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Abstract Seasonal influenza virus A/H3N2 is a major cause of death globally. Vaccination

remains the most effective preventative. Rapid mutation of hemagglutinin allows viruses to escape

adaptive immunity. This antigenic drift necessitates regular vaccine updates. Effective vaccine

strains need to represent H3N2 populations circulating one year after strain selection. Experts

select strains based on experimental measurements of antigenic drift and predictions made by

models from hemagglutinin sequences. We developed a novel influenza forecasting framework that

integrates phenotypic measures of antigenic drift and functional constraint with previously

published sequence-only fitness estimates. Forecasts informed by phenotypic measures of

antigenic drift consistently outperformed previous sequence-only estimates, while sequence-only

estimates of functional constraint surpassed more comprehensive experimentally-informed

estimates. Importantly, the best models integrated estimates of both functional constraint and

either antigenic drift phenotypes or recent population growth.

Introduction
Seasonal influenza virus infects 5–15% of the global population every year causing an estimated

250,000 to 500,000 deaths annually with the majority of infections caused by influenza A/H3N2

(World Health Organization, 2014). Vaccination remains the most effective public health response

available. However, frequent viral mutation results in viruses that escape previously acquired human

immunity. The World Health Organization (WHO) Global Influenza Surveillance and Response System
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(GISRS) monitors influenza evolution by sampling currently circulating viruses, or strains, and analyz-

ing these strains with genome sequencing and serological assays. The WHO GISRS uses these data

to select vaccine viruses that should best represent circulating viruses in the next influenza season.

However, because the process of vaccine development and distribution requires several months to

complete, optimal vaccine design requires an accurate prediction of which viruses will predominate

approximately one year after vaccine viruses are selected.

Historically, the effectiveness of the H3N2 vaccine component has been much lower than the

other seasonal influenza subtypes. For example, H3N2’s mean vaccine effectiveness from 2004 to

2015 was 33% compared to 61% for H1N1pdm and 54% for influenza B viruses (Belongia et al.,

2016). Multiple factors can reduce vaccine effectiveness including selection of a vaccine strain that is

not antigenically representative of future populations (Belongia et al., 2016; Gouma et al., 2020)

and adaptations of the selected strain to egg-passaging during vaccine production that alter the

antigenicity of the resulting vaccine component (Zost et al., 2017). Even when vaccine strains are

well-matched antigenically, they may fail to induce a strong immune response due to previous infec-

tion history of vaccine recipients (Cobey et al., 2018). While all of these factors must be addressed

to increase vaccine effectiveness, substantial effort has focused on the selection of the most repre-

sentative strain for the next season’s vaccine.

Current vaccine predictions focus on the hemagglutinin (HA) protein, which acts as the primary

target of human immunity. Until recently, the hemagglutination inhibition (HI) assay has been the pri-

mary experimental measure of antigenic cross-reactivity between pairs of circulating viruses

(Hirst, 1943). Most modern H3N2 strains carry a glycosylation motif that reduces their binding effi-

ciency in HI assays (Chambers et al., 2015; Zost et al., 2017), prompting the increased use of virus

neutralization assays including the neutralization-based focus reduction assay (FRA) (Okuno et al.,

1990). Together, these two assays are the gold standard in virus antigenic characterizations for vac-

cine strain selection, but they are laborious and low-throughput compared to genome sequencing

(Wood et al., 2012). As a result, researchers have developed computational methods to predict

influenza evolution from sequence data alone (Luksza and Lässig, 2014; Steinbrück et al., 2014;

Neher et al., 2014).

eLife digest Vaccination is the best protection against seasonal flu. It teaches the immune

system what the flu virus looks like, preparing it to fight off an infection. But the flu virus changes its

molecular appearance every year, escaping the immune defences learnt the year before. So, every

year, the vaccine needs updating. Since it takes almost a year to design and make a new flu vaccine,

researchers need to be able to predict what flu viruses will look like in the future. Currently, this

prediction relies on experiments that assess the molecular appearance of flu viruses, a complex and

slow approach.

One alternative is to examine the virus’s genetic code. Mathematical models try to predict which

genetic changes might alter the appearance of a flu virus, saving the cost of performing specialised

experiments. Recent research has shown that these models can make good predictions, but

including experimental measures of the virus’ appearance could improve them even further. This

could help the model to work out which genetic changes are likely to be beneficial to the virus, and

which are not.

To find out whether experimental data improves model predictions, Huddleston et al. designed a

new forecasting tool which used 25 years of historical data from past flu seasons. Each forecast

predicted what the virus population might look like the next year using the previous year’s genetic

code, experimental data, or both. Huddleston et al. then compared the predictions with the

historical data to find the most useful data types. This showed that the best predictions combined

changes from the virus’s genetic code with experimental measures of its appearance.

This new forecasting tool is open source, allowing teams across the world to start using it to

improve their predictions straight away. Seasonal flu infects between 5 and 15% of the world’s

population every year, causing between quarter of a million and half a million deaths. Better

predictions could lead to better flu vaccines and fewer illnesses and deaths.
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Despite the promise of these sequence-only models, they explicitly omit experimental measure-

ments of antigenic or functional phenotypes. Recent developments in computational methods and

influenza virology have made it feasible to integrate these important metrics of influenza fitness into

a single predictive model. For example, phenotypic measurements of antigenic drift are now accessi-

ble through phylogenetic models (Neher et al., 2016) and functional phenotypes for HA are avail-

able from deep mutational scanning (DMS) experiments (Lee et al., 2018). We describe an

approach to integrate previously disparate sequence-only models of influenza evolution with high-

quality experimental measurements of antigenic drift and functional constraint.

The influenza community has long recognized the importance of incorporating HI phenotypes

and other experimental measurements of viral phenotypes with existing forecasting methods to

inform the vaccine design process (Gandon et al., 2016; Morris et al., 2018; Lässig et al., 2017).

Although several distinct efforts have made progress in using HI phenotypes to evaluate the evolu-

tion of seasonal influenza (Steinbrück et al., 2014; Neher et al., 2016), published methods stop

short of developing a complete forecasting framework wherein the evolutionary contribution of HI

phenotypes can be compared and contrasted with new and existing fitness metrics. However,

unpublished work by Luksza and Lässig, 2014 to the WHO GISRS network incorporates antigenic

phenotypes into fitness-based predictions (Morris et al., 2018; M Łuksza, personal communication,

June 2020). Here, we provide an open source framework for forecasting the genetic composition of

future seasonal influenza populations using genotypic and phenotypic fitness estimates. We apply

this framework to HA sequence data shared via the GISAID EpiFlu database (Shu and McCauley,

2017) and to HI and FRA titer data shared by WHO GISRS Collaborating Centers in London, Mel-

bourne, Atlanta and Tokyo. We systematically compare potential predictors and show that HI pheno-

types enable more accurate long-term forecasts of H3N2 populations compared to previous metrics

based on epitope mutations alone. We also find that composite models based on phenotypic meas-

ures of antigenic drift and genotypic measures of functional constraint consistently outperform any

fitness models based on individual genotypic or phenotypic metrics.

Results

A distance-based model of seasonal influenza evolution
We developed a framework to forecast seasonal influenza evolution inspired by the Malthusian

growth fitness model of Luksza and Lässig, 2014. As with this original model, we forecasted the fre-

quencies of viral populations one year in advance by applying to each virus strain an exponential

growth factor scaled by an estimate of the strain’s fitness (Figure 1 and Equation 1). Luksza and

Lässig, 2014 measured model performance by identifying clades – groups of strains that all share a

recent common ancestor – and comparing observed and estimated future clade frequencies. How-

ever, as clade definitions are inherently unstable between seasons, we evaluated our models by

comparing the genetic composition of observed and estimated future populations with the earth

mover’s distance metric. The earth mover’s distance calculates the minimum distance between two

populations, given the frequency of each individual within a population and a pairwise ‘ground dis-

tance’ between individuals (Rubner et al., 1998). We defined distinct amino acid haplotypes as indi-

viduals in our observed and estimated future populations. For frequencies of individuals, we used

the observed frequencies of haplotypes in the future and our model’s estimated frequencies. We cal-

culated the ground distance between individuals as the Hamming distance between haplotypes.

With this implementation, more accurate projections of the future population’s composition produce

smaller earth mover’s distances between the observed and estimated future (Figure 1).

We estimated viral fitness with biologically-informed metrics including those originally defined by

Luksza and Lässig, 2014 of epitope antigenic novelty and mutational load (non-epitope mutations)

as well as four more recent metrics including hemagglutination inhibition (HI) antigenic novelty

(Neher et al., 2016), deep mutational scanning (DMS) mutational effects (Lee et al., 2018), local

branching index (LBI) (Neher et al., 2014), and change in clade frequency over time (delta fre-

quency) (Table 1). All of these metrics except for HI antigenic novelty and DMS mutational effects

rely only on HA sequences. The antigenic novelty metrics estimate how antigenically distinct each

strain at time t is from previously circulating strains based on either genetic distance at epitope sites

or log2 titer distance from HI measurements. Increased antigenic drift relative to previously
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circulating strains is expected to correspond to increased viral fitness. Mutational load estimates

functional constraint by measuring the number of putatively deleterious mutations that have accumu-

lated in each strain since their ancestor in the previous season. DMS mutational effects provide a

more comprehensive biophysical model of functional constraint by measuring the beneficial or dele-

terious effect of each possible single amino acid mutation in HA from the background of a previous

vaccine strain, A/Perth/16/2009. The growth metrics estimate how successful populations of strains

have been in the last six months based on either rapid branching in the phylogeny (LBI) or the

change in clade frequencies over time (delta frequency).

We fit models for individual fitness metrics and combinations of metrics that we anticipated

would be mutually beneficial. For each model, we learned coefficient(s) that minimized the earth

mover’s distance between HA amino acid sequences from the observed population one year in the

future and the estimated population produced by the fitness model (Equation 2). We evaluated

model performance with time-series cross-validation such that better models reduced the earth mov-

er’s distance to the future on validation or test data. The earth mover’s distance to the future can

Figure 1. Schematic representation of the fitness model for simulated H3N2-like populations wherein the fitness of strains at timepoint t determines

the estimated frequency of strains with similar sequences one year in the future at timepoint u. Strains are colored by their amino acid sequence

composition such that genetically similar strains have similar colors (Materials and methods). (A) Strains at timepoint t, xðtÞ, are shown in their

phylogenetic context and sized by their frequency at that timepoint. The estimated future population at timepoint u, x̂ðuÞ, is projected to the right with

strains scaled in size by their projected frequency based on the known fitness of each simulated strain. (B) The frequency trajectories of strains at

timepoint t to u represent the predicted the growth of the dark blue strains to the detriment of the pink strains. (C) Strains at timepoint u, xðuÞ, are

shown in the corresponding phylogeny for that timepoint and scaled by their frequency at that time. (D) The observed frequency trajectories of strains

at timepoint u broadly recapitulate the model’s forecasts while also revealing increased diversity of sequences at the future timepoint that the model

could not anticipate, e.g. the emergence of the light blue cluster from within the successful dark blue cluster. Model coefficients minimize the earth

mover’s distance between amino acid sequences in the observed, xðuÞ, and estimated, x̂ðuÞ, future populations across all training windows.
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never be zero, because each model makes predictions based on sequences available at the time of

prediction and cannot account for new mutations that occur during the prediction interval. We calcu-

lated the lower bound for each model’s performance as the optimal distance to the future possible

given the current sequences at each timepoint. As an additional reference, we evaluated the perfor-

mance of a ‘naive’ model that predicted the future population would be identical to the current pop-

ulation. We expected that the best models would consistently outperform the naive model and

perform as close as possible to the lower bound.

Models accurately forecast evolution of simulated H3N2-like viruses
The long-term evolution of influenza H3N2 hemagglutinin has been previously described as a bal-

ance between positive selection for substitutions that enable escape from adaptive immunity by

modifying existing epitopes and purifying selection on domains that are required to maintain the

protein’s primary functions of binding and membrane fusion (Bush et al., 1999; Neher, 2013;

Luksza and Lässig, 2014; Koelle and Rasmussen, 2015). To test the ability of our models to accu-

rately detect these evolutionary patterns under controlled conditions, we simulated the long-term

evolution of H3N2-like viruses under positive and purifying selection for 40 years (Materials and

methods, Figure 2). These selective constraints produced phylogenetic structures and accumulation

of epitope and non-epitope mutations that were consistent with phylogenies of natural H3N2 HA

(Figure 3, Tables 2 and 3). We fit models to these simulated populations using all sequence-only fit-

ness metrics. As a positive control for our model framework, we also fit a model based on the true

fitness of each strain as measured by the simulator.

We hypothesized that fitness metrics associated with viral success such as true fitness, epitope

antigenic novelty, LBI, and delta frequency would be assigned positive coefficients, while metrics

associated with fitness penalties, like mutational load, would receive negative coefficients. We rea-

soned that both LBI and delta frequency would individually outperform the mechanistic metrics as

both of these growth metrics estimate recent clade success regardless of the mechanistic basis for

that success. Correspondingly, we expected that a composite model of epitope antigenic novelty

and mutational load would perform as well as or better than the growth metrics, as this model would

include both primary fitness constraints acting on our simulated populations.

As expected, the true fitness model outperformed all other models, estimating a future popula-

tion within 6.82 ± 1.52 amino acids (AAs) of the observed future and surpassing the naive model in

32 (97%) of 33 timepoints (Figure 4, Table 4). Although the true fitness model performed better

than the naive model’s average distance of 8.97 ± 1.35 AAs, it did not reach the closest possible dis-

tance between populations of 4.57 ± 0.61 AAs. With the exception of epitope antigenic novelty, all

biologically-informed models consistently outperformed the naive model (Figure 5, Table 4). LBI

was the best of these models, with a distance to the future of 7.57 ± 1.85 AAs. This result is consis-

tent with the fact that the LBI is a correlate of fitness in models of rapidly adapting populations

Table 1. Summary of models used with simulated and natural populations.

Models are labeled by the type of population they were applied to, the type of data they were based on, and the component of influ-

enza fitness they represent.

Model Populations Data type Fitness category Originally implemented by

true fitness simulated simulated populations positive control this study

naive simulated, natural HA sequences negative control this study

epitope antigenic novelty simulated, natural HA sequences antigenic drift Luksza and Lässig, 2014

epitope ancestor simulated, natural HA sequences antigenic drift Luksza and Lässig, 2014

HI antigenic novelty natural serological assays antigenic drift this study

mutational load simulated, natural HA sequences functional constraint Luksza and Lässig, 2014

deep mutational scanning
(DMS) mutational effects

natural DMS assays functional constraint Lee et al., 2018

local branching index (LBI) simulated, natural HA sequences clade growth Neher et al., 2014

delta frequency simulated, natural HA sequences clade growth this study
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(Neher et al., 2014). Indeed, both growth-based models received positive coefficients and outper-

formed the mechanistic models. The mutational load metric received a consistently negative coeffi-

cient with an average distance of 8.27 ± 1.35 AAs.

Surprisingly, the composite model of epitope antigenic novelty and mutational load did not per-

form better than the individual mutational load model (Figure 5—figure supplement 1). The anti-

genic novelty fitness metric assumes that antigenic drift is driven by nonlinear effects of previous

host exposure (Luksza and Lässig, 2014) that are not explicitly present in our simulations. To under-

stand whether positive selection at epitope sites might be better represented by a linear model, we

fit an additional model based on an ‘epitope ancestor’ metric that counted the number of epitope

mutations since each strain’s ancestor in the previous season. This linear fitness metric slightly out-

performed the antigenic novelty metric (Table 4). Importantly, a composite model of the epitope

ancestor and mutational load metrics outperformed all other epitope-based models and the individ-

ual mutational load model (Figure 5—figure supplement 1). From these results, we concluded that

our method can accurately estimate the evolution of simulated populations, but that the fitness of

simulated strains was dominated by purifying selection and only weakly affected by a linear effect of

positive selection at epitope sites.

We hypothesized that a composite model of mutually beneficial metrics could better approximate

the true fitness of simulated viruses than models based on individual metrics. To this end, we fit an

additional model including the best metrics from the mechanistic and clade growth categories:

mutational load and LBI. This composite model outperformed both of its corresponding individual

metric models with an average distance to the future of 7.24 ± 1.66 AAs and outperformed the naive

model as often as the true fitness metric (Figure 5, Table 4, Table 5). The coefficients for mutational

load and LBI remained relatively consistent across all validation timepoints, indicating that these fit-

ness metrics were stable approximations of the simulator’s underlying evolutionary processes. This

small gain supports our hypothesis that multiple complementary metrics can produce more accurate

models.

We validated the best performing model (true fitness) using two metrics that are relevant for

practical influenza forecasting and vaccine design efforts. First, we measured the ability of the true

fitness model to accurately estimate dynamics of large clades (initial frequency >15%) by comparing

observed fold change in clade frequencies, log10
xðtþDtÞ
xðtÞ and estimated fold change, log10

x̂ðtþDtÞ
xðtÞ . The

model’s estimated fold changes correlated well with observed fold changes (Pearson’s R2 ¼ 0:52,

Figure 2. Time-series cross-validation scheme for simulated populations. Models were trained in six-year sliding windows (gray lines) and validated on

out-of-sample data from validation timepoints (filled circles). Validation results from 30 years of data were used to iteratively tune model

hyperparameters. After fixing hyperparameters, model coefficients were fixed at the mean values across all training windows. Fixed coefficients were

applied to 9 years of new out-of-sample test data (open circles) to estimate true forecast errors.
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Figure 6—figure supplement 1A). The model also accurately predicted the growth of 87% of grow-

ing clades and the decline of 58% of declining clades. Model forecasts were increasingly more accu-

rate with increasing initial clade frequencies (Figure 6—figure supplement 1C). Next, we counted

how often the estimated closest strain to the future population at any given timepoint ranked among

the observed top closest strains to the future. We calculated the distance of each present strain to

the future as the Hamming distance between the given strain’s amino acid sequence and each future

strain weighted by the future strain’s observed or estimated frequency (Equations 3 and 4). The

estimated closest strain was in the top first percentile of observed closest strains for half of the vali-

dation timepoints and in the top 20th percentile for 100% of timepoints (Figure 6—figure supple-

ment 1B). Percentile ranks per strain based on their observed and estimated distances to the future

correlated strongly across all strains and timepoints (Spearman’s �2 ¼ 0:87, Figure 6—figure supple-

ment 1D). In contrast, the naive model’s forecasts of clade frequencies were considerably less

Figure 3. Phylogeny of H3N2-like HA sequences sampled between the 24th and 30th years of simulated evolution. The phylogenetic structure and rate

of accumulated epitope and non-epitope mutations match patterns observed in phylogenies of natural sequences. Sample dates were annotated as

the generation in the simulation divided by 200 and added to 2000, to acquire realistic date ranges that were compatible with our modeling machinery.

Table 2. Number of epitope and non-epitope mutations per branch by trunk or side branch status

for simulated populations.

Epitope sites were defined previously described (Luksza and Lässig, 2014). Annotation of trunk and

side branch was performed as previously described (Bedford et al., 2015). Mutations were calculated

for the full validation tree for simulated sequences samples between October of years 10 and 40.

branch type epitope mutations non-epitope mutations epitope-to-non-epitope ratio

side branch 590 1327 0.44

trunk 23 12 1.92
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accurate (Figure 6—figure supplement 2C). However, the naive model’s estimated closest strains

to the future were consistently in the top fifth percentile of observed distances to the future and the

correlation of its estimated percentile ranks and the observed ranks was strong (Spearman’s

�2 ¼ 0:78, Figure 6—figure supplement 2B D). These results suggested that estimating a single

closest strain to the future is a more tractable problem than estimating the future frequencies of

clades.

Finally, we tested all of our models on out-of-sample data. Specifically, we fixed the coefficients

of each model to the average values across the validation period and applied the resulting models

to the next 9 years of previously unobserved simulated data. A standard expectation from machine

learning is that models will perform worse on test data due to overfitting to training data. Despite

this expectation, we found that all models except for the individual epitope mutation models consis-

tently outperformed the naive model across the out-of-sample data (Figure 4, Figure 5, Figure 5—

figure supplement 1, Table 4). The composite model of mutational load and LBI appeared to

Table 3. Number of epitope and non-epitope mutations per branch by trunk or side branch status

for natural populations.

Epitope sites were defined previously described (Luksza and Lässig, 2014). Annotation of trunk and

side branch was performed as previously described (Bedford et al., 2015). Mutations were calculated

for the full validation tree for natural sequences samples between 1990 and 2015.

branch type epitope mutations non-epitope mutations epitope-to-non-epitope ratio

side branch 485 1177 0.41

trunk 50 32 1.56

Table 4. Simulated population model coefficients and performance on validation and test data ordered from best to worst by

distance to the future in the validation analysis.

Coefficients are the mean ± standard deviation for each metric in a given model across 33 training windows. Distance to the future

(mean ± standard deviation) measures the distance in amino acids between estimated and observed future populations. Distances

annotated with asterisks (*) were significantly closer to the future than the naive model as measured by bootstrap tests (see Methods

and Figure 14). The number of times (and percentage of total times) each model outperformed the naive model measures the benefit

of each model over a model than estimates no change between current and future populations. Test results are based on 18 time-

points not observed during model training and validation. Source data are in Table 4—source data 1 and 2.

Distance to future (AAs) Model > naive

Model Coefficients Validation Test Validation Test

true fitness 9.37 +/� 0.92 6.82 +/� 1.52* 7.38 +/� 1.89* 32 (97%) 16 (89%)

LBI 1.31 +/� 0.33 7.24 +/� 1.66* 7.10 +/� 1.19* 32 (97%) 18 (100%)

+ mutational load �1.77 +/� 0.49

LBI 2.26 +/� 1.06 7.57 +/� 1.85* 7.51 +/� 1.20* 29 (88%) 17 (94%)

delta frequency 1.46 +/� 0.44 8.13 +/� 1.44* 8.65 +/� 1.99* 26 (79%) 13 (72%)

epitope ancestor 0.35 +/� 0.07 8.20 +/� 1.39* 8.17 +/� 1.52* 29 (88%) 17 (94%)

+ mutational load �1.57 +/� 0.13

mutational load �1.49 +/� 0.12 8.27 +/� 1.35* 8.20 +/� 1.50* 29 (88%) 17 (94%)

epitope antigenic novelty 0.03 +/� 0.19 8.33 +/� 1.35* 8.22 +/� 1.51* 28 (85%) 17 (94%)

+ mutational load �1.38 +/� 0.39

epitope ancestor 0.14 +/� 0.11 8.96 +/� 1.35 9.03 +/� 1.68* 20 (61%) 13 (72%)

naive 0.00 +/� 0.00 8.97 +/� 1.35 9.07 +/� 1.70 0 (0%) 0 (0%)

epitope antigenic novelty �0.03 +/� 0.19 9.03 +/� 1.37 9.07 +/� 1.69 14 (42%) 7 (39%)

The online version of this article includes the following source data for Table 4:

Source data 1. Coefficients for models fit to simulated populations.

Source data 2. Distances to the future for models fit to simulated populations.
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outperform the true fitness metric with average distance to the future of 7.10 ± 1.19 compared to

7.38 ± 1.89, respectively. However, we did not find a significant difference between these models by

bootstrap testing (Table 5) and could not rule out fluctuations in model performance across a rela-

tively small number of data points.

As with our validation dataset, we tested the true fitness model’s ability to recapitulate clade

dynamics and select optimal individual strains from the test data. While observed and estimated

clade frequency fold changes correlated more weakly for test data (Pearson’s R2 ¼ 0:14), the accura-

cies of clade growth and decline predictions remained similar at 82% and 53%, respectively

(Figure 6A). We observed higher absolute forecast errors in the test data with higher errors for

clades between 40% and 60% initial frequencies (Figure 6C). The estimated closest strain was higher

than the top first percentile of observed closest strains for half of the test timepoints and in the top

20th percentile for 16 (89%) of 18 of timepoints (Figure 6B). Observed and estimated strain ranks

remained strongly correlated across all strains and timepoints (Spearman’s �2 ¼ 0:80, Figure 6D).

The naive model performed comparatively well on these test data with all its estimated closest

strains to the future in the top 20th percentile and a slightly higher correlation between observed

and estimated percentile ranks than the true fitness model (Spearman’s �2 ¼ 0:82, Figure 6—figure

supplement 3). These results confirmed that our approach of minimizing the distance between

yearly populations could simultaneously capture clade-level dynamics of simulated influenza popula-

tions and identify individual strains that are most representative of future populations. However,

they also supported the earlier finding that clade frequency forecasts may be inherently more chal-

lenging than identification of the closest strain to the future.

Models reflect historical patterns of H3N2 evolution
Next, we trained and validated models for individual fitness predictors using 25 years of natural

H3N2 populations spanning from October 1, 1990 to October 1, 2015. We held out strains collected

after October 1, 2015 up through October 1, 2019 for model testing (Figure 7). In addition to the

sequence-only models we tested on simulated populations, we also fit models for our new fitness

metrics based on experimental phenotypes including HI antigenic novelty and DMS mutational

effects. We hypothesized that both HI and DMS metrics would be assigned positive coefficients, as

they estimate increased antigenic drift and beneficial mutations, respectively. As antigenic drift is

generally considered to be the primary evolutionary pressure on natural H3N2 populations

(Smith et al., 2004; Bedford et al., 2014; Luksza and Lässig, 2014), we expected that epitope and

HI antigenic novelty would be individually more predictive than mutational load or DMS mutational

Figure 4. Simulated population model coefficients and distances between projected and observed future populations as measured in amino acids

(AAs). (A) Coefficients are shown per validation timepoint (solid circles, N = 33) with the mean ± standard deviation in the top-left corner. For model

testing, coefficients were fixed to their mean values from training/validation and applied to out-of-sample test data (open circles, N = 18). (B) Distances

between projected and observed populations are shown per validation timepoint (solid black circles) or test timepoint (open black circles). The mean ±

standard deviation of distances per validation timepoint are shown in the top-left of each panel. Corresponding values per test timepoint are in the

top-right. The naive model’s distances to the future for validation and test timepoints (light gray) were 8.97 ± 1.35 AAs and 9.07 ± 1.70 AAs,

respectively. The corresponding lower bounds on the estimated distance to the future (dark gray) were 4.57 ± 0.61 AAs and 4.85 ± 0.82 AAs. Source

data are in Table 4—source data 1 and 2.
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effects. Previous research (Neher et al., 2014) and our simulation results also led us to expect that

LBI and delta frequency would outperform other individual mechanistic metrics. As the earliest meas-

urements from focus reduction assays (FRAs) date back to 2012, we could not train, validate, and

test FRA antigenic novelty models in parallel with the HI antigenic novelty models.

Biologically-informed metrics generally performed better than the naive model with the excep-

tions of the epitope antigenic novelty and DMS mutational effects (Figure 8 and Table 6). The naive

model estimated an average distance between natural H3N2 populations of 6.40 ± 1.36 AAs. The

lower bound for how well any model could perform, 2.60 ± 0.89 AAs, was considerably lower than

the corresponding bounds for simulated populations. The average improvement of the sequence-

only models over the naive model was consistently lower than the same models in simulated

Figure 5. Simulated population model coefficients and distances to the future for individual biologically-informed fitness metrics and the best

composite model. (A) Coefficients and (B) distances are shown per validation and test timepoint as in Figure 4. Source data are in Table 4—source

data 1 and 2.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Composite model coefficients and distances to the future for models fit to simulated populations.
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populations. This reduced performance may have been caused by both the relatively reduced diver-

sity between years in natural populations and the fact that our simple models do not capture all driv-

ers of evolution in natural H3N2 populations.

Of the two metrics for antigenic drift, HI antigenic novelty consistently outperformed epitope

antigenic novelty (Table 6). HI antigenic novelty estimated an average distance to the future of

6.01 ± 1.50 AAs and outperformed the naive model at 16 of 23 timepoints (70%). The coefficient for

HI antigenic novelty remained stable across all timepoints (Figure 8). In contrast, epitope antigenic

novelty estimated a distance of 7.13 ± 1.47 AAs and only outperformed the naive model at seven

timepoints (30%). Epitope antigenic novelty was also the only metric whose coefficient started at a

positive value (1.17 ± 0.03 on average prior to October 2009) and transitioned to a negative value

through the validation period (�0.19 ± 0.34 on average for October 2009 and after). This strong

coefficient for the first half of training windows indicated that, unlike the results for simulated popu-

lations, the nonlinear antigenic novelty metric was historically an effective measure of antigenic drift.

The historical importance of the epitope sites used for this metric was further supported by the rela-

tive enrichment of mutations at these sites for the most successful ‘trunk’ lineages of natural popula-

tions compared to side branch lineages (Table 3).

These results led us to hypothesize that the contribution of these specific epitope sites to anti-

genic drift has weakened over time. Importantly, these 49 epitope sites were originally selected by

Luksza and Lässig, 2014 from a previous historical survey of sites with beneficial mutations between

1968–2005 (Shih et al., 2007). If the beneficial effects of mutations at these sites were due to histori-

cal contingency rather than a constant contribution to antigenic drift, we would expect models

based on these sites to perform well until 2005 and then overfit relative to future data. Indeed, the

epitope antigenic novelty model outperforms the naive model for the first three validation time-

points until it has to predict to April 2006. To test this hypothesis, we identified a new set of benefi-

cial sites across our entire validation period of October 1990 through October 2015. Inspired by the

original approach of Shih et al., 2007, we identified 25 sites in HA1 where mutations rapidly swept

through the global population, including 12 that were also present in the original set of 49 sites. We

fit an antigenic novelty model to these 25 sites across the complete validation period and dubbed

this the ‘oracle antigenic novelty’ model, as it benefited from knowledge of the future in its fore-

casts. The oracle model produced a consistently positive coefficient across all training windows

(0.80 ± 0.21) and consistently outperformed the original epitope model with an average distance to

Table 5. Comparison of composite and individual model distances to the future by bootstrap test (see Materials and methods).

The effect size of differences between models in amino acids is given by the mean and standard deviation of the bootstrap distribu-

tions. The p values represent the proportion of n = 10,000 bootstrap samples where the mean difference was greater than or equal to

zero.

sample error type individual model composite model bootstrap mean bootstrap std p value

simulated validation true fitness mutational load + LBI 0.42 0.23 0.9644

simulated validation mutational load mutational load + LBI �1.03 0.21 <0.0001

simulated validation LBI mutational load + LBI �0.33 0.14 0.0091

simulated test true fitness mutational load + LBI �0.28 0.26 0.1392

simulated test mutational load mutational load + LBI �1.11 0.25 <0.0001

simulated test LBI mutational load + LBI �0.42 0.16 0.0001

natural validation mutational load mutational load + LBI �0.69 0.28 0.0036

natural validation LBI mutational load + LBI �0.23 0.09 0.0025

natural validation mutational load mutational load + HI antigenic novelty �0.31 0.18 0.0417

natural validation HI antigenic novelty mutational load + HI antigenic novelty �0.18 0.11 0.0513

natural test mutational load mutational load + LBI 1.19 0.79 0.9432

natural test LBI mutational load + LBI �0.70 0.24 <0.0001

natural test mutational load mutational load + HI antigenic novelty �0.56 0.33 0.0133

natural test HI antigenic novelty mutational load + HI antigenic novelty �0.24 0.18 0.0999
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Figure 6. Test of best model for simulated populations (true fitness) using 9 years (18 timepoints) of previously unobserved test data and fixed model

coefficients. These timepoints correspond to the open circles in Figure 2. (A) The correlation of log estimated clade frequency fold change, log10
x̂ðtþDtÞ
xðtÞ ,

and log observed clade frequency fold change, log10
xðtþDtÞ
xðtÞ , shows the model’s ability to capture clade-level dynamics without explicitly optimizing for

clade frequency targets. (B) The rank of the estimated closest strain based on its distance to the future in the best model was in the top 20th percentile

for 89% of 18 timepoints, confirming that the model makes a good choice when forced to select a single representative strain for the future population.

(C) Absolute forecast error for clades shown in A by their initial frequency with a mean LOESS fit (solid black line) and 95% confidence intervals (gray

shading) based on 100 bootstraps. (D) The correlation of all strains at all timepoints by the percentile rank of their observed and estimated distances to

the future. The corresponding results for the naive model are shown in Figure 6—figure supplement 3.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Validation of best model for simulated populations of H3N2-like viruses.

Figure 6 continued on next page
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the future of 5.71 ± 1.27 AAs (Figure 8—figure supplement 1). These results support our hypothesis

that the fitness benefit of mutations at the original 49 sites was due to historical contingency and

that the success of previous epitope models based on these sites was partly due to ‘borrowing from

the future’. We suspect that our HI antigenic novelty model benefits from its ability to constantly

update its antigenic model at each timepoint with recent experimental phenotypes, while the epi-

tope antigenic novelty metric is forced to give a constant weight to the same 49 sites throughout

time.

Of the two metrics for functional constraint, mutational load outperformed DMS mutational

effects, with an average distance to the future of 6.14 ± 1.37 AAs compared to 6.75 ± 1.95 AAs,

respectively. In contrast to the original Luksza and Lässig, 2014 model, where the coefficient of the

mutational load metric was fixed at �0.5, our model learned a consistently stronger coefficient of

�0.99 ± 0.30. Notably, the best performance of the DMS mutational effects model was forecasting

from April 2007 to April 2008 when the major clade containing A/Perth/16/2009 was first emerging.

This result is consistent with the DMS model overfitting to the evolutionary history of the back-

ground strain used to perform the DMS experiments. Alternate implementations of less back-

ground-dependent DMS metrics never performed better than the mutational load metric (Table 6,

Materials and methods). Thus, we find that a simple model where any mutation at non-epitope sites

is deleterious is more predictive of global viral success than a more comprehensive biophysical

model based on measured mutational effects of a single strain.

LBI was the best individual metric by average distance to the future (Figure 8) and tied muta-

tional load by outperforming the naive model at 17 (74%) timepoints (Table 6). Delta frequency per-

formed worse than LBI and HI antigenic novelty and was comparable to mutational load. While delta

frequency should, in principle, measure the same aspect of viral fitness as LBI, these results show

that the current implementations of these metrics represent qualitatively different fitness compo-

nents. The LBI and mutational load might also be predictive for reasons other than correlation with

fitness, see Discussion.

To test whether composite models could outperform individual fitness metrics for natural popula-

tions, we fit models based on combinations of best individual metrics representing antigenic drift,

functional constraint, and clade growth. Specifically, we fit models based on HI antigenic novelty

and mutational load, mutational load and LBI, and all three of these metrics together. We antici-

pated that if these metrics all represented distinct, mutually beneficial components of viral fitness,

these composite models should perform better than individual models with consistent coefficients

for each metric.

Both two-metric composite models modestly outperformed their corresponding individual mod-

els (Table 6, Figure 9, and Table 5). The composite of mutational load and LBI performed the best

overall with an average distance to the future of 5.44 ± 1.80 AAs. The relative stability of the coeffi-

cients for the metrics in the two-metric models suggested that these metrics represented comple-

mentary components of viral fitness. In contrast, the three-metric model strongly preferred the HI

antigenic novelty and mutational load metrics over LBI for the entire validation period, producing an

average LBI coefficient of �0.04 ± 0.09. Overall, the gain by combining multiple predictors was lim-

ited and the sensitivity of coefficients to the set of metrics included in the model suggests that there

is substantial overlap in predictive value of different metrics.

As with the simulated populations, we validated the performance of the best model for natural

populations using estimated and observed clade frequency fold changes and the ranking of esti-

mated closest strains compared to the observed closest strains to future populations. The composite

model of mutational load and LBI effectively captured clade dynamics with a fold change correlation

of R2 ¼ 0:35 and growth and decline accuracies of 87% and 89%, respectively (Figure 10—figure

supplement 1A). Absolute forecasting error declined noticeably for clades with initial frequencies

above 60%, but generally this error remained below 20% on average (Figure 10—figure supple-

ment 1C). The estimated closest strain from this model was in the top first percentile of observed

Figure 6 continued

Figure supplement 2. Validation of naive model for simulated populations of H3N2-like viruses.

Figure supplement 3. Test of naive model for simulated populations of H3N2-like viruses.
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closest strains for half of the validation timepoints and in the top 20th percentile for 20 (87%) of 23

timepoints (Figure 10—figure supplement 1B). This pattern held across all strains and timepoints

with a strong correlation between observed and estimated strain ranks (Spearman’s �2 ¼ 0:66, Fig-

ure 10—figure supplement 1D). The naive model’s performance repeated the pattern we observed

with simulated populations: it made poor forecasts of absolute clade frequencies, but its estimated

closest strains to the future were consistently highly ranked among the observed closest strains (Fig-

ure 10—figure supplement 2B C).

Finally, we tested the performance of all models on out-of-sample data collected from October 1,

2015 through October 1, 2019. We anticipated that most models would perform worse on truly out-

of-sample data than on validation data. Correspondingly, only the three models with the HI antigenic

novelty metric significantly outperformed the naive model on the test data (Table 6). The composite

of HI antigenic novelty and mutational load performed modestly, although not significantly, better

than the individual HI antigenic novelty model (Table 5). Surprisingly, the best model for the valida-

tion data – mutational load and LBI – was one of the worst models for the test data with an average

distance to the future of 7.70 ± 3.53 AAs. The individual LBI model was the worst model, while muta-

tional load continued to perform well with test data. LBI performed especially poorly in the last two

test timepoints of April and October 2018 (Figure 8). These timepoints correspond to the domi-

nance and sudden decline of a reassortant clade named A2/re (Potter et al., 2019). By April 2018,

the A2/re clade had risen to a global frequency over 50% from less than 15% the previous year,

despite an absence of antigenic drift. By October 2018, this clade had declined in frequency to

approximately 30% and, by October 2019, it had gone extinct. That LBI incorrectly predicted the

success of this reassortant clade highlights a major limitation of growth-based fitness metrics and a

corresponding benefit of more mechanistic metrics that explicitly measure antigenic drift and func-

tional constraint. However, we cannot rule out the alternate possibility that the LBI model was overfit

to the training data.

After identifying the composite HI antigenic novelty and mutational load model as the best model

on out-of-sample data, we tested this model’s ability to detect clade dynamics and select individual

closest strains to the future for vaccine composition. The composite model partially captured clade

dynamics with a Pearson’s correlation of R2 ¼ 0:46 between observed and estimated growth ratios

and growth and decline accuracies of 52% and 58%, respectively (Figure 10A). The mean absolute

forecasting error with this model was consistently less than 20%, regardless of the initial clade

Figure 7. Time-series cross-validation scheme for natural populations. Models were trained in six-year sliding windows (gray lines) and validated on out-

of-sample data from validation timepoints (filled circles). Validation results from 25 years of data were used to iteratively tune model hyperparameters.

After fixing hyperparameters, model coefficients were fixed at the mean values across all training windows. Fixed coefficients were applied to four years

of new out-of-sample test data (open circles) to estimate true forecast errors.
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frequency (Figure 10C). The estimated closest strain from this model was in the top first percentile

of observed closest strains for half of the validation timepoints and in the top 20th percentile for

100% of timepoints (Figure 10B). Similarly, the observed and estimated strain ranks strongly corre-

lated (Spearman’s �2 ¼ 0:72) across all strains and test timepoints (Figure 10D). The estimated strain

ranks of the naive model were not as well correlated (Spearman’s �2 ¼ 0:56), but seven of its eight

estimates for the closest strain to the future (88%) were in the top fifth percentile of observed closest

strains (Figure 10—figure supplement 3B D).

We further evaluated our models’ ability to estimate the closest strain to the next season’s H3N2

population by comparing our best models’ selections to the WHO’s vaccine strain selection. For

Figure 8. Natural population model coefficients and distances to the future for individual biologically-informed fitness metrics. (A) Coefficients and (B)

distances are shown per validation timepoint (N = 23) and test timepoint (N = 8) as in Figure 4. The naive model’s distance to the future (light gray)

was 6.40 ± 1.36 AAs for validation timepoints and 6.82 ± 1.74 AAs for test timepoints. The corresponding lower bounds on the estimated distance to

the future (dark gray) were 2.60 ± 0.89 AAs and 2.28 ± 0.61 AAs. Source data are in Table 6—source data 1 and 2.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Comparison of epitope-based models with knowledge of the future.
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each season when the WHO selected a new vaccine strain and one year of future data existed in our

validation or test periods, we measured the observed distance of that strain’s sequence to the future

and the corresponding distances to the future for the observed closest strains (Equation 3). We

compared these distances to those of the closest strains to the future as estimated by our best mod-

els for the validation period (mutational load and LBI) and the test period (HI antigenic novelty and

mutational load) using Equation 4. The observed closest strain to the future represents the centroid

of the observed future population, while the estimated closest strains are the models’ predictions of

that future population’s centroid. The mutational load and LBI model selected strains that were as

close or closer to the future than the corresponding vaccine strain for 10 (83%) of the 12 seasons

with vaccine updates (Figure 11). On average, the strains selected by this model were closer to

future than the vaccine strain by 1.93 AAs (Figure 11—figure supplement 1). For the two seasons

that the model selected more distant strains than the vaccine strain, the mean distance relative to

Table 6. All model coefficients and performance on validation and test data for natural populations ordered from best to worst by

distance to the future, as in Table 4.

Distances annotated with asterisks (*) were significantly closer to the future than the naive model as measured by bootstrap tests (see

Materials and methods and Figure 15). Distances annotated with carets (^) were not tested for significance relative to the naive

model. Validation results are based on 23 timepoints. Test results are based on eight timepoints not observed during model training

and validation. Model results for additional variants of fitness metrics including those based on epitope mutations and DMS preferen-

ces are included for reference. Source data are in Table 6—source data 1 and 2.

Distance to future (AAs) Model > naive

Model Coefficients Validation Test Validation Test

mutational load �0.68 +/� 0.34 5.44 +/� 1.80* 7.70 +/� 3.53 18 (78%) 4 (50%)

+ LBI 1.03 +/� 0.40

LBI 1.12 +/� 0.51 5.68 +/� 1.91* 8.40 +/� 3.97 17 (74%) 2 (25%)

oracle antigenic novelty 0.80 +/� 0.21 5.71 +/� 1.27^ 8.06 +/� 2.49^ 18 (78%) 2 (25%)

HI antigenic novelty 0.89 +/� 0.23 5.82 +/� 1.50* 5.97 +/� 1.47* 17 (74%) 6 (75%)

+ mutational load �1.01 +/� 0.42

HI antigenic novelty 0.90 +/� 0.23 5.84 +/� 1.51* 5.99 +/� 1.46* 16 (70%) 6 (75%)

+ mutational load �1.00 +/� 0.44

+ LBI �0.04 +/� 0.09

HI antigenic novelty 0.83 +/� 0.20 6.01 +/� 1.50* 6.21 +/� 1.44* 16 (70%) 7 (88%)

delta frequency 0.79 +/� 0.47 6.13 +/� 1.71* 6.90 +/� 2.30 16 (70%) 5 (62%)

mutational load �0.99 +/� 0.30 6.14 +/� 1.37* 6.53 +/� 1.39 17 (74%) 6 (75%)

Koel epitope antigenic novelty 0.28 +/� 0.36 6.22 +/� 1.26^ 6.72 +/� 1.51^ 18 (78%) 4 (50%)

naive 0.00 +/� 0.00 6.40 +/� 1.36 6.82 +/� 1.74 0 (0%) 0 (0%)

DMS entropy �0.03 +/� 0.10 6.40 +/� 1.36^ 6.81 +/� 1.73^ 9 (39%) 6 (75%)

DMS mutational load �0.02 +/� 0.13 6.45 +/� 1.42^ 6.82 +/� 1.73^ 7 (30%) 5 (62%)

epitope ancestor 0.53 +/� 0.52 6.60 +/� 1.34 6.53 +/� 1.51 12 (52%) 4 (50%)

+ mutational load �0.77 +/� 0.32

DMS mutational effects 1.25 +/� 0.84 6.75 +/� 1.95 7.80 +/� 2.97 11 (48%) 4 (50%)

Wolf epitope antigenic novelty 0.31 +/� 0.51 6.83 +/� 1.30^ 6.97 +/� 1.41^ 4 (17%) 3 (38%)

epitope ancestor 0.23 +/� 0.51 6.89 +/� 1.39^ 6.82 +/� 1.67^ 8 (35%) 4 (50%)

epitope antigenic novelty 0.57 +/� 0.77 6.89 +/� 1.42 6.46 +/� 1.31 7 (30%) 4 (50%)

+ mutational load �0.77 +/� 0.27

epitope antigenic novelty 0.52 +/� 0.73 7.13 +/� 1.47 6.70 +/� 1.51 7 (30%) 5 (62%)

The online version of this article includes the following source data for Table 6:

Source data 1. Coefficients for models fit to natural populations.

Source data 2. Distances to the future for models fit to natural populations.Clustering of amino acid sequences for visualization.
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the vaccine strain was 1.58 AAs. The HI antigenic novelty and mutational load model performed sim-

ilarly by identifying strains as close or closer to the future for 11 (92%) seasons with an average

improvement over the vaccine strains of 2.33 AAs. For the one season that the model selected a

more distant strain, that selected strain was 0.75 AAs farther from the future than the vaccine strain.

Interestingly, the strains selected by the naive model were always better than the selected vaccine

strain. Since the naive model predicts that the future will be identical to the present, these strains

represent the centroid of each current population. With an average improvement over the vaccine

strains of 2.19 AAs, the naive model performed consistently better than the LBI-based model and

nearly as well as the HI-based model. These results were consistent with our earlier observations that

the naive model often performs as well as biologically-informed models when estimating a single

closest strain to the future.

Historically-trained models enable real-time, actionable forecasts
To enable real-time forecasts, we integrated our forecasting framework into our existing open

source pathogen surveillance application, Nextstrain (Hadfield et al., 2018). Prior to finalizing our

model coefficients for use in Nextstrain, we tested whether our three best composite models could

be improved by learning new coefficients per timepoint from the test data. Additionally, we evalu-

ated a composite of FRA antigenic novelty and mutational load. Since the earliest FRA data were

from 2012, we anticipated that there were enough measurements to fit a model across the test data

time interval. If modern H3N2 strains continue to perform poorly in HI assays, the FRA-based assay

will be critical for future forecasting efforts.

Figure 9. Natural population model coefficients and distances to the future for composite fitness metrics. (A) Coefficients and (B) distances are shown

per validation timepoint (N = 23) and test timepoint (N = 8) as in Figure 4. Source data are in Table 6—source data 1 and 2.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Composite models fit to most recent data from natural populations.
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Figure 10. Test of best model for natural populations of H3N2 viruses, the composite model of HI antigenic novelty and mutational load, across eight

timepoints. These timepoints correspond to the open circles in Figure 7. (A) The correlation of estimated and observed clade frequency fold changes

shows the model’s ability to capture clade-level dynamics without explicitly optimizing for clade frequency targets. (B) The rank of the estimated closest

strain based on its distance to the future for eight timepoints. The estimated closest strain was in the top 20th percentile of observed closest strains for

100% of timepoints. (C) Absolute forecast error for clades shown in A by their initial frequency with a mean LOESS fit (solid black line) and 95%

confidence intervals (gray shading) based on 100 bootstraps. (D) The correlation of all strains at all timepoints by the percentile rank of their observed

and estimated distances to the future. The corresponding results for the naive model are shown in Figure 10—figure supplement 3.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Validation of best model for natural populations of H3N2 viruses.

Figure supplement 2. Validation of naive model for natural populations of H3N2 viruses.

Figure supplement 3. Test of naive model for natural populations of H3N2 viruses.
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Two of three models performed worse after refitting coefficients to the test data than their origi-

nal fixed coefficient implementations (Figure 9—figure supplement 1). While, the mutational load

and LBI model improved considerably over its original performance, it still performed worse than the

naive model on average. These results confirmed that the coefficients for our selected best model

would be most accurate for live forecasts. Interestingly, the FRA antigenic novelty metric received a

consistently positive coefficient of 1.40 ± 0.24 in its composite with mutational load. Unfortunately,

this model performed considerably worse than the corresponding HI-based model. These results

suggest that we may need more FRA data across a longer historical timespan to train a model that

could replace the HI-based model.

After confirming the coefficients for our best model of HI antigenic novelty and mutational load,

we inspected forecasts of H3N2 clades using all data available up through June 6, 2020. Consistent

with an average two-month lag between data collection and submission, the most recent data were

collected up to April 1, 2020 and made our forecasts from this timepoint to April 1, 2021. Of the five

major currently circulating clades, our model predicted growth of the clades 3c3.A and A1b/94N

and decline of clades A1b/135K, A1b/137F, and A1b/197R (Figure 12). To aid with identification of

potential vaccine candidates for the next season, we annotated strains in the phylogeny by their esti-

mated distance to the future based on our best model (Figure 13).

Discussion
We have developed and rigorously tested a novel, open source framework for forecasting the long-

term evolution of seasonal influenza H3N2 by estimating the sequence composition of future popu-

lations. A key innovation of this framework is its ability to directly compare viral populations between

seasons using the earth mover’s distance metric (Rubner et al., 1998) and eliminate unavoidably

Figure 11. Observed distance to natural H3N2 populations one year into the future for each vaccine strain (green) and the observed (blue) and

estimated closest strains to the future by the mutational load and LBI model (orange), the HI antigenic novelty and mutational load model (purple), and

the naive model (black). Vaccine strains were assigned to the validation or test timepoint closest to the date they were selected by the WHO. The

weighted distance to the future for each strain was calculated from their amino acid sequences and the frequencies and sequences of the

corresponding population one year in the future. Vaccine strain names are abbreviated from A/Fujian/411/2002, A/Wellington/1/2004, A/California/7/

2004, A/Wisconsin/67/2005, A/Brisbane/10/2007, A/Perth/16/2009, A/Victoria/361/2011, A/Texas/50/2012, A/Switzerland/9715293/2013, A/HongKong/

4801/2014, A/Singapore/Infimh-16-0019/2016, and A/Switzerland/8060/2017. Source data are available in Figure 11—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 11:

Source data 1. Weighted distances to the future per strain by strain type and timepoint.

Figure supplement 1. Relative improvement of model selections over vaccine strains.
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stochastic clade definitions from phylogenies. The best models from this framework still effectively

capture clade dynamics and accurately identify optimal vaccine candidates from simulated and natu-

ral H3N2 populations without relying on clades as model targets. We have further introduced novel

fitness metrics based on experimental measurements of antigenic drift and functional constraint. We

demonstrated that the integration of these phenotypic metrics with previously published sequence-

only metrics produces more accurate forecasts than sequence-only models. Interestingly, we found

that a naive model that predicts no change over the course of one year can often identify a single

representative strain of the future despite its inability to accurately forecast clade frequencies. We

have added this framework as a component of seasonal influenza analyses on nextstrain.org where it

provides real-time forecasts for influenza researchers, decision makers, and the public.

Integration of genotypic and phenotypic metrics minimizes overfitting
Our evaluation of models by time-series cross-validation and true out-of-sample forecasts revealed

substantial potential for model overfitting. We observed overfitting to both specific genetic back-

grounds and general historical contexts. A clear example of the former was the poor performance of

our DMS-based fitness metric compared to a simpler mutational load metric. Although the DMS

experiments provided detailed estimates of which amino acids were preferred at which positions in

HA, these measurements were specific to a single strain, A/Perth/16/2009 (Lee et al., 2018). When

we applied these measurements to predict the success of global populations, they were less infor-

mative on average than the naive model. To benefit from the more comprehensive fitness costs mea-

sured by DMS data, future models will need to synthesize DMS measurements across multiple H3N2

strains from distinct genetic contexts. We anticipate that these measurements could be used to

define and continually update a modern set of sites contributing to mutational load in natural popu-

lations. This set of sites could replace the statically defined set of ‘non-epitope’ sites we use to esti-

mate mutational load here.

We observed overfitting to historical context in sequence-based models of antigenic drift. The fit-

ness benefit of mutations that led to antigenic drift in H3N2 in the past is well-documented

(Wiley et al., 1981; Smith et al., 2004; Wolf et al., 2006; Koel et al., 2013). Although the antigenic

importance of seven specific sites in HA were experimentally validated by Koel et al., 2013, these

sites do not explain all antigenic drift observed in natural populations (Neher et al., 2016). Other

attempts to define these so-called ‘epitope sites’ have relied on either aggregation of results from

antigenic escape assays (Wolf et al., 2006) or retrospective computational analyses of sites with

beneficial mutations (Shih et al., 2007; Luksza and Lässig, 2014). We found that models based on

all of these definitions except for the seven Koel epitope sites overfit to the historical context from

which they were identified (Table 6). These results suggest that the set of sites that contribute to

antigenic drift at any given time may depend on both the fitness landscape of currently circulating

strains and the immune landscape of the hosts these strains need to infect. Recent experimental

mapping of antigenic escape mutations in H3N2 HA with human sera show that the specific sites

Figure 12. Snapshot of live forecasts on nextstrain.org from our best model (HI antigenic novelty and mutational load) for April 1, 2021. The observed

frequency trajectories for currently circulating clades are shown up to April 1, 2020. Our model forecasts growth of the clades 3c3.A and A1b/94N and

decline of all other major clades.
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that confer antigenic escape can vary dramatically between individuals based on their exposure his-

tory (Lee et al., 2019). In contrast to models based on predefined ‘epitope sites’, our model based

on experimental measurements of antigenic drift did not suffer from overfitting in the validation or

test periods. We suspect that this model was able to minimize overfitting by continuously updating

its antigenic model with recent experimental data and assigning antigenic weight to branches of a

phylogeny rather than specific positions in HA.

Even the most accurate models with few parameters will sometimes fail due to the probabilistic

nature of evolution. For example, the model with the best performance across our validation data –

mutational load and LBI – was also one of the worst models across our test data. Although we can-

not rule out the role of overfitting, this model’s poor performance coincided with unusual evolution-

ary circumstances. The diversity of H3N2 lineages during our test period was higher than the

historical average (Koelle et al., 2006), with the most recent common ancestor of all circulating

strains dating eight years back. This persistence of diversity may have reduced the effectiveness of

the LBI metric that assumes relatively rapid population turnover. Additionally, this model’s poorest

performance occurred in 2019 when it failed to predict the sudden decline of a dominant reassortant

clade, A2/re. Only our models based on HI antigenic novelty and mutational load continued to per-

form as well or better than the naive model during the same time period. These results highlight the

challenge of identifying models that remain robust to stochastic evolutionary events by avoiding

overfitting to the past.

Correspondingly, we observed that composite models of multiple orthogonal fitness metrics

often outperformed models based on their individual components. These results are consistent with

previous work that found improved performance by integrating components of antigenic drift, func-

tional constraint, and clade growth (Luksza and Lässig, 2014). However, the effective elimination of

LBI from our three-metric model during the validation period (Figure 9) reveals the limitations of our

current additive approach to composite models. The recent success of weighted ensembles for

Figure 13. Snapshot of the last two years of seasonal influenza H3N2 evolution on nextstrain.org showing the estimated distance per strain to the

future population. Distance to the future is calculated for each strain as the Hamming distance of HA amino acid sequences to all other circulating

strains weighted by the other strain’s projected frequencies under the best fitness model (HI antigenic novelty and mutational load).
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short-term influenza forecasting through the CDC’s FluSight network (Reich et al., 2019) suggests

that long-term forecasting may benefit from a similar approach.

Forecasting framework aids practical forecasts
By forecasting the composition of future H3N2 populations with biologically-informed fitness met-

rics, our best models consistently outperformed a naive model (Table 6). While this performance

confirms previously demonstrated potential for long-term influenza forecasting (Luksza and Lässig,

2014), the average gain from these models over the naive model appears low at 0.96 AAs per year

for validation data and 0.85 AAs per year for test data. However, these results are consistent with

the observed dynamics of H3N2. First, the one-year forecast horizon is a fraction of the average coa-

lescence time for H3N2 populations of about 3–8 years (Rambaut et al., 2008). Hence, we expect

the diversity of circulating strains to persist between seasons. Second, H3N2 hemagglutinin accumu-

lates 3.6 amino acid changes per year (Smith et al., 2004). This accumulation of amino acid substitu-

tions contributes to the distance between annual populations observed by the naive model. In this

context, our model gains of 0.96 and 0.85 AAs per year correspond to an explanation of 27% and

24% of the expected additional distance between annual populations, respectively.

Several clear opportunities to improve forecasts still remain. Integration of more recent experi-

mental data may improve estimates of antigenic drift. Despite the weak performance of our FRA

antigenic novelty model on recent data, continued accumulation of FRA measurements over time

should eventually enable models as accurate as the current HI-based models. In addition to these

FRA data based on ferret antisera, recent high-throughput antigenic escape assays with human sera

promise to improve existing definitions of epitope sites (Lee et al., 2019). These assays reveal the

specific sites and residues that confer antigenic escape from polyclonal sera obtained from individual

humans. A sufficiently broad geographic and temporal sample of human sera with these assays could

reveal consistent patterns of the immune landscape H3N2 strains must navigate to be globally suc-

cessful. Models should also integrate information from multiple segments of the influenza genome

and will need to balance the fitness benefits of evolution in genes such as neuraminidase

(Chen et al., 2018) with the costs of reassortment (Villa and Lässig, 2017). Our forecasting frame-

work makes the inclusion of fitness metrics based on additional gene segments technically straight-

forward. However, the definition of appropriate fitness metrics for neuraminidase and other genes

remains an important scientific challenge. An additional challenge to model training is a relative lack

of historical strains for which all genes have been sequenced. Of the 34,312 H3N2 strains in GISAID

with all eight primary gene segments and collection dates between October 1, 1990 and 2019, the

majority (24,466 or 71%) were collected after October 1, 2015. Data availability will therefore inform

which gene segments are prioritized for inclusion in future models. Finally, forecasting models need

to account for the geographic distribution of viruses and the vastly different sampling intensities

across the globe. Most influenza sequence data come from highly developed countries that account

for a small fraction of the global population, while globally successful clades of influenza H3N2 often

emerge in less well-sampled regions (Russell et al., 2008; Rambaut et al., 2008; Bedford et al.,

2015). Explicitly accounting for these sampling biases and the associated migration dynamics would

allow models to weight forecasts based on both viral fitness and transmission.

The nature of the predictive power of individual metrics remains
unclear
Prediction of future influenza virus populations is intrinsically limited by the small number of data

points available to train and test models. Increasingly more complex models are therefore prone to

overfitting. Across the validation and test periods, we found that antigenic drift and mutational load

were the most robust predictors of future success for seasonal influenza H3N2 populations.

Several metrics like the rate of frequency change or epitope mutations are naively expected to

have predictive power but do not. Others metrics like the mutational load are not expected to mea-

sure adaptation but are predictive. These results point to one aspect that often overlooked when

comparing the genetic make-up of an asexual population at two time points: the future population

is unlikely to descend from any of the sampled tips but ancestral lineages of the future population

merge with those of the present population in the past. Optimal representatives of the future there-

fore tend to be tips in the present that tend to be basal and less evolved. The LBI and the mutational
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load metric have the tendency to assign low fitness to evolved tips. The LBI in particular assigns high

fitness to the base of large clades. Much of the predictive power, in the sense of a reduced distance

between the predicted and observed populations, might be due to putting more weight on less

evolved strains rather than bona fide prediction of fitness. In a companion manuscript, Barrat-

Charlaix et al., 2020 show that LBI has little predictive power for fixation probabilities of mutations

in H3N2.

Our framework enables real-time practical forecasts of these populations by leveraging historical

and modern experimental assays and gene sequences. By releasing our framework as an open

source tool based on modern data science standards like tidy data frames, we hope to encourage

continued development of this tool by the influenza research community. We additionally anticipate

that the ability to forecast the sequence composition of populations with earth mover’s distance will

enable future forecasting research with pathogens whose genomes cannot be analyzed by tradi-

tional phylogenetic methods including recombinant viruses, bacteria, and fungi.

Model sharing and extensions
The entire workflow for our analyses was implemented with Snakemake (Köster and Rahmann,

2012). We have provided all source code, configuration files, and datasets at https://github.com/

blab/flu-forecasting (Huddleston, 2020; copy archived at https://github.com/elifesciences-publica-

tions/flu-forecasting).

Materials and methods

Simulation of influenza H3N2-like populations
We simulated the long-term evolution of H3N2-like viruses with SANTA-SIM (Jariani et al., 2019) for

10,000 generations or 50 years where 200 generations was equivalent to 1 year. We discarded the

first 10 years as a burn-in period, selected the next 30 years for model fitting and validation, and

held out the last 9 years as out-of-sample data for model testing (Figure 2). Each simulated popula-

tion was seeded with the full length HA from A/Beijing/32/1992 (NCBI accession: U26830.1) such

that all simulated sequences contained signal peptide, HA1, and HA2 domains. We defined purifying

selection across all three domains, allowing the preferred amino acid at each site to change at a

fixed rate over time. We additionally defined exposure-dependent selection for 49 putative epitope

sites in HA1 (Luksza and Lässig, 2014) to impose an effect of antigenic novelty that would allow

mutations at those sites to increase viral fitness despite underlying purifying selection. We modified

the SANTA-SIM source code to enable the inclusion of true fitness values for each strain in the

FASTA header of the sampled sequences from each generation. This modified implementation has

been integrated into the official SANTA-SIM code repository at https://github.com/santa-dev/santa-

sim as of commit e2b3ea3. For our full analysis of model performance, we sampled 90 viruses per

month to match the sampling density of natural populations. For tuning of hyperparameters, we

sampled 10 viruses per month to enable rapid exploration of hyperparameter space.

Hyperparameter tuning with simulated populations
To avoid overfitting our models to the relatively limited data from natural populations, we used sim-

ulated H3N2-like populations to tune hyperparameters including the KDE bandwidth for frequency

estimates and the L1 penalty for model coefficients. We simulated populations, as described above,

and fit models for each parameter value using the true fitness of strains from the simulator.

We identified the optimal KDE bandwidth for frequencies as the value that minimized the differ-

ence between the mean distances to the future from the true fitness model and the naive model.

We set the L1 lambda penalty to zero, to reduce variables in the analysis and avoid interactions

between the coefficients and the KDE bandwidths. Higher bandwidths completely wash out dynam-

ics of populations by making all strains appear to exist for long time periods. This flattening of fre-

quency trajectories means that as bandwidths increase, the naive model gets more accurate and less

informative. Given this behavior, we found the bandwidth that produced the minimum difference

between distances to the future for the true fitness and naive models instead of the bandwidth that

produced the minimum mean model distance. Based on this analysis, we identified an optimal band-

width of 2

12
or the equivalent of 2 months for floating point dates. Next, we identified an L1 penalty
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of 0.1 for model coefficients that minimized the mean distance to the future for the true fitness

model.

Antigenic data
Hemagglutination inhibition (HI) and focus reduction assay (FRA) measurements were provided by

WHO Global Influenza Surveillance and Response System (GISRS) Collaborating Centers in London,

Melbourne, Atlanta and Tokyo. We converted these raw two-fold dilution measurements to log2 titer

drops normalized by the corresponding log2 autologous measurements as previously described

(Neher et al., 2016).

Strain selection for natural populations
Prior to our analyses, we downloaded all HA sequences and metadata from GISAID (Shu and

McCauley, 2017). For model training and validation, we selected 15,583 HA sequences � 900

nucleotides that were sampled between October 1, 1990 and October 1, 2015. To account for

known variation in sequence availability by region, we subsampled the selected sequences to a rep-

resentative set of 90 viruses per month with even sampling across 10 global regions including Africa,

Europe, North America, China, South Asia, Japan and Korea, Oceania, South America, Southeast

Asia, and West Asia. We excluded all egg-passaged strains and all strains with ambiguous year,

month, and day annotations. We prioritized strains with more available HI titer measurements pro-

vided by the WHO GISRS Collaborating Centers. For model testing, we selected an additional 7,171

HA sequences corresponding to 90 viruses per month sampled between October 1, 2015 and Octo-

ber 1, 2019. We used these test sequences to evaluate the out-of-sample error of fixed model

parameters learned during training and validation. Supplementary file 1 describes contributing lab-

oratories for all 22,754 validation and test strains.

Phylogenetic inference
For each timepoint in model training, validation, and testing, we selected the subsampled HA

sequences with collection dates up to that timepoint. We aligned sequences with the augur align

command (Hadfield et al., 2018) and MAFFT v7.407 (Katoh et al., 2002). We inferred initial phylog-

enies for HA sequences at each timepoint with IQ-TREE v1.6.10 (Nguyen et al., 2015). To recon-

struct time-resolved phylogenies, we applied TreeTime v0.5.6 (Sagulenko et al., 2018) with the

augur refine command.

Frequency estimation
To account for uncertainty in collection date and sampling error, we applied a kernel density estima-

tion (KDE) approach to calculate global strain frequencies. Specifically, we constructed a Gaussian

kernel for each strain with the mean at the reported collection date and a variance (or KDE band-

width) of two months. The bandwidth was identified by cross-validation, as described above. This

bandwidth also roughly corresponds to the median lag time between strain collection and submis-

sion to the GISAID database. We estimated the frequency of each strain at each timepoint by calcu-

lating the probability density function of each KDE at that timepoint and normalizing the resulting

values to sum to one. We implemented this frequency estimation logic in the augur frequencies

command.

Model fitting and evaluation
Fitness model
We assumed that the evolution seasonal influenza H3N2 populations can be represented by a Mal-

thusian growth fitness model, as previously described (Luksza and Lässig, 2014). Under this model,

we estimated the future frequency, x̂iðt þ DtÞ, of each strain i from the strain’s current frequency,

xiðtÞ, and fitness, fiðtÞ, as follows where the resulting future frequencies were normalized to one by
1

ZðtÞ.

x̂iðtþDtÞ ¼
1

ZðtÞ
xiðtÞexpðfiðtÞDtÞ (1)

We defined the fitness of each strain at time t as the additive combination of one or more fitness
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metrics, fi;m, scaled by fitness coefficients, bm. For example, Equation 2 estimates fitness per strain

by mutational load (ml) and local branching index (lbi).

fiðtÞ ¼ bnefi;mlðtÞþblbifi;lbiðtÞ (2)

Model target
For a model based on any given combination of fitness metrics, we found the fitness coefficients

that minimized the earth mover’s distance (EMD) (Rubner et al., 1998; Kusner et al., 2015)

between amino acid sequences from the observed future population at time u ¼ t þ Dt and the esti-

mated future population created by projecting frequencies of strains at time t by their estimated fit-

nesses. Solving for EMD identifies the minimum about of ‘earth’ that must be moved from a source

population to a sink population to make those populations as similar as possible. This solution

requires both a ‘ground distance’ between pairs of strains from both populations and weights

assigned to each strain that determine how much that strain contributes to the overall distance.

For each timepoint t and corresponding timepoint u ¼ t þ 1, we defined the ground distance as

the Hamming distance between HA amino acid sequences for all pairs of strains between timepoints.

For strains with less than full length nucleotide sequences, we inferred missing nucleotides through

TreeTime’s ancestral sequence reconstruction analysis. We defined weights for strains at timepoint t

based on their projected future frequencies. We defined weights for strains at timepoint u based on

their observed frequencies. We then identified the fitness coefficients that provided projected future

frequencies that minimized the EMD between the estimated and observed future populations. With

this metric, a perfect estimate of the future’s strain sequence composition and frequencies would

produce a distance of zero. However, the inevitable accumulation of substitutions between the two

populations prevents this outcome. We calculated EMD with the Python bindings for the OpenCV

3.4.1 implementation (Bradski, 2000). We applied the Nelder-Mead minimization algorithm as

implemented in SciPy (Virtanen et al., 2020) to learn fitness coefficients that minimize the average

of this distance metric over all timepoints in a given training window.

Lower bound on earth mover’s distance
The minimum distance to the future between any two timepoints cannot be zero due to the accumu-

lation of mutations between populations. We estimated the lower bound on earth mover’s distance

between timepoints using the following greedy solution to the optimal transport problem. For each

timepoint t, we initialized the optimal frequency of each current strain to zero. For each strain in the

future timepoint u, we identified the closest strain in the current timepoint by Hamming distance

and added the frequency of the future strain to the optimal frequency of the corresponding current

strain. This approach allows each strain from timepoint t to accumulate frequencies from multiple

strains at timepoint u. We calculated the minimum distance between populations as the earth mov-

er’s distance between the resulting optimal frequencies for current strains, the observed frequencies

of future strains, and the original distance matrix between those two populations.

Strain-specific distance to the future
We calculated the weighted Hamming distance to the future of each strain from the strain’s HA

amino acid sequence and the frequencies and sequences of the corresponding population one year

in the future. Specifically, the distance between any strain i from timepoint t to the future timepoint

u was the Hamming distance, h, between strain i’s amino acid sequence, si, each future strain j’s

amino acid sequence, sj, and the frequency of strain j in the future timepoint, xjðuÞ.

diðuÞ ¼
X

j2sðuÞ

xjðuÞhðsi; sjÞ (3)

We calculated the estimated distance to the future for live forecasts with the same approach,

replacing the observed future population frequencies and sequences with the estimated population

based on our models.
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diðûÞ ¼
X

j2sðûÞ

xjðûÞhðsi; sjÞ (4)

Time-series cross-validation
To obtain unbiased estimates for the out-of-sample errors of our models, we adopted the standard

cross-validation strategy of training, validation, and testing. We divided our available data into an ini-

tial training and validation set spanning October 1990 to October 2015 and an additional testing set

spanning October 2015 to October 2019 (Figure 7). We partitioned our training and validation data

into six month seasons corresponding to winter in the Northern Hemisphere (October–April) and the

Southern Hemisphere (April–October) and trained models to estimate frequencies of populations

one year into the future from each season in six-year sliding windows. To calculate validation error

for each training window, we applied the resulting model coefficients to estimate the future frequen-

cies for the year after the last timepoint in the training window. These validation errors informed our

tuning of hyperparameters. Finally, we fixed the coefficients for each model at the mean values

across all training windows and applied these fixed models to the test data to estimate the true fore-

casting accuracy of each model on previously unobserved data.

Model comparison by bootstrap tests
We compared the performance of different pairs of models using bootstrap tests. For each time-

point, we calculated the difference between one model’s earth mover’s distance to the future and

the other model’s distance. Values less than zero in the resulting empirical distribution represent

when the first model outperformed the second model. To determine whether the first model gener-

ally outperformed the second model, we bootstrapped the empirical difference distributions for

n = 10,000 samples and calculated the mean difference of each bootstrap sample. We calculated an

empirical p value for the first model as the proportion of bootstrap samples with mean values

greater than or equal to zero. This p value represents how likely the mean difference between the

models’ distances to the future is to be zero or greater. We measured the effect size of each com-

parison as the mean ±the standard deviation of the bootstrap distributions. We performed pairwise

model comparisons for all biologically-informed models against the naive model (Figures 14 and

15). We also compared a subset of composite models to their respective individual models

(Table 5).

Fitness metrics
We defined the following fitness metrics per strain and timepoint.

Antigenic drift
We estimated antigenic drift for each strain using either genetic or HI data. To estimate antigenic

drift with genetic data, we implemented an antigenic novelty metric based on the ‘cross-immunity’

metric originally defined by Luksza and Lässig, 2014. Briefly, for each pair of strains in adjacent sea-

sons, we counted the number of amino acid differences between the strains’ HA sequences at 49

epitope sites. The one-based coordinates of these sites relative to the start of the HA1 segment

were 50, 53, 54, 121, 122, 124, 126, 131, 133, 135, 137, 142, 143, 144, 145, 146, 155, 156, 157, 158,

159, 160, 163, 164, 172, 173, 174, 186, 188, 189, 190, 192, 193, 196, 197, 201, 207, 213, 217, 226,

227, 242, 244, 248, 275, 276, 278, 299, and 307. We limited pairwise comparisons to all strains sam-

pled within the last five years from each timepoint. For each individual strain i at each timepoint t,

we estimated that strain’s ability to escape cross-immunity by summing the exponentially-scaled epi-

tope distances between previously circulating strains and the given strain as in Equation 5. We

defined the constant D0 ¼ 14, as in the original definition of cross-immunity (Luksza and Lässig,

2014). To compare these epitope sites with other previously published sites, we fit epitope antigenic

novelty models based on sites defined by Wolf et al., 2006 and Koel et al., 2013.

fi;epðtÞ ¼
X

j:tj<ti

�maxðxjÞexp ð�Depðai;ajÞ=D0Þ (5)

To test the historical contingency of the epitope sites defined above, we additionally identified a
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new set of sites with beneficial mutations across the training/validation period of October 1990

through October 2015. Following the general approach of Shih et al., 2007, we manually identified

25 sites in HA1 where mutations rapidly swept through the global population. We required muta-

tions to emerge from below 5% global frequency and reach > 90% frequency. Although we did not

require sweeps to complete within a fixed amount of time, we observed that they required no longer

than one to three years to complete. To minimize false positives, we eliminated any sites where one

or more mutations rose above 20% frequency and subsequently died out. If two or more sites had

redundant sweep dynamics (mutations emerging and fixing at the same times), we retained the site

with the most mutational sweeps. Based on this requirements, we defined our final collection of ‘ora-

cle’ sites in HA1 coordinates as 3, 45, 48, 50, 75, 140, 145, 156, 158, 159, 173, 186, 189, 193, 198,

202, 212, 222, 223, 225, 226, 227, 278, 311, and 312.

To estimate antigenic drift with HI data, we first applied the titer tree model to the phylogeny at

a given timepoint and the corresponding HI data for its strains, as previously described by

Neher et al., 2016. This method effectively estimates the antigenic drift per branch in units of log2
titer change. We selected all strains with nonzero frequencies in the last six months as ‘current

strains’ and all strains sampled five years prior to that threshold as ‘past strains’. Next, we calculated

the pairwise antigenic distance between all current and past strains as the sum of antigenic drift

weights per branch on the phylogenetic path between each pair of strains. Finally, we calculated

each strain’s ability to escape cross-immunity using Equation 5 with the pairwise distances between

epitope sequences replaced with pairwise antigenic distance from HI data. As with the original epi-

tope antigenic novelty described above, this HI antigenic novelty metric produces higher values for

strains that are more antigenically distinct from previously circulating strains.

Figure 14. Bootstrap distributions of the mean difference of distances to the future between biologically-informed and naive models for simulated

populations. Empirical differences in distances to the future were sampled with replacement and mean values for each bootstrap sample were

calculated across n = 10,000 bootstrap iterations. The horizontal gray line indicates a difference of zero between a given model and its corresponding

naive model. Each model is annotated by the mean ± the standard deviation of the bootstrap distribution. Models are also annotated by the p-value

representing the proportion of bootstrap samples with values less than zero (see Methods).
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Functional constraint
We estimated functional constraint for each strain using either genetic or deep mutational scanning

(DMS) data. To estimate functional constraint with genetic data, we implemented the non-epitope

mutation metric originally defined by Luksza and Lässig, 2014. This metric counts the number of

amino acid differences at 517 non-epitope sites in HA sequences between each strain i at timepoint

t and that strain’s most recent inferred ancestral sequence in the previous season (t � 1).

We estimated functional constraint using mutational preferences from DMS data as previously

defined (Lee et al., 2018). Briefly, mutational effects were defined as the log ratio of DMS preferen-

ces, p, at site r for the derived amino acid, ai, and the ancestral amino acid, aj. As with the non-epi-

tope mutation metric above, we considered only substitutions in HA between each strain i and that

strain’s most recent inferred ancestral sequence in the previous season. We calculated the total

effect of these substitutions as the sum of the mutational preferences for each substitution, as in

Equation 6.

fi;DMSðtÞ ¼
X

r2r;ai!¼r;aj

log2
pr;ai

pr;aj

(6)

To determine whether DMS preferences could be used to define fitness metrics that were less

dependent on the historical context of the background strain, we implemented two additional DMS-

based metrics: ‘DMS entropy’ and ‘DMS mutational load’. For both metrics, we calculated the dis-

tance between HA amino acid sequences of each strain and its ancestral sequence in the previous

season, to enable comparison of these metrics with the DMS mutational effects and mutational load

metrics. For the ‘DMS entropy’ metric, we calculated the distance between sequences such that

each mismatch was weighted by the inverse entropy of DMS preferences at the site of the mismatch.

We expected this metric to produce a negative coefficient similar to the mutational load metric, as

higher values will result from mutations at sites with lower entropy and, thus, lower tolerance for

mutations. For the ‘DMS mutational load’ metric, we defined a novel set of non-epitope sites corre-

sponding to each position in HA with a standardized entropy less than zero. With this metric, we

sought to identify more highly conserved sites without weighting any one site differently from

others. We anticipated that this lack of site-specific weighting would make the DMS mutational load

metric even less background-dependent than the DMS entropy and DMS mutational effect metrics.

Figure 15. Bootstrap distributions of the mean difference of distances to the future between biologically-informed and naive models for natural

populations. Empirical differences in distances to the future were sampled with replacement and mean values for each bootstrap sample were

calculated across n = 10,000 bootstrap iterations. The horizontal gray line indicates a difference of zero between a given model and its corresponding

naive model. Each model is annotated by the mean ± the standard deviation of the bootstrap distribution. Models are also annotated by the p-value

representing the proportion of bootstrap samples with values less than zero (see Materials and methods).
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Clade growth
We estimated clade growth for each strain using local branching index (LBI) and the change in fre-

quency over time (delta frequency). To calculate LBI for each strain at each timepoint, we applied

the LBI heuristic algorithm as originally described (Neher et al., 2014) to the phylogenetic tree con-

structed at each timepoint. We set the neighborhood parameter, t, to 0.3 and only considered

viruses sampled in the last 6 months of each phylogeny as contributing to recent clade growth.

We estimated the change in frequency over time by calculating clade frequencies under a Brow-

nian motion diffusion process as previously described (Lee et al., 2018). These frequency calcula-

tions allowed us to assign a partial clade frequency to each strain within nested clades. We

calculated the delta frequency as the change in frequency for each strain between the most recent

timepoint in a given phylogeny and six months prior to that timepoint divided by 0.5 years.

For the purpose of visualizing related amino acid sequences in Figure 1, we applied dimensional-

ity reduction to pairwise amino acid distances followed by hierarchical clustering. Specifically, we

selected a representative tree from our simulated population of viruses at month 10 of year 30.

From this tree, we selected all strains with a collection date in the previous two years. We calculated

the pairwise Hamming distance between the full-length HA amino acid sequences for all selected

strains and applied t-SNE dimensionality reduction (van der Maaten and Hinton, 2008) to the

resulting distance matrix (n = 2 components, perplexity = 30.0, and learning rate = 400). We

assigned each strain to a cluster based on its two-dimensional t-SNE embedding using DBSCAN

(Ester et al., 1996) with a maximum neighborhood distance of 10 AAs and a minimum of 20 strains

per cluster. Despite known limitations of applying hierarchical clustering to manifold projections that

do not preserve sample density, this approach allowed us to effectively assign strains to qualitative

genetic clusters for the purposes of visualization.

Data and software availability
Sequence data are available from GISAID using accession ids provided in Supplementary file 1.

Source code, derived data from serological measurements, fitness metric annotations, and resulting

fitness model performance data are available in the project’s GitHub repository (Huddleston, 2020;

copy archived at https://github.com/elifesciences-publications/flu-forecasting). Raw serological

measurements are restricted from public distribution by previous data sharing agreements.
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Köster J, Rahmann S. 2012. Snakemake–a scalable bioinformatics workflow engine. Bioinformatics 28:2520–
2522. DOI: https://doi.org/10.1093/bioinformatics/bts480, PMID: 22908215

Kusner MJ, Sun Y, Kolkin NI, Weinberger KQ. 2015. From word embeddings to document distances.
Proceedings of the 32Nd International Conference on International Conference on Machine Learning 957–966.
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