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Abstract
Phylodynamics seeks to estimate effective population size fluctuations from molecular

sequences of individuals sampled from a population of interest. One way to accomplish this

task formulates an observed sequence data likelihood exploiting a coalescent model for

the sampled individuals’ genealogy and then integrating over all possible genealogies via

Monte Carlo or, less efficiently, by conditioning on one genealogy estimated from the

sequence data. However, when analyzing sequences sampled serially through time, cur-

rent methods implicitly assume either that sampling times are fixed deterministically by the

data collection protocol or that their distribution does not depend on the size of the popula-

tion. Through simulation, we first show that, when sampling times do probabilistically

depend on effective population size, estimation methods may be systematically biased. To

correct for this deficiency, we propose a new model that explicitly accounts for preferential

sampling by modeling the sampling times as an inhomogeneous Poisson process depen-

dent on effective population size. We demonstrate that in the presence of preferential sam-

pling our new model not only reduces bias, but also improves estimation precision. Finally,

we compare the performance of the currently used phylodynamic methods with our pro-

posed model through clinically-relevant, seasonal human influenza examples.
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Author Summary

Phylodynamics seeks to estimate changes in population size from genetic data sampled
from individuals across a particular population. One approach to accomplish this task
uses a model called the coalescent, which relates the shape of the individuals’ shared ances-
tral tree to genetic diversity, which is in turn related to population size. However, when
analyzing genetic data sampled at different times, current techniques assume that sam-
pling times are fixed ahead of time or are distributed randomly without any relation to the
size of the population. Through simulation, we show that when sampling times are related
to population size, a situation referred to as preferential sampling, those estimation meth-
ods may be systematically biased. To fix this problem, we propose a new model that explic-
itly accounts for and models the preferential sampling. We show that in the presence of
preferential sampling our new technique not only fixes the bias, but also has improved pre-
cision in its population size estimates. We also compare the performance of the old and
new techniques on several real-world seasonal human influenza examples.

Introduction
Phylodynamics—a set of techniques for estimating population dynamics from genetic data—
has proven useful in ecology and epidemiology [1, 2]. Phylodynamics is especially useful in
cases where ascertaining population sizes via traditional sampling methods is infeasible; e.g., in
infectious disease epidemiology it is impossible to obtain the total number of infected individu-
als in a large population. Estimating population dynamics from a limited sample of genetic
data is possible because changes in population size leave evidence in the molecular sequences
of the population. Recently, techniques employing a nonparametric approach to inferring pop-
ulation trajectories have improved upon earlier models in terms of flexibility, accuracy, and
precision by, e.g., employing Gaussian Markov random fields [3, 4] and Gaussian processes
[5]. However, none of these state-of-the-art methods currently account for randomness in
sampling time data, potentially introducing bias in studies where sampling times have a rela-
tionship to population dynamics. Through a simulation study we characterize this bias in a
demographic scenario with seasonally varying population size. We also extend the state-of-the-
art by incorporating a sampling time model into phylodynamic inference, mitigating the bias
and improving precision.

Phylodynamic methods use Kingman’s coalescent model that, given a particular effective
population size trajectory, defines the density of a genealogy relating the sampled individuals
[6]. Effective population size measures genetic diversity present in the population and relates
to census population size if certain assumptions are met [7]. Many early coalescent-based phy-
lodynamic methods required strict parametric assumptions about the effective population size
trajectory, such as constant through time [8] or exponential growth [9, 10]. A major alternative
arose with the advent of nonparametric methods, one of the earliest and most influential being
the piecewise constant classical skyline model [11]. This approach greatly increases the number
of estimated parameters, leading to noisy effective population size trajectories. A number of
algorithms seeking compromise between the relative stability of parametric approaches and the
flexibility of nonparametric approaches have been implemented [3, 4, 12]. For a detailed com-
parison, see [13].

Many successful applications of phylodynamics methodology come from infectious disease
epidemiology, where the effective population size is interpreted, albeit with caution, as the
effective number of infections [14]. In these epidemiological applications, disease agent DNA
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or RNA sequences are collected at multiple times. When analyzing such heterochronous data,
researchers implicitly assume that sampling times are either fixed or follow a distribution that
is functionally independent of the effective population size trajectory. However, it is conceiv-
able that the infectious disease agent DNA samples are collected more frequently when the
number of infections is high and less frequently during time periods with few infections. There-
fore, the implicit assumption of no relationship between sampling times and population
dynamics, made by all state-of-the-art phylodynamic methods, is troublesome, since unrecog-
nized preferential sampling leads to systematic estimation bias, as explored by Diggle et al. [15]
in the context of spatial statistics. Furthermore, preferential sampling could be present in the
sequence databases, but it could also be introduced accidentally or intentionally by filtering
during database queries or data mining.

To test the effect of preferential sampling on phylodynamic inference we first perform a
simulation study. We simulate sampling times according to multiple distributions, contrasting
distributions functionally dependent on effective population size with a functionally indepen-
dent distribution. We then simulate genealogies based on the sampling times and perform
state-of-the-art phylodynamic analyses, and we find that ignoring preferential sampling can
bias effective population size estimation and that the size of the bias depends on the local prop-
erties of the effective population size trajectory.

In order to account for preferential sampling, we formulate a new phylodynamic model in
which sampling times are generated from an inhomogeneous Poisson process with intensity
functionally dependent on effective population size. Our model is similar to the augmented
coalescent model of Volz and Frost, who work with a specific parametric model [16]. In con-
trast, we work within a nonparametric framework by incorporating our Poisson preferential
sampling model into a Gaussian process-based Bayesian phylodynamic method [3–5]. Apply-
ing our new sampling-aware method to our simulations shows that modeling preferential sam-
pling eliminates the aforementioned bias and can increase precision of the phylodynamic
inference. In all of our developments, we assume that the genealogy of the sample is known
without error. This assumption allows us to use an integrated nested Laplace approximation
(INLA) to make our Bayesian inference computationally efficient [17, 18], which is important
for executing our simulation studies.

Finally, we examine the performance of our algorithm on two real-world examples. Ram-
baut et al.[19] explore the seasonal variation of genetic diversity in the genes that code for sev-
eral of the most important proteins in the two most common influenza subtypes, H3N2 and
H1N1. For the sake of brevity we only analyze the hemagglutinin gene in H3N2. We find evi-
dence of preferential sampling in the dataset, and our sampling-aware method produces a large
improvement in precision over the conditional (sampling un-aware) method. Zinder et al.[20]
specifically explore the patterns of seasonal migration of genetic diversity of H3N2 influenza
across the regions of the world. We examine the regions separately and find differing strengths
of preferential sampling, but in all regions our method performs better than the conditional
model. In some regions, we see stronger relationships between sampling frequency and popula-
tion size, most often in regions with the most seasonal variation in incidence.

Methods

State-of-the-art phylodynamics
Consider a sample of individuals from a well-mixed population. Some individuals will share a
common ancestor more recently than others. One pair of individuals in particular will have the
pairwise most recent common ancestor. Moving backwards in time, we can consider those two
individuals to have coalesced, treating the two individuals as one. We can then repeat this
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process of finding the pairwise most recent common ancestor and coalescing individuals until
we reach the most recent common ancestor of the entire sample. If we keep track of the ances-
tral lineages and coalescences of the individuals, we see the data take the shape of a bifurcating
tree, and we refer to this ancestry tree as a genealogy (illustrated in Fig 1).

We refer to the branching points of the genealogy tree as coalescent events. If the samples
are all taken simultaneously, we refer to the genealogy as isochronous. Kingman’s original coa-
lescent provided a density for isochronous genealogies with a fixed effective population size
[6]. Later extensions to the coalescent allowed for parametric and nonparametric specifications
of effective population size trajectories along with heterochronous sampling times. Heterochro-
nous sampling times (also called sampling events) can occur at any time up to the present.

We consider first the case of a fixed, heterochronous genealogy [21]. The coalescent likeli-
hood has sufficient statistics g ¼ ftign

i¼1; 0 ¼ tn < tn�1 < . . . < t1, representing the coalescent
times, and s ¼ fsi; nigmi¼1; 0 ¼ sm < sm�1 < . . . < s1;

Pm
j¼1 nj ¼ n, representing the sampling

times along with the corresponding number of lineages sampled (see Fig 1). We define the
number of active lineages at time t as the number of lineages sampled between t and the pres-
ent, minus the number of coalescent events between t and the present. In Fig 1, this appears as
the number of horizontal lines that a vertical line at time t will cross.

We define a partition of (0, t1) with intervals Ii,k for k = 1, . . ., n. We let I0,k represent the
intervals ending with a coalescent event and let Ii,k for i = 1, . . .,mk represent themk intervals
ending in a sampling event between the (k − 1)th and kth coalescent events (see Intervals in Fig

1). We let Ci;k ¼ ni;k
2

� �
, where ni,k is the number of active lineages in the interval Ii,k. Suppose s is

fixed, then the coalescent likelihood is

Pr ½gjNeðtÞ; s� /
Yn
k¼2

C0;k

Neðtk�1Þ
exp �

Xmk

i¼0

Z
Ii;k

Ci;k

NeðtÞ
dt

" #
:

In Bayesian phylodynamic inference, our aim is to explore the posterior distribution of the
effective population size trajectory Ne(t), so we employ a Gaussian process prior Pr[Ne(t)jτ],
where Ne(t) = exp[γ(t)], with gðtÞ � BMðtÞ following a Brownian motion with precision
parameter τ[18]. We assign a Gamma(0.01, 0.01) hyperprior to τ. This results in the posterior
Pr[Ne(t), τjg]/Pr[gjNe(t)]Pr[Ne(t)jτ]Pr(τ).

The continuous case as written above involves an infinite-dimensional object—the func-
tion Ne(t)—which makes the problem as stated intractable. However, we can approximate
the continuous function with a piecewise constant function. We construct a fine, regular

grid x ¼ fxjgBj¼1 with grid width w over the interval that supports the genealogy and let

γj = log[Ne(xj)]. We construct a piecewise constant approximation

NγðtÞ ¼ PB
i¼1 exp ðgiÞ1t2½xi�w=2;xiþw=2Þ. The discretized coalescent likelihood becomes

Pr ðg j γÞ /
Yn
k¼2

C0;k

Nγðtk�1Þ
exp �

Xmk

i¼0

Z
Ii;k

Ci;k

NγðtÞ dt
" #

; ð1Þ

where γ = (γ1, . . ., γB) and the integrals are simple to compute over the step function Nγ(t).
We discretize the Brownian process prior with an intrinsic random walk prior,

Pr ðγ j tÞ / tðn�1Þ=2 exp � t
2

XB�1

k¼1

ðgkþ1 � gkÞ2
" #

:

Finally, the discretized posterior becomes Pr(γ, τjg)/Pr(gjγ)Pr(γ|τ)Pr(τ).
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With the posterior known (up to a proportionality constant), we can proceed with numeri-
cal integration techniques such as Markov chain Monte Carlo (MCMC) or INLA—a determin-
istic algorithm for approximating posterior distributions. We select INLA and name the
implementation Bayesian nonparametric phylodynamic reconstruction (BNPR).

Phylodynamics with preferential sampling
In the previous section we made the assumption that we could safely ignore any potential
dependence of sampling times s on effective population size Nγ(t) in our calculations. In this
section, we relax this assumption. We model sampling times according to an inhomogeneous

Poisson process in a fixed sampling window [0, s0], with intensity lðtÞ ¼ exp ðb0Þ½NγðtÞ�b1 , i.e.
proportional to a power of the effective population size, where β0 and β1 are unknown parame-
ters. The sampling log-likelihood is

log ½Pr ðs j γ; b0; b1Þ� ¼ C þ nb0 þ
Xn

i¼1

b1 log ½NγðsiÞ� �
Z s0

sm

exp ðb0Þ½NγðrÞ�b1dr:

To illustrate our parameterization, sampling with β1 = 1 would result in collecting genetic
sequences with intensity directly proportional to effective population size, while higher β1 val-
ues result in more clustered samples. Conversely, β1 = 0 produces a uniform distribution of
sampling times, with a Poisson distribution on the number of individuals sampled.

In many datasets, the sampling time data will have low enough resolution (for instance,
only recording the date but not time of sampling) that some sampling times will appear to be
coincident. Our sampling model is compatible with simultaneous sampling times because the
model naturally bins the samples along our earlier discretization. The likelihood is proportional
to a product of Poisson mass functions centered at the grid points x.

The genealogy depends on the sampling times, so we condition on s in the likelihood for
g. We are treating s as random, so we insert the likelihood term for it as well as independent

Fig 1. Illustration of an example heterochronous genealogy with n = 5 lineages. Sampling times s1, . . ., s5 and coalescent times t1, . . ., t5 are marked
below the genealogy.

doi:10.1371/journal.pcbi.1004789.g001
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Normal priors for parameters β0 and β1—specifically βi * N(mean = 0, variance = 1000) for
i = 0, 1. We retain the same hyperprior for the precision parameter τ as above. This results in
the posterior that accounts for preferential sampling,

Pr ðγ; t; β j g; sÞ / Pr ðg j s; γÞPr ðs j γ; βÞPr ðγ j tÞPr ðtÞPr ðbÞ;
where Pr(gjs, γ) is defined by Eq (1), but now we add conditioning on s explicitly. In the case
where the density of sampling times s is functionally independent of the vector of log effective
population sizes γ, the posterior for g simplifies to the form it had in the previous section,
because the likelihood for s becomes a constant in γ. We incorporate our sampling model into
an INLA framework similar to BNPR and name the implementation Bayesian nonparametric
phylodynamic reconstruction with preferential sampling (BNPR-PS).

INLA framework
Here we present a brief outline of the INLA methodology [17] in the context of our BNPR and
BNPR-PS implementations. We first examine BNPR as the simpler model. In the end, we
intend to estimate the marginal posteriors of the precision hyperparameter Pr(τ j g) and the
latent points Pr(γi j g), i = 1, . . ., B, most often focusing on the posterior medians and the end
points of the 95% Bayesian credible intervals. We approximate the marginal of τ with

bPrðt j gÞ / Prðγ; t; gÞbPrGðγ j t;gÞ

�����
γ¼γ�ðtÞ

;

where bPrGðγ j t;gÞ is the Gaussian approximation generated from a Taylor expansion around
γ�(τ), the mode of Pr(γjτ, g) for a given τ. We can find γ�(τ) using the Newton-Raphson
method.

Next, we need to approximate the distribution of γi conditional on τ. The simplest method
of using the Gaussian approximations above can produce errors [17], so we briefly describe the
use of nested Laplace approximations. The full implementation details can be found in [17].
We define

bPrLAðgi j t;gÞ / Prðγ; t; gÞbPrGGðγ�i j gi; t;gÞ

�����
γ�i¼γ��i

;

where bPrGGðγ�i j gi; t;gÞ is a Gaussian approximation of Pr(γ−ijγi, τ, g) obtained by a Taylor
expansion around γ�

�i ¼ EGðγ�i j gi; t; gÞ, which is computed using bPrGðγ j t;gÞ. Finally, we
normalize and combine the two approximations, then use numerical integration to calculate

bPrðgi j gÞ ¼ Z bPrðgi j t;gÞ bPrðt j gÞdt:
The outline for BNPR-PS is very similar. The approximate marginal of the hyperparameters

is

bPrðt; β j g; sÞ / Prðγ; t; β;g; sÞbPrGðγ j t; β;g; sÞ

�����
γ¼γ�ðt;βÞ

;

for similarly defined factors. We take advantage of an INLA extension by Martins et al. [22]
that allows for multiple likelihoods. The approximate distribution of γi conditional on τ, β
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becomes

bPrLAðgi j t; β;g; sÞ / Prðγ; t; β;g; sÞbPrGGðγ�i j gi; t; β;g; sÞ

�����
γ�i¼γ��i

;

and the final numerical integration is analogously more complex but still tractable, since we
integrate over both τ and β.

We use the R-INLA package [17, 22] to perform the above calculations. We make INLA
approximations of BNPR and BNPR-PS posteriors available, along with other phylodynamic
tools, in the R package phylodyn which can be found at https://github.com/mdkarcher/
phylodyn.

Results

Simulation study
We investigate estimating effective population size in the presence of preferential sampling via
simulated data. First, we seek to show where and how the model misspecification resulting
from ignoring preferential sampling manifests itself in terms of posterior median and Bayesian
credible interval width estimation. Our second goal is to show what we gain by properly model-
ing preferential sampling.

Our primary set of simulation results use the family of seasonally-varying effective popula-
tion size functions characterized by

Ne;a;oðtÞ ¼
10þ 90=ð1þ expfa½3� ðt þ o ðmod 12ÞÞ�gÞ; if t þ o ðmod 12Þ � 6;

10þ 90=ð1þ expfa½3þ ðt þ o ðmod 12ÞÞ � 12�gÞ; if t þ o ðmod 12Þ > 6:
ð2Þ

(

For all of our experiments, the smoothness parameter a = 2 will be used. This family emulates a
cyclical population time series with t in nominal months. The shape is loosely modeled after flu
seasons, with o controlling which part of the year t = 0 represents (o = 0, 3, 6 emulates summer,
spring, and winter, respectively). We simulate genealogies with varying tip sampling times
using two sampling schedules. The uniform schedule distributes n sampling times uniformly
throughout a given sampling interval. The proportional schedule distributes sampling times
in the sampling interval according to an inhomogeneous Poisson process with intensity pro-
portional to effective population size. The proportionality constant here is tuned to have an
expected number of sampling times equal to n.

We explore the properties of our two methods using a Monte Carlo approach. To create a
Monte Carlo iteration, we generate our sampling times according to their sampling schedules,
then simulate our genealogies using coalescent theory via the rejection sampling method of [5].
Given the genealogy and the samples, we infer the effective population time series, using BNPR
and BNPR-PS to approximate grids of marginal posteriors. For each iteration, this gives us
approximate estimates of the posterior median and quantiles at each point in the effective pop-
ulation size time series. In Fig 2, we see outputs from BNPR and BNPR-PS on the same exam-
ple iteration.

Our first set of experiments is aimed at determining the extent of the bias introduced by
unaccounted preferential sampling. With rMonte Carlo iterations, we take two approaches to
locating model misspecification error—time interval analysis and pointwise analysis. For time
interval analyses, we calculate summary statistics for a pre-specified time interval (a, b) and
average them over the set of r simulation iterations. For pointwise analyses however, we
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consider the time series of point estimates from each iteration, and then on a pointwise basis
we calculate aggregate point estimates and confidence intervals.

Our time interval summary statistics aremean relative deviation,

MRD ¼ 1

r

Xr

i¼1

1

b� a

Z b

a

jN̂ g
i ðtÞ � NγðtÞj
NγðtÞ dt

� �
;

mean relative width of the 95% Bayesian credible intervals,

MRW ¼ 1

r

Xr

i¼1

1

b� a

Z b

a

N̂ g
i;0:975ðtÞ � N̂ g

i;0:025ðtÞ
NγðtÞ dt

" #
;

where Nγ(t) is the discretized true effective population size trajectory, N̂ g
i ðtÞ is the estimated

posterior median of effective population sizes for iteration i, and N̂ g
i;qðtÞ is the estimated qth

posterior quantile for iteration i. We also look atmean envelope, ME, the proportion of grid
points where the credible interval contains the true trajectory, averaged over all grid points
contained in [a, b] across all Monte Carlo iterations.

Fig 2. Graphical representation of the output of a single genealogy simulation and integrated nested Laplace approximation (INLA) estimation.
The dotted black lines represent the true population trajectory. The solid colored lines represent the posterior median estimates, while the shaded regions
represent the 95% credible regions. At bottom, the upper and lower heatmaps represent frequencies of sampling events and coalescent events, respectively.
For this figure, we sampled individuals according to an inhomogeneous Poisson process with intensity proportional to effective population size Ne(t). The plot
on the left is generated by Bayesian nonparametric phylodynamic reconstruction (BNPR) and does not account for preferential sampling, while the plot on the
right is generated by Bayesian nonparametric phylodynamic reconstruction with preferential sampling (BNPR-PS) and incorporates our sampling time model.
Time is in months.

doi:10.1371/journal.pcbi.1004789.g002
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For a given grid of time points ftjgkj¼0, pointwise analysis computes the means of pointwise

posterior medians,

mpmedianðtjÞ ¼
1

r

Xr

i¼1

N̂ g
i;0:5ðtjÞ; for j ¼ 0; . . . ; k;

pointwise mean relative errors,

mreðtjÞ ¼
1

r

Xr

i¼1

N̂ g
i;0:5ðtjÞ � NγðtjÞ

NγðtjÞ
; for j ¼ 0; . . . ; k;

and a sequence of mean relative widths of the pointwise Bayesian credible intervals,

mrwðtjÞ ¼
1

r

Xr

i¼1

N̂ g
i;0:975ðtjÞ � N̂ g

i;0:025ðtjÞ
NγðtjÞ

; for j ¼ 0; . . . ; k:

We choose grid size k = 100, number of simulation iterations r = 512, and expected number of
lineages per genealogy n = 500. We choose the sampling interval [0, 48] for all simulations.

Ignoring preferential sampling. Table 1 shows the averaged time interval summary sta-
tistics for simulated genealogies under uniform and proportional schedules for the time inter-
vals (0, 6) and (6, 48). Genealogies were simulated assuming effective population size function
Ne,2,0(t) defined in Eq 2. We show the time interval summary statistics for inferred effective
population sizes both ignoring and considering preferential sampling. Ignoring preferential
sampling (Table 1 under BNPR), we note a 17% increase in mean relative deviation from uni-
form to proportional schedules, as well as a 20% increase in mean relative width of Bayesian
credible intervals for (6, 48). For (0, 6) the increase is more stark. We see a 407% increase in
mean relative deviation from uniform to proportional, and a 799% increase in mean relative
width of Bayesian credible intervals. Under proportional sampling, we see a notable increase in
mean envelope, ME, on the (0, 6) interval. All other cases show BNPR and BNPR-PS having
ME within Monte Carlo error. These results confirm that ignoring preferential sampling affects
both bias and variance of Bayesian nonparametric estimators of the effective populations size.

Fig 3 (solid lines) compares the average pointwise statistics for the uniform and propor-
tional sampling schedules. Note the marked increase in mean relative error in several locations.
We also see much larger mean relative widths in the same locations. Fig 4 compares the time
interval statistics for the uniform and proportional sampling schedules, and we see increases in
mean relative deviation and mean relative width. We conjecture that these features are repre-
sentative of the model misspecification error that we would expect while sampling sequences/
lineages preferentially in time but not accounting for it in the model.

Accounting for preferential sampling. Table 1 under BNPR-PS shows the time interval
statistics for the sampling-aware model. For interval (6, 48), mean relative deviation decreases
by 23% versus BNPR under proportional sampling, while mean relative width of Bayesian
credible intervals decreases by a larger margin of 33%. For interval (0, 6) mean relative devia-
tion and mean relative width decrease by 80% and 91%, respectively. Under uniform sampling,
BNPR-PS performs almost identically to BNPR for both intervals.

Fig 3 (dashed lines) compares the average pointwise statistics for the uniform and propor-
tional sampling schedules under BNPR-PS. We see that BNPR-PS does not experience the
increase in relative error that BNPR experiences under preferential sampling. The plots also
show an improvement in mean relative width of Bayesian credible intervals under preferential
sampling due to the additional information available. Fig 4 compares the time interval statistics
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for the uniform and proportional sampling schedules under BNPR-PS, and shows improve-
ments in mean relative deviation and mean relative width.

Negative control simulations. In the previous sections, we find a pattern of increased
mean relative deviation and mean relative width while using a conditional model in a scenario
involving preferential sampling. However, it is possible that this behavior of the conditional,
state-of-the-art coalescent model can be seen under other simulation scenarios that cluster
sampling times, even when such clustering has no relationship to the effective population size
fluctuations. To test this assertion, we design a pair of negative control simulation studies to
have random clusters of sampling times, but no preferential sampling.

First, we apply BNPR to genealogies generated from randomly constructed piecewise con-
stant sampling intensity functions, independent of effective population size; see Appendix. We
see some examples of increased mean relative error, but nothing as consistent nor prevalent as
in the preferential sampling case above (see Figs 2 and 3). Similarly, we see increased mean rel-
ative width in several locations, but decreased widths in others. Second, we apply BNPR to
genealogies generated from Gaussian process evaluations (subsampled for relatively similar
shapes and number of peaks and troughs to the true population trajectory); see Appendix. This
model has shape characteristics closer to the population trajectory since we are sampling from
a Gaussian process. Despite the similar shapes, we see fewer increases in mean relative width
and smaller increases in mean relative width. We conclude that unaccounted preferential sam-
pling produces markedly more error more consistently than the negative control cases.

We also apply BNPR-PS to the same scenarios as above. BNPR-PS’s performance suffers
significantly due to both scenarios violating its fundamental assumption of a fixed relationship
between effective population size and sampling intensity. We see BNPR-PS performs worst
locally when there is a nearly fixed relationship which is suddenly reversed in a small time
interval.

Parametric simulations. Finally, we also explored model misspecification in a correctly-
specified parametric context. We simulated 100,000 genealogies from the coalescent with an
exponential effective population size trajectory Ne(t) = exp(a+bt), under uniform and propor-
tional sampling schedules. We applied an exponential growth/decline parametric maximum
likelihood method and summarized the results in the Appendix. In both uniform and preferen-
tial sampling we see small, but comparable biases in estimates of parameter a. However, esti-
mates of the exponential growth rate parameter b have no detectable bias under uniform
sampling, but have small but significant bias under preferential sampling. This verifies that
ignoring preferential sampling causes systematic bias, perhaps of small magnitude, in

Table 1. Averaged time interval summary statistics for BNPR and BNPR-PS.

Uniform—(6, 48) Proportional—(6, 48) Uniform—(0, 6) Proportional—(0, 6)

BNPR BNPR-PS BNPR BNPR-PS BNPR BNPR-PS BNPR BNPR-PS

MRD 0.205 0.205 0.239 0.183 0.430 0.436 2.181 0.432

MRW 1.255 1.255 1.500 1.008 2.816 2.816 19.681 1.682

ME 0.965 0.964 0.962 0.957 0.950 0.948 0.833 0.898

We compare the performance of the models under two different sampling distributions. Uniform distributes sampling times according to a uniform

distribution on the interval (0, 48), while proportional distributes sampling times according to a inhomogeneous Poisson process with intensity proportional

to effective population size Ne(t) on the same interval. We examine the statistics mean relative deviation (MRD), mean relative width of the 95% Bayesian

credible interval (MRW), and mean envelope (ME). We average over statistics over the interval (6, 48) where both methods perform well and over the

most recent interval (0, 6) where BNPR-PS performs considerably better.

doi:10.1371/journal.pcbi.1004789.t001
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maximum likelihood phylodynamic estimation even under a simple low-dimensional paramet-
ric model.

Case studies
New York influenza. We base our first case study on a subset of the data from [19], also

analyzed by Palacios and Minin [5]. We focus on the 709 hemagglutinin gene sequences of
H3N2 human influenza type A obtained from the National Center for Biotechnology Informa-
tion (NCBI) Influenza Virus Sequence Database for years 1992 through 2005 from New York
State. We align the sequences using the software MUSCLE [23], and infer a maximum clade
credibility genealogy using the software BEAST [24]. We infer the genealogy branch lengths in
units of years using a strict molecular clock, a constant effective population size prior, and an
HKY substitution model with the first two nucleotides of a codon sharing the same estimated

Fig 3. Comparison of pointwise statistics.Dotted black lines represent the truth, where applicable. Solid yellow lines represent the conditional method
BNPR (ignoring preferential sampling), while dashed blue lines represent the sampling-aware method BNPR-PS (accounting for preferential sampling). The
first row shows true and estimated effective population sizes, the second shows mean relative error, while the third shows mean relative width of the 95%
Bayesian credible interval. The left two columns show the interval (6, 48) where both models perform at their best. The right two columns show (0, 6), where
BNPR-PS performs significantly better. At the bottom of each plot, the distribution of sampling events (above) and coalescent events (below) are shown as
heat maps. Time is in months.

doi:10.1371/journal.pcbi.1004789.g003
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transition matrix, while the third nucleotide’s transition matrix is estimated separately. We
then apply our two algorithms to the estimated genealogy.

We find that BNPR produces results in line with previous analyses of this dataset, showing a
characteristic uncertainty around the flu seasons of 2000–2001 and 2002–2003 (see Fig 5). In
contrast, BNPR-PS shows a marked improvement in the regularity of the reconstructed flu sea-
sons, as well as thinner Bayesian credible intervals across the the whole observation interval.

Fig 4. Comparison of time interval statistics.Within each plot, we apply BNPR and BNPR-PS to sampling times generated according to a Uniform
distribution on the left and proportionally to effective population size on the right. In the left column of plots, we examine the interval (6, 48) where the
performances of both models are comparable. In the right column, we show (0, 6), and note that BNPR-PS performs well, while BNPR performs considerably
worse.

doi:10.1371/journal.pcbi.1004789.g004
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Estimations also improved during the unusual flu seasons of 2000–2001 and 2002–2003, con-
sistent with these seasons being H1N1 dominant seasons instead of H3N2 dominant [25].

To compare performance of the BNPR and BNPR-PS models, we introduce an empirical
measure of performance because we cannot know the true population size trajectory. We calcu-
late the time interval and pointwise empirical mean relative width (EMRW) of the 95% Bayes-
ian credible intervals,

EMRW ¼ 1

r

Xr

i¼1

1

b� a

Z b

a

N̂ g
i;0:975ðtÞ � N̂ g

i;0:025ðtÞbN g
i ðtÞ

dt

" #
; for j ¼ 0; . . . ; k;

and

emrwðtjÞ ¼
1

r

Xr

i¼1

N̂ g
i;0:975ðtjÞ � N̂ g

i;0:025ðtjÞbN g
i ðtjÞ

; for j ¼ 0; . . . ; k:

Table 2 shows a very high value of β1 for this dataset, suggesting a strong pattern of preferential
sampling, and accordingly we see a marked improvement of BNPR-PS model over its BNPR
counterpart in estimation precision as measured by the Bayesian credible interval widths
(EMRW).

Regional influenza. Zinder et al. examine world-wide seasonal patterns of migration of
H3N2 influenza across the regions of the world [20]. They also examine different seasonal inci-
dence patterns, with tropical regions having a relatively flat incident rate throughout the year,
while temperate regions show larger seasonal variation with higher incidence in winter months.
In order to explore the effects of seasonality on preferential sampling, we examine the regions
separately. We align the sequences using the software MUSCLE [23], and infer a maximum
clade credibility genealogy using the software BEAST [24]. We infer the genealogy branch
lengths in units of years using a strict molecular clock, a constant effective population size
prior, and an HKY substitution model with the first two nucleotides of a codon sharing the

Fig 5. BNPR and BNPR-PSmodels applied to the genealogy inferred from the New York influenza data [19]. Years mark January of the corresponding
year. Note the correlation of higher effective population sizeNγ(t) with more intense sampling frequencies (darker regions in the Sampling events heatmap),
suggesting preferential sampling. We see a marked improvement in discerning the seasonal influenza patterns and significantly thinner credible regions
under BNPR-PS.

doi:10.1371/journal.pcbi.1004789.g005

Preferential Sampling in Phylodynamic Inference

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004789 March 3, 2016 13 / 19



same estimated transition matrix, while the third nucleotide’s transition matrix is estimated
separately. We then apply our two algorithms to the estimated genealogy.

We find that none of the regions contain 0 in their β1 Bayesian credible interval (see
Table 2), suggesting a relationship between effective population size and sampling frequency.
Across all regions except South America, we see improvements of the BNPR-PS model over
the BNPR model in estimation precision (EMRW). We examine three of the regions more
closely in Figs 6 and 7 and the remaining six regions in the appendix. We see noticeable
improvements in the relative widths of the Bayesian credible intervals. We also see more pro-
nounced seasonality in the estimated effective population size trajectories produced by
BNPR-PS. The USA/Canada region shows the expected seasonal peak in January-February,
while the Oceania region shows the same in July-September. South China shows less seasonal-
ity overall, but BNPR-PS shows a more pronounced August peak despite the region being in
the northern hemisphere. This is, however, in line with previous findings, most likely due to
southern China’s more tropical climate [26].

Discussion
Researchers who study measurably evolving populations [27], such as viruses, can inadver-
tently or purposefully preferentially select sequences in accordance to the changes in size of the
population of interest. Failing to account for such an ascertainment bias can compromise the
statistical properties of phylodynamic inference. Our simulation study shows that the effect of
preferential sampling is particularly severe when the effective population size is decreasing. We
propose an extension to the state-of-the-art in Gaussian process-based Bayesian phylodynamic
methods, in which we assume that sampling times a priori follow an inhomogeneous Poisson
process with intensity proportional to a power of the effective population size. This model
extension eliminates the systematic estimation bias resulting from having unrecognized prefer-
ential sampling, and also gives us better population size estimates by incorporating sampling
times as an additional source of information.

Applied to the real-world examples, our method produces improvements over the state-of-
the-art. We see significantly improved precision, as well as more realistic estimation of seasonal

Table 2. Case studies’ empirical mean relative widths and Bayesian credible intervals of β0 and β1.

EMRW 95% credible interval of β0 95% credible interval of β1

n BNPR BNPR-PS

New York influenza 709 1.23 0.58 (-47.4, -30.3) (5.88, 10.23)

Regional influenza

USA & Canada 520 1.83 1.11 (-3.02, -0.79) (2.52, 4.05)

South America 191 0.86 0.91 (-4.21, -0.42) (3.27, 7.52)

Europe 361 1.73 0.96 (-6.61, -2.44) (3.68, 6.88)

India 233 1.79 1.30 (-2.18, 0.50) (2.34, 4.78)

Japan & Korea 444 1.82 1.09 (-2.23, -0.25) (2.35, 3.76)

North China 384 1.80 1.09 (-2.63, -0.27) (2.22, 3.89)

South China 528 1.27 0.78 (-1.05, 1.00) (1.68, 3.23)

Southeast Asia 494 0.99 0.54 (-7.93, -2.55) (4.39, 8.86)

Oceania 461 1.53 0.88 (-1.51, 0.43) (2.71, 4.52)

The regional influenza dataset is broken down into world regions. In all but one region, we see improvements, or at worst near-equality, in empirical mean

relative width (EMRW) using BNPR-PS over BNPR.

doi:10.1371/journal.pcbi.1004789.t002
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Fig 6. BNPR and BNPR-PSmodels applied to the genealogies inferred from the regional influenza example [20].We see moderate correlation
between effective population sizeNγ(t) and sampling frequencies in the data (Table 2). We see improvements in Bayesian credible interval widths, and
BNPR-PS performs as well or better than BNPR everywhere in these examples.

doi:10.1371/journal.pcbi.1004789.g006
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variation of influenza diversity. In the presence of weaker preferential sampling, as in some of
the regional influenza examples, we note that our method still performs better than the current
state-of-the-art, with no loss of performance aside from a slightly longer computation time. In
addition, by estimating β1, the effect of population size on the log-intensity of sampling times,
we gain the ability to quantify the strength of the preferential sampling relationship in the dif-
ferent regions. Such quantification is scientifically useful in infectious disease phylodynamics,
because researchers may want to know whether frequency of sampling times can be used as a
proxy for incidence.

One avenue of future exploration is to intentionally guarantee preferential sampling during
the sequence data collection phase. For example, if an epidemiological study contains noisy
incidence data, we can subsample sequences with intensity proportional to incidence and apply
our sampling-aware BNPR-PS model to the resulting sequence data. Such a procedure will
indirectly combine sequence and incidence data to estimate the effective number of infections
—a nontrivial task for the current methods [28]. We contrast this to the approach of [29],
which examined the effect of sampling infectious disease agent sequences in batches at different

Fig 7. Seasonality in regional influenza. BNPR and BNPR-PSmodels applied to the genealogies inferred from the regional influenza example with years
overlaid. We see more pronounced seasonality in the BNPR-PS plots.

doi:10.1371/journal.pcbi.1004789.g007
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points in an epidemic’s life-cycle compared to uniform and preferential sampling. They found
that during epidemic declines their estimates had the largest mean squared error and benefited
most in terms of this metric when samples were collected more frequently during the declines.
This is consistent with our results, as we see the most error and widest credible intervals during
effective population size declines. However, they did not consider the effect of the relationship
between their proposed sampling intensity and population size trajectories on estimation of
population dynamics—the primary goal of our work.

Our current implementation of the BNPR-PS model assumes a fixed, known genealogy.
However, in practice, genealogies are inferred with inherent uncertainty from sequence data.
We have found that point estimates produced by our method on the Regional influenza data
are robust to genealogical uncertainty (see Regional influenza section in the Appendix), but a
method that jointly estimates both genealogy and effective population is still necessary to prop-
erly assign uncertainty to population size estimates. One limitation of our method is that the
INLA framework cannot be extended to include inference of genealogies. However, it should
be straightforward to incorporate the core of our approach—the sampling times model— into
an MCMC sampler that targets the joint posterior distribution of population size trajectory,
genealogy of sampled sequences, and other parameters. We intend to implement such an
MCMC approach in the software BEAST [24].

The main goal of this manuscript is to point out the danger of ignoring preferential sam-
pling in phylodynamics. Providing a solution to this problem, in the form of BNPR-PS model,
remains our secondary goal, but we emphasize that much work is still needed to refine our pro-
posed approach. The main weakness of our new model lies in its rigid parametric form of
dependence between effective population size Ne(t) and sequence sampling intensity λ(t). In
our negative control simulations we see that BNPR-PS performance suffers, possibly greatly,
when this assumption of a fixed relationship between effective population size Ne(t) and sam-
pling intensity λ(t) is violated. Similar results under model misspecification are observed by
Volz and Frost in the context of birth-death-sampling models for phylodynamic inference
[16, 30].

Sampling times model misspecification is most likely to occur if other variables besides
effective population size Ne(t) effect changes in the sampling intensity λ(t). For instance, not
accounting for a lag between Ne(t) and λ(t) may cause a severe model misspecification. Simi-
larly, not accounting for increases in sampling intensity on longer time scales due to decreases
in the cost of sequencing will bias our BNPR-PS estimation. We plan to address these issues by
modeling our sampling intensity λ(t) as a log-linear combination of effective sample size and
other covariates:

log½lðtÞ� ¼ bTcðtÞ;
where c(t)T = (1, Ne(t), c1(t), . . ., cp(t)) and ci(t), i = 1, . . ., p are covariates of interest. For exam-
ple, the cost of genome sequencing over time and lagged population size Ne(t−l) are among
prime candidates for covariates to be included into our BNPR-PS model. Another example of a
promising time-varying sampling covariate is an indicator of ‘outbreak’ status, allowing for
changes in sampling intensity during times of increased epidemiological oversight. We hope to
explore these model extensions in our future research.
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