012 and 2022, whereas the H1N1

strain was updated 4 times, the B/Vic component was updated

3 times, and B/Yam component was updated twice during this

time period.33 Components of the seasonal influenza vaccine

are updated by the World Health Organization (WHO) Global

Influenza Surveillance and Response System (GISRS) when the

vaccine strain no longer induces sufficient protection against

circulating viruses—a point that is typically defined by an

8-fold drop in titer in a hemagglutinin inhibition (HI) assay.34

This suggests that the rate of adaptation in the receptor-binding

domain can identify not only which viruses evolve antigenically

but also the relative pace at which they do so and, thus, the ex-

pected duration of protection afforded by antibodies elicited by

vaccination or infection.

Genome-wide appraisal of rapidly evolving viral proteins
We next sought to survey a wide diversity of endemic human vi-

ruses for evidence of ongoing adaptive evolution. We focus on

viruses that have been endemic in humans for at least 12 years

because we are interested in continued adaptive evolution that

persists during the endemic phase (rather than initial host adap-

tation that occurs early in a pandemic) and because a short tem-

poral spread of sampled sequences decreases the accuracy of
Cell Host & Microbe 31, 1–12, November 8, 2023 3



Figure 2. Rates of adaptation in the receptor-binding protein recapitulate known trends of antigenic evolution

(A) The rate of adaptation calculated in the receptor-binding protein is plotted for 3 antigenically stable viruses (solid circles) and 3 antigenically evolving viruses

(open circles). The threshold of antigenic evolution is estimated by logistic regression. Error bars represent the 95% bootstrap percentiles.

(B) For each of the 4 influenza viruses that are included in the yearly flu vaccine, the rate of adaptation is comparedwith the number of times that the vaccine strain

was updated between the 2012–2013 and 2022–2023 Northern hemisphere flu seasons.
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the estimated rate of adaptation.35 We analyze viruses at the

subtype or genotype level and require that each viral subtype

in the panel has at least 50 genomes spread over a minimum

of 12 years (Figure S2 shows the temporal distribution of se-

quences for each virus). Although this atlas’ aims to examine

continuous adaptive evolution across a range of viral diversity,

the panel of endemic viruses is far from comprehensive and

largely limited by the availability of historical sequences, which,

for many viruses, is not adequate to make accurate rate esti-

mates. In total, we downloaded and curated sequence data for

28 human pathogenic viruses, which belong to 10 different viral

families. This panel comprises both RNA and DNA viruses with a

variety of modes of transmission, including respiratory transmis-

sion, fecal-oral transmission, vector-borne transmission, and

transmission via blood or bodily fluids.

For each virus, we estimated the rate of adaptation in each

gene of the genome. In total, we analyzed 239 viral genes, and

14 of them had rates of adaptation exceeding the threshold of

antigenic evolution (Figure 3A). Of these 14 genes, 13 encode

proteins located on the viral surface, with 10 of those being pro-

teins that mediate host receptor binding (Figure 3B). The 3 sur-

face proteins with rates of adaptation exceeding our threshold

that are not classified as receptor binding are all neuraminadase

(NA) genes of the influenza subtypes A/H3N2, A/H1N1pdm, and

B/Vic. The influenza NA protein has been shown to bind host re-

ceptors in some influenza viruses36,37 and to be a target of pro-

tective and neutralizing antibodies38–40; hence, it is possible that

these high rates of adaptation in influenza NA are also reflective

of evolution to escape antibody recognition. The non-surface

protein that has a high rate of adaptation is norovirus p22, which

antagonizes cellular protein trafficking41 and has been previously

reported to be under positive selection.42

In total, 10 of the 28 viruses in this panel had at least one gene

we predict to be undergoing ongoing adaptation. These viruses

include members of the orthomyxovirus (influenza A/H3N2,

A/H1N1pdm, B/Vic, and B/Yam), paramyxovirus (RSV-A and

RSV-B), coronavirus (229E and OC43-A), calicivirus (norovirus
4 Cell Host & Microbe 31, 1–12, November 8, 2023
GII.4), and picornavirus (enterovirus D-68) families (Figure 3C).

Although multiple orthomyxo-, corona-, and paramyxoviruses

appear in this list, our results suggest that adaptive evolution is

not necessarily a shared feature of related viruses. For instance,

although influenza A/H3N2 has two adaptively evolving proteins,

influenza C/Yamagata has none (Figures 3D and 3E). Similarly,

229E and NL63 are both alphacoronaviruses, but 229E has a

high rate of adaptation in spike S1, whereas NL63 does not

(Figures 3H and 3I).

Among the 10 viruses with at least one protein exceeding our

threshold, we observe that the highest rates of adaptation

genome wide are typically in the genes encoding the receptor-

binding protein or subunit. The exception being influenza

A/H1N1pdm and B/Yam, where the fastest rate is in NA, not

HA1—although, as mentioned above, NA is sometimes involved

in receptor binding. These results reveal that endemic viruses

experience little-to-no ongoing adaptation throughout most of

their genome and that continuous adaptive evolution is found

almost solely in surface-exposed proteins, which are accessible

to neutralizing antibodies. This suggests that evasion of antibody

neutralization is a driving force in the ongoing adaptive evolution

of many endemic viruses.

Identification of putative antigenically evolving viruses
With the expectation that antigenic evolution is detectable by a

high rate of adaptation in the receptor-binding protein, we then

directly compared rates between the receptor-binding proteins

of 28 viruses (Figure 4).We also compared the rates of adaptation

in the polymerase, which, in endemic viruses, we expect to be

relatively conserved.Weobserve that although there is a little vari-

ation between the rates of adaptation in the polymerase, which

range between 0.0 and 0.7310�3 mutations per codon per year,

there is amuch larger spread of rates in the receptor-binding pro-

teins of these viruses (ranging from0.0 to 5.7310�3mutations per

codon per year). Based on the estimated rates of adaptation that

exceed the threshold for antigenic evolutionwe identified,wepre-

dict that 10 of the viruses in this panel evolve antigenically.



Figure 3. Across 28 viral genomes, the highest rates of adaptation are found in surface-located receptor-binding proteins

(A) The rate of adaptation for all 239 viral genes. Fourteen genes (in purple) have rates of adaptation above our threshold of antigenic evolution. Geneswith rates of

adaptation below the threshold are in gray.

(B) The rate of adaptation within all 28 receptor-binding proteins (RB, left), 37 other proteins located on the viral surface (S, center), and 174 non-surface proteins

(non-S, right). Ten receptor-binding proteins (red), 3 other surface-located proteins (blue), and 1 non-surface protein (black) exceed our threshold. Genes with

rates below the threshold are in gray.

(C) Number of viruses per viral family that have at least one gene exceeding the threshold are shown in color. The number of viruses in these families that had no

high rates of adaptation throughout their entire genome is in gray.

(D–K) Rates of adaptation were calculated for each gene, subunit, or coding region indicated along the x-axis, and ordered by genomic position (or segment

number, for segmented viruses). Receptor-binding proteins are labeled in red, other surface-exposed proteins are in blue, and non-surface-located proteins are

in black. Filled circles indicate genes with rates exceeding the threshold. Each row shows two viruses from the same viral family, one that contains at least one

adaptively evolving gene (left) and one that does not (right). Error bars indicate the 95% bootstrap percentiles from 100 bootstrapped data sets.
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Figure 4. Comparison of rates of predicted antigenic evolution across a wide diversity of human pathogenic viruses

Rates of adaptive evolution in the polymerase (top) and receptor-binding protein (bottom) for 28 human pathogenic viruses. The receptor-binding and polymerase

genes for each virus are listed in Table S1. Error bars indicate the 95% bootstrap percentiles from 100 bootstrapped data sets. The threshold of antigenic

evolution (as determined in Figure 2) is marked by the dotted line; the rates falling above this line are shown by solidmarkers, and the rates below the threshold are

open circles. Viruses are grouped and colored by viral family and arranged within viral family in descending order of the receptor-binding rate. Viral families are

ordered by genome type, with RNA viruses shown in brighter colors and DNA viruses in gray tones. Vertical dividers further delineate enveloped from non-

enveloped viruses.
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Influenza A/H3N2 has, by far, the fastest rate of antigenic evo-

lution, followed by A/H1N1pdm, whereas the other 8 putative

antigenically evolving viruses all have rates in roughly the same

range, around 1.5 to 2310�3 adaptive mutations per codon

per year. In descending order of the estimated rate of antigenic

evolution, these viruses are as follows: RSV-B, coronavirus

OC43-A, RSV-A, norovirus GII.4, influenza B/Vic, coronavirus

229E, influenza B/Yam, and enterovirus D-68.

All of these 10 viruses have RNA genomes, although both

positive- and negative-sense genomes and both enveloped

and non-enveloped viruses appear capable of antigenic evolu-

tion. All of these viruses transmit via a respiratory route except

norovirus, which uses fecal-oral transmission. We observe that

multiple coronaviruses, RSV viruses, and influenza viruses

evolve antigenically, suggesting that these types of viruses

might have a higher propensity for this type of evolution. How-

ever, in each of these cases, we also find that at least one other

member of the same viral family does not evolve antigenically,

indicating that relatedness at the level of viral family is not an

absolute predictor of antigenic evolution. Overall, the examina-

tion of antigenic evolution presented here suggests that selec-

tion to evade antibody recognition is widespread, although

certainly not ubiquitous, among endemic RNA viruses and

that although certain types of viruses may have a higher pro-
6 Cell Host & Microbe 31, 1–12, November 8, 2023
pensity for this type of evolution, even closely related viruses

can differ in this regard.

A comparison of rates of adaptation in the receptor-binding

proteins of all the viruses in this panel as well as rates across

the genome of each of these viruses can be viewed interactively

at blab.github.io/atlas-of-viral-adaptation/ (see example screen-

shots in Figure S1). This interactive website shows the rates per

codon per year (as reported in this manuscript) as well as per

gene per year, allows the viruses to be ordered by rate rather

than by viral family, and displays rates calculated both by the

constant outgroup and updated outgroup methods.

Comparison of rates of evolution between endemic
viruses and SARS-CoV-2
An obvious question is where the evolution of SARS-CoV-2 falls

with respect to these other viruses. Since the beginning of the

SARS-CoV-2 pandemic, wehave seen a period ofmanyco-circu-

lating variants that contained adaptive mutations, which was fol-

lowed by a single fixation event where Omicron swept and a

subsequent period where many competing Omicron lineages

are co-circulating, with repeated near sweeps of derived lineages

such as BA.5, BQ.1, and XBB.1.5 that are supplanted before

reaching fixation. Because the McDonald-Kreitman-based rate

estimation we have used thus far considers only fixed or nearly

http://blab.github.io/atlas-of-viral-adaptation


Figure 5. Rates of amino acid substitution in the receptor-binding protein of SARS-CoV-2 and 10 antigenically evolving endemic viruses

The rate of amino acid substitution in the receptor-binding protein of (A) SARS-CoV-2, (B) SARS-CoV-2 Omicron clade 21L, (C) influenza A/H3N2, (D) influenza

A/H1N1pdm, (E) influenza B/Vic, (F) influenza B/Yam, (G) coronavirus 229E, (H) coronavirus OC43-A, (I) RSV-A, (J) RSV-B, (K) enterovirus D68, and (L) norovirus

GII.4. The receptor-binding protein, or subunit is labeled below the virus name. Rates are computed as the slope of a linear regression fitting a comparison of

amino acid substitutions versus time and are found using a phylogeny. Each tip on the tree is plotted by its sampling date and the number of amino acid

substitutions that accumulated between the root and the tip (normalized by the length of the coding region, in residues). Aspect ratios in each panel are fixed so

that regression slopes are visually comparable across panels.
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fixedmutations to be potentially adaptive, this method is ill suited

to analyzing SARS-CoV-2 evolution so far. Essentially, the calcu-

lated rate will just reflect the high number ofmutations on the long

branch leading to Omicron that fixed whenOmicron swept. Addi-

tionally, this method can be noisy over short time periods, where

small numbers of fixations can have an outsizedeffect on the rate.

It is for this reason that we limited our panel to viruses that have

been endemic for several years, with influenza A/H1N1pdm hav-

ing the narrowest span of human circulation (12 years).

In lieu of calculating a rate of adaptation for SARS-CoV-2, we

instead do a much simpler comparison of the rates of amino

acid substitution in the receptor-binding proteins between

SARS-CoV-2and the10viruseswepredict tobeevolvingantigen-

ically (Figure 5). We find that SARS-CoV-2 accumulates roughly

20310�3 amino acid substitutions per residue per year in S1.

This is 2–2.53 faster than the accumulation of amino acid substi-

tutions in influenza A/H3N2 HA1 and 7–103 faster than in the S1

subunit of seasonal coronaviruses 229E and OC43. Importantly,

the rate of amino acid substitution among all SARS-CoV-2 viruses

is not solely drivenby the fixation of 12S1 substitutionswhenOm-

icron swept; in fact, the ratewe observe between all SARS-CoV-2

viruses (Figure 5A) is roughly the same as the rate among just the
currently predominant clade of Omicron 21L and its descendants

(Figure 5B), corresponding to lineage BA.2 and derived lineages

such as BQ.1 and XBB.

In Figure 5, we plot the number of amino acid changes per res-

idue in the receptor-binding protein that each tip has compared

with the root. This simpler analysis does not consider the fixation

of particular mutations, nor does it make any attempt to account

for substitutions under selection versus those that are present

due to chance or hitch-hiking. However, we find that this analysis

reflects the general relationships between rates of antigenic evo-

lution of different viruses that we present in Figure 4. Figure 6 lists

the rate of amino acid substitution and the rate of adaptation in

the receptor-binding protein of each virus. A ratio of the rates

in Figures 4 and 5 indicates that in most antigenically evolving

endemic viruses, between �60% and 100% of amino acid sub-

stitutions in the receptor-binding protein are adaptive. For

instance, we estimate that influenza A/H3N2 evolves antigeni-

cally at 5.7310�3 adaptive mutations per codon per year, which

is �66% of the 8.6310�3 amino acid substitutions per residue it

accumulates each year. Of the 10 antigenically evolving endemic

viruses, the lowest proportion of amino acid substitutions that

are adaptive is 44% in norovirus GII.4 VP1.
Cell Host & Microbe 31, 1–12, November 8, 2023 7



Figure 6. Comparison of rates of amino acid substitution to rates of adaptation

(A) The rate of amino acid substitution (310�3) and rate of adaptive evolution (310�3) is listed for each of the 28 viruses in the panel.

(B) Rate of amino acid substitution is plotted against rate of adaptive evolution for each virus, with color corresponding to the panel A. The dashed gray line is

drawn at X = Y to indicate the point where all amino acid substitutions are inferred to be adaptive.
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DISCUSSION

In search of antigenically evolving viruses, we use genomic se-

quences to analyze adaptive evolution across a panel of 28

viruses and present the results here and as a website with inter-

active plots and phylogenies at blab.github.io/atlas-of-viral-

adaptation. We find that antigenic evolution is not uncommon

among endemic human viruses, with ten viruses spanning five

viral families meeting our criteria for predicting antigenic evolu-

tion. Particularly, this mode of evolution seems prevalent among

endemic viruses that have RNA genomes (Figure 4). However,

the true proportion of endemic viruses that evolve antigenically

is hard to estimate because the panel of viruses analyzed here

is far from a comprehensive list of human endemic viruses

and is biased toward well-studied viruses, which are not neces-

sarily the most common pathogens. We selected viruses to

include in the panel based on the following criteria: (1) virus

has been endemic for at least 12 years, (2) the genome is under

50 kb, and (3) there are at least 50 high-quality genomes avail-

able spanning at least 12 years. For many endemic viruses, the

limiting factor is a dearth of historical sequences predating the

mid-2000’s. However, the COVID-19 pandemic has spurred an

increased interest in monitoring and sequencing human patho-

gens, and if this trend continues, it is likely that there will be

enough longitudinal data to add many more viruses to this panel

in the years to come.

By employing a quantitative method, we are able to compare

the pace of adaptive evolution between genes in a genome as

well as between viruses. Comparisons within genomes reveal

that surface proteins are consistently the fasting-evolving viral

proteins (Figure 3). Comparisons between viruses show that
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influenza A/H3N2 is especially striking its pace of antigenic evo-

lution, which is roughly 2–3 times faster than all other viruses we

predict to be evolving antigenically (Figure 4). The observation

that many viruses accumulate adaptive mutations in their recep-

tor-binding protein at a rate of roughly 1.5 to 2.0310�3mutations

per codon per year suggests that this might be a lower bound on

the rate that is sufficient to generate antigenic novelty fast

enough that a virus can persist in a mostly immune population.

However, it should be stressed that although the rate of adapta-

tion is similar between these eight viruses, it is not clear whether

the pace of relevant phenotypic change is also similar between

them. For instance, it may be that some viruses need, say, two

adaptive mutations on average to successfully escape prior im-

munity, whereas other viruses need only one.

Whether a virus evolves antigenically, and the pace at which it

does so, is likely a function of many factors, including mutation

rate, mutational tolerance of surface proteins,43 positioning

and co-dominance of epitopes,17 viral transmission dynamics,

and existing population immunity. Our estimates of rates of anti-

genic evolution do not allow us to disentangle which factors are

contributing most to the evolution of endemic viral proteins.

However, the questions of why closely related viruses (such as

coronaviruses 229E and NL63) differ in their propensity to evolve

evasion of antibody detection and, relatedly, what the minimal

necessary information is to predict this type of evolution in an

emerging virus are interesting and open questions.

In this study, we have focused on continuous antigenic evolu-

tion within viral lineages over the past �50 years. It is important

to note that this is a very particular type of evolution in which anti-

genic variation is selected for repeatedly, leading to selective

sweeps within a single lineage. However, this does not

http://blab.github.io/atlas-of-viral-adaptation
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necessarily mean that viruses that are antigenically stable on a

�50-year time scale have not undergone some form of antigenic

evolution in the past or at another timescale. For instance, influ-

enza C viruses and dengue viruses both exist as several antigen-

ically distinct lineages, and although ongoing antigenic evolution

is not occurring within these lineages, the establishment of anti-

genically distinct lineages was likely a result of selection in the

past. It is possible that some viruses aremore prone to fracturing

into several antigenically distinct, co-circulating lineages rather

than undergoing perpetual antigenic evolution within a lineage.

Relatedly, it is important to note that this method looks for fix-

ations and near fixations, with the idea that positively selected

mutations will sweep through the population. This means that

mutations that fix within a clade, but not the entire population,

will not be considered potentially adaptive and, thus, that this

method is sensitive to how lineages are designated. For

instance, if all influenza B viruses were analyzed together, rather

than as separate B/Vic and B/Yam lineages, there would be no

signal of adaptation in the HA surface protein. In some cases,

it can be difficult to define what constitutes two distinct lineages

versus two clades of the same lineage. In our analyses, we have

divided each viral species into the lineage or genotype classifica-

tions used by the field of literature for that virus. As noted above,

if a virus is composed of multiple geographically—or ecologi-

cally—distinct lineages, sweeping adaptive mutations occurring

on one or both lineages will be obscured in our analysis, as they

will appear to be persistent polymorphisms. However, in such a

case, we would still expect to see a high absolute rate of amino

acid substitution, as separate lineages would each accumulate

substitutions. Here, all of the viruses with low rates of adaptation

also have low rates of amino acid substitution (Figure 6), indi-

cating that we are not missing adaptively evolving viruses due

to population structure.

Implications for the ongoing evolution of SARS-CoV-2
In SARS-CoV-2 spike S1, we observe a rate of amino acid substi-

tution that is roughly 2–2.53 the rate in influenzaA/H3N2HA1, the

prototypical example of rapid antigenic evolution. There is an

open question of whether SARS-CoV-2 can sustain such high

rates of evolution in the years to come. To address this question,

we can retroactively observe how the evolution of other viruses

has changed between the early pandemic and the ensuing

endemic years. In this manuscript, we have analyzed the evolu-

tion of influenza viruses A/H3N2 and A/H1N1pdm over time be-

tween their respective introductions in 1968 and 2009 and today.

We do not see any evidence that the rate of amino acid substitu-

tion (Figures 5C and 5D) or the rate of adaptive evolution (Fig-

ure 1C) in HA1 is flagging in these antigenically evolving influenza

viruses. By extension, this suggests that we may continue to see

rapid evolution in theS1 subunit of SARS-CoV-2. This fitswith our

observation that the rate of amino acid substitution in the S1 of

Omicron clade 21L viruses circulating in 2022 and 2023 is roughly

the same as this rate over the entire pandemic (Figures 5A and

5B), suggesting that, so far, S1 evolution has not slowed

throughout the course of the pandemic. Additionally, this sug-

gests that the overall rate of adaptation is not a simple proxy for

initial post-spillover host adaptation vs. longer-term continued

antigenic drift. Future work on SARS-CoV-2 examining pheno-

typic effects of spike mutations on ACE2 binding vs. immune
escape and their adaptive impacts could distinguish crossover

from initial host adaptation to later continued antigenic drift.

Although overall we expect that SARS-CoV-2 will continue to

evolve at appreciably faster rates than seasonal influenza or coro-

naviruses, it is unclear whether this evolution will be somewhat

slowed by the build-up of increasingly complex immune histories

toward this virus. At this point, it is also difficult to predict whether

the emergenceof a highly fit andhighlydivergent variant (Omicron)

was a one-timeevent orwhether other similar lineageswill emerge

in the futureandcontinue tobea featureofSARS-CoV-2evolution.

The fact that SARS-CoV-2 is able to evolve antigenically has

become readily apparent over the three years since the begin-

ning of the pandemic.13–15,25 However, in early 2020, at the

beginning of the COVID-19 pandemic, it was not known whether

related coronaviruses evolve antigenically, and thus, it was diffi-

cult to speculate whether SARS-CoV-2 would evolve in this way.

We believe that this issue reveals how little is known about the

antigenic evolution of many of the viruses that commonly infect

us. We believe that a better understanding of the broad diversity

of endemic viruses will not only better prepare us for future pan-

demics but also inform our current efforts to design vaccines and

therapeutics against these viruses. To this end, we have

compiled this atlas of viral adaptive evolution to quantitatively

compare evolution across a wide range of endemic viruses.
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de Artola, D., Alcoba-Flórez, J., Niesters, H.G.M., Antón, A., Poelman, R.,

et al. (2022). Evolution, geographic spreading, and demographic distribu-

tion of Enterovirus D68. PLoS Pathog. 18, e1010515. https://doi.org/10.

1371/journal.ppat.1010515.

53. Pickett, B.E., Greer, D.S., Zhang, Y., Stewart, L., Zhou, L., Sun, G., Gu, Z.,

Kumar, S., Zaremba, S., Larsen, C.N., et al. (2012). Virus pathogen data-

base and analysis resource (ViPR): A comprehensive bioinformatics data-

base and analysis resource for the coronavirus research community.

Viruses 4, 3209–3226. https://doi.org/10.3390/v4113209.

54. Olson, R.D., Assaf, R., Brettin, T., Conrad, N., Cucinell, C., Davis, J.J.,

Dempsey, D.M., Dickerman, A., Dietrich, E.M., Kenyon, R.W., et al.

(2023). Introducing the Bacterial and Viral Bioinformatics Resource

Center (BV-BRC): a resource combining PATRIC, IRD and ViPR.

Nucleic Acids Res. 51, D678–D689. https://doi.org/10.1093/nar/gkac

1003.
Cell Host & Microbe 31, 1–12, November 8, 2023 11

https://doi.org/10.1016/j.chom.2021.03.008
https://doi.org/10.1038/s41467-021-24435-8
https://doi.org/10.1038/s41467-021-24435-8
https://doi.org/10.1038/351652a0
https://doi.org/10.1038/351652a0
https://doi.org/10.1038/4151022a
https://doi.org/10.1093/molbev/msg144
https://doi.org/10.1093/molbev/msg144
https://doi.org/10.1016/j.meegid.2009.06.001
https://doi.org/10.1093/molbev/msr044
https://doi.org/10.1093/infdis/151.2.365
https://doi.org/10.1016/S0168-8278(05)80373-3
https://web.archive.org/web/20130301015922/http://www.who.int/influenza/vaccines/virus/recommendations/2012_13_north/en/index.html
https://web.archive.org/web/20130301015922/http://www.who.int/influenza/vaccines/virus/recommendations/2012_13_north/en/index.html
https://web.archive.org/web/20130301015922/http://www.who.int/influenza/vaccines/virus/recommendations/2012_13_north/en/index.html
https://doi.org/10.1038/srep15279
https://doi.org/10.7554/eLife.64509
https://doi.org/10.1128/JVI.01426-12
https://doi.org/10.1128/JVI.01426-12
https://doi.org/10.1128/JVI.01889-13
https://doi.org/10.1016/j.cell.2018.03.030
https://doi.org/10.1016/j.cell.2018.03.030
https://doi.org/10.1186/s12879-019-4049-5
https://doi.org/10.1186/s12879-019-4049-5
https://doi.org/10.1126/science.aay0678
https://doi.org/10.1126/science.aay0678
https://doi.org/10.1371/journal.pone.0013130
https://doi.org/10.1371/journal.pone.0013130
https://doi.org/10.1128/JVI.01333-14
https://doi.org/10.7554/eLife.03300
https://doi.org/10.21105/joss.02906
https://doi.org/10.1093/ve/vex042
https://doi.org/10.1093/ve/vex042
https://doi.org/10.1093/molbev/msu300
https://doi.org/10.1093/molbev/msu300
https://doi.org/10.21105/joss.03773
https://doi.org/10.1093/bioinformatics/bty407
https://doi.org/10.1093/bioinformatics/bty407
https://doi.org/10.1093/bioinformatics/btv381
https://doi.org/10.1093/bioinformatics/btv381
https://doi.org/10.7554/eLife.66448
https://doi.org/10.7554/eLife.66448
https://doi.org/10.7554/eLife.42496
https://doi.org/10.7554/eLife.42496
https://doi.org/10.1371/journal.ppat.1010515
https://doi.org/10.1371/journal.ppat.1010515
https://doi.org/10.3390/v4113209
https://doi.org/10.1093/nar/gkac<?show [?tjl=20mm]&tjlpc;[?tjl]?>1003
https://doi.org/10.1093/nar/gkac<?show [?tjl=20mm]&tjlpc;[?tjl]?>1003


ll
OPEN ACCESS Article

Please cite this article in press as: Kistler and Bedford, An atlas of continuous adaptive evolution in endemic human viruses, Cell Host & Microbe
(2023), https://doi.org/10.1016/j.chom.2023.09.012
55. Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J.,

Ostell, J., and Sayers, E.W. (2012). GenBank. Nucleic Acids Res. 41,

D36–D42. https://doi.org/10.1093/nar/gks1195.

56. Hatcher, E.L., Zhdanov, S.A., Bao, Y., Blinkova, O., Nawrocki, E.P.,

Ostapchuck, Y., Sch€affer, A.A., and Brister, J.R. (2017). Virus Variation

Resource–improved response to emergent viral outbreaks. Nucleic

Acids Res. 45, D482–D490.

57. Katoh, K., Misawa, K., Kuma, K.-I., and Miyata, T. (2002). MAFFT: a novel

method for rapid multiple sequence alignment based on fast Fourier trans-
12 Cell Host & Microbe 31, 1–12, November 8, 2023
form. Nucleic Acids Res. 30, 3059–3066. https://doi.org/10.1093/nar/

gkf436.
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Software and algorithms

Augur, version 14.1.0 Huddleston et al.,44 https://doi.org/10.21105/joss.02906 https://github.com/nextstrain/augur

TreeTime, version 0.8.6 Sagulenko et al.45 https://doi.org/10.1093/ve/vex042 https://github.com/neherlab/treetime

IQ-TREE, version 2.2.0 Nguyen et al.46 https://doi.org/10.1093/molbev/msu300 https://github.com/Cibiv/IQ-TREE

Nextclade Aksamentov et al.47 https://doi.org/10.21105/joss.03773 https://clades.nextstrain.org

Nextstrain CLI, version 7.0.0 Hadfield et al.48 https://doi.org/10.

1093/bioinformatics/bty407

https://github.com/nextstrain

Custom code This paper https://github.com/blab/adaptive-evolution
RESOURCE AVAILABILITY

Lead contact
Inquiries for further information should be directed to the lead contact, Kathryn Kistler (kkistler@fredhutch.org).

Materials availability
This study did not generate any new reagents.

Data and code availability
d This paper analyzes existing, publicly available data. The supplemental table provides accession numbers and contributing

labs for each sequence used in this study.

d The code to implement the McDonald-Kreitman-based calculations of adaptation rates is located at https://github.com/blab/

adaptive-evolution. All analysis code is written in Python 3 (Python Programming Language, RRID:SRC 008394) in Jupyter

notebooks (Jupyter-console, RRID:SRC 018414). The results presented in this manuscript are also accessible in an interactive

format at https://blab.github.io/ atlas-of-viral-adaptation/. Code to calculate rates of adaptation, as done in this study has been

deposited on Mendeley Data (Mendeley Data: https://doi.org/10.17632/cj4n8m9kk4.1).

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.
METHOD DETAILS

Input data for the estimation of rate of adaptation
The analyses in this manuscript require an alignment file in FASTA format, a tabular metadata file that contains the sampling date for

each sequence in the alignment, and a reference file in Genbank format that supplies gene locations. We have written the analysis

codewith the intention that it should be paired with a Nextstrain build48 (Nextstrain, RRID:SRC _018223), which will create the neces-

sary alignment andmetadata files as well as a phylogenetic tree, which is not necessary for the analysis but is a useful companion for

the interpretation of the results. Of the pathogens considered in this manuscript, we used builds produced and maintained by the

Nextstrain team for influenza A and B (https://github.com/nextstrain/seasonal-flu, created as part of49), measles (https://github.

com/nextstrain/measles), mumps (https://github.com/nextstrain/mumps, created as part of50), dengue (https://github.com/

nextstrain/dengue, created as part of51), and enterovirus D68 (https://github.com/nextstrain/enterovirus_d68, created as part

of52). For the influenza A and B viruses, we tweaked the builds to contain sequences from any date, rather than limiting the tree

to isolates sampled within the past 12 years. For dengue, we adjusted the pipeline to produce genotype-level phylogenies, rather

than serotype-level. For all other viruses, we constructed a new Nextstrain build, as described below.
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Sequence data
Norovirus, RSV, and rotavirus sequences were downloaded from ViPR/BV-BRC.53,54 Adenovirus, hepatitis A, hepatitis B, parvovirus

B19 genomes were downloaded from Genbank55 Parainfluenza and seasonal coronavirus sequences were downloaded from both

Genbank ViPR/BV-BRC and combined. Influenza C sequences were downloaded from NCBI Viruses.56 All sequence queries were

limited to clinical isolates from human hosts. All sequence data for a pathogen was curated into a single FASTA file, excluding se-

quences that had no available date information. Compiled sequence data for all these viruses are available via https://github.

com/blab/adaptive-evolution.

Nextstrain builds to generate alignments and trees
Time-resolved phylogenies were generated for each pathogen by running a Nextstrain build.48 Sequences were aligned to a refer-

ence genome usingMAFFT57 (RRID:SCR 011811). Trees were constructed using IQ-TREE46 (RRID:SCR 017254), and branch lengths

were inferred with TreeTime.45 Builds were streamlined into a pipeline using Snakemake58 (RRID:SCR 003475), and Snakemake

workflows are available for each virus via https://github.com/blab/adaptive-evolution.

SARS-CoV-2 Nextstrain phylogenies
SARS-CoV-2 alignments and trees were retrieved from nextstrain.org builds. The build spanning all SARS-CoV-2 lineages contains

samples from the beginning of the pandemic until February 13, 2023 and contains sequences evenly sampled over time and

geography.

This dataset is viewable at https://nextstrain.org/ncov/gisaid/global/all-time/ 2023-02-26. The 21L-only build contains only se-

quences from the Omicron clade 21L up until April 9, 2023. This dataset is viewable at https://nextstrain.org/ncov/gisaid/ 21L/

global/all-time/2023-04-18.

Rate of adaptation, with a fixed outgroup
The rate of adaptation within each gene of a genome is calculated from alignment of viral sequences sampled over time as in Bhatt

et al.30 To do this, the sequence alignment is broken up into constituent genes or subunits. Then, the gene-specific alignment is par-

titioned into 5-year windows tiling the entire span of time over which data is available. Windows are offset by 1 year so, for example,

an alignment containing sequences from 1990-2022 would be partitioned into windows of [1990-1995, 1991-1996,..., 2016-2021,

2017-2022]. The exceptions are H1N1pdm and mumps where we use 3-year windows rather than 5-year, because there are only

12 and 17 years of data, respectively. The window size is a trade-off between picking upmore signal (shorter windows), and reducing

noise (longer windows) that can be due single sequences having a outsized effects on small sample sizes or chance sampling of one

co-circulating clade over another. We require that each temporal window contain at least 3 isolates, and exclude timewindowswith 2

or fewer samples.

The outgroup sequence is found by taking a consensus of the sequences present in the first window. The choice to use a

consensus sequence, rather thanMost Recent Common Ancestor (MRCA), as the outgroup was based on previous implementations

of this method,28,30 to keep the method alignment- rather than phylogeny-based, and because, in our initial testing, similar rate es-

timates were obtained using MRCA or consensus outgroup. Each subsequent temporal window is then compared to the outgroup

sequence to find polymorphisms and fixations. To do this, each nucleotide position in the gene alignment is compared to the out-

group to determine polymorphism, fixation, replacement and silent scores (see Bhatt et al.29 and Bhatt et al.30 for more details).

The expectation for neutral evolution is found from the number of polymorphisms present at 15-75% and the number of silent (syn-

onymous) fixations and near-fixations (greater than 75% frequency). The number of adaptive mutations within each window is calcu-

lated as the excess number of replacement (nonsynonymous) fixations or near-fixations above the neutral expectation. Ambiguously

sequenced positions (N’s) are ignored. The number of adaptive mutations are normalized by the gene length, and rates of adaptation

are calculated as the slope of linear regression fitting adaptive mutations per codon over time. Bootstrap 95% confidence intervals

were found by running the same method on 100 bootstrapped datasets. The bootstrapped datasets were created by sampling the

codons in the outgroup, with replacement, and then applying the same codon order to the alignment.

Practically, the rate of adaptation is calculated using the rate of adaptation bhatt.ipynb notebook inside the adaptive-evolution-

analysis/ directory, which reads in a virus-specific configuration file (in config/) that specifies necessary information to complete

the analysis as well as metadata about the virus. For instance, the config files specify the relative locations of the necessary input

data files, as well as which genes encode the polymerase and receptor-binding protein, whether the virus is enveloped, and what

its primary mode of transmission is.

Rate of adaptation, with an updated outgroup
To account for viruses with especially high rates of evolution where multiple fixations have occurred at the same nucleotide position

over the period of time the virus has been sampled, we update the outgroup sequence that is used for computing the rate of adap-

tation. The starting outgroup sequence is determined as with the ‘fixed outgroup’ method (explained above): as the consensus

sequence of all isolates present in the first time window. Then, the outgroup sequence is updated each time a fixation (synonymous

or nonsynonymous) occurs. Thus, future time windows are compared to an outgroup sequence that contains information about fix-

ations that occurred in prior time windows. Simply overwriting the outgroup sequence at each fixation event allows more accurate

determination of whether future mutations to the same nucleotide site or codon are synonymous or nonsynonymous. However,
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because this site-counting McDonald-Kreitman based method estimates adaptive mutations in each time window by comparing the

alignment to the outgroup, it is essentially counting the accumulation of all mutations that occurred between the outgroup and the

timewindow,with no ‘knowledge’ of whether or not anothermutation has previously occurred at any position. Thismeans themethod

will only ever count a maximum of 1 fixation per nucleotide site. To make the counting method ‘aware’ of fixations that have occurred

during previous time windows, the outgroup sequence is stored as a list, with the original outgroup sequence being the first element

of the list and fixations getting added as subsequent list elements. At future timepoints, the method is thus ‘aware’ that a fixation has

already occurred at any position where the outgroup sequence list hasmore than one element. The code to implement this method is

in the notebook adaptive-evolution-analysis/rate of adaptation.ipynb.

Estimation of threshold, using logistic regression
To estimate the threshold of antigenic evolution, we ran a logistic regression predicting whether or not a virus is evolving antigenically

(predictor variable) as a function of the estimated rate of adaptation in the receptor-binding protein (covariate). We used the receptor-

binding proteins of three viruses that are known to evolve antigenically (influenza A/H3N2 HA1, influenza B/Vic HA1, and coronavirus

229E S1) and three that are known not to evolve antigenically (measles H, hepatitis A-IA VP1, and influenza C/Yamagata HEF1) in

order to have an equal number of viral proteins in both categories for the logistic regression estimation. The threshold rate of antigenic

evolution was then obtained as the rate at which the model assigns a greater than 50% probability of antigenic evolution (50%

threshold for logistic regression analysis).

Rate of amino acid substitution
The rate of amino acid substitution was calculated from a phylogeny in order to account for repeated substitutions at the same po-

sition. For each virus, we traversed the phylogeny from root to tip, tallying the number of amino acid substitutions that occurred in the

receptor-binding protein. Each tip was then plotted according to this accumulated number of substitutions and its sampling date.

Linear regression of substitution count and time was used to calculate a rate of amino acid substitution for each virus.

Genes analyzed for each virus
Table S1 shows all genes used in the genome-wide analysis presented in Figure 3 and indicates their classification as receptor-bind-

ing, polymerase, surface-located (but not receptor-binding), and non-surface-located (but not polymerase). For some viruses, mul-

tiple proteins have been reported to have receptor-binding capacity in different strains or circumstances. For instance, influenza

NA36,37 and RSV F59 proteins have been shown to bind receptors in some contexts. In these cases, we analyzed the canonical or

primary in vivo receptor-binding protein. Viruses are listed in the order they appear in Figure 4.

QUANTIFICATION AND STATISTICAL ANALYSIS

In figures, circles show rates of adaptation estimated from empirical data and error bars show the 95% bootstrap percentiles, gener-

ated by estimating the rate of adaptation from 100 bootstrapped alignments. The threshold rate we use to infer whether a gene is

undergoing ongoing adaptive evolution was determined by logistic regression using the rate of adaptation in the receptor-binding

gene of 3 viruses known to evolve antigenically, and 3 viruses known to be antigenically stable.

ADDITIONAL RESOURCES

Estimated rates of adaptive evolution for each of the 28 viruses can be seen interactively at https://blab.github.io/atlas-of-viral-

adaptation.
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