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Abstract For the last decade, evolutionary forecasting models have influenced seasonal9

influenza vaccine design. These models attempt to predict which genetic variants circulating at10

the time of vaccine strain selection will be dominant 12 months later in the influenza season11

targeted by vaccination campaign. Forecasting models depend on hemagglutinin (HA) sequences12

from the WHO’s Global Influenza Surveillance and Response System to identify currently13

circulating groups of related strains (clades) and estimate clade fitness for forecasts. However,14

the average lag between collection of a clinical sample and the submission of its sequence to the15

Global Initiative on Sharing All Influenza Data (GISAID) EpiFlu database is ∼3 months. Submission16

lags complicate the already difficult 12-month forecasting problem by reducing understanding of17

current clade frequencies at the time of forecasting. These constraints of a 12-month forecast18

horizon and 3-month average submission lags create an upper bound on the accuracy of any19

long-term forecasting model. The global response to the SARS-CoV-2 pandemic revealed that20

modern vaccine technology like mRNA vaccines can reduce how far we need to forecast into the21

future to 6 months or less and that expanded support for sequencing can reduce submission lags22

to GISAID to 1 month on average. To determine whether these recent advances could also23

improve long-term forecasts for seasonal influenza, we quantified the effects of reducing forecast24

horizons and submission lags on the accuracy of forecasts for A/H3N2 populations. We found25

that reducing forecast horizons from 12 months to 6 or 3 months reduced average absolute26

forecasting errors to 25% and 50% of the 12-month average, respectively. Reducing submission27

lags provided little improvement to forecasting accuracy but decreased the uncertainty in current28

clade frequencies by 50%. These results show the potential to substantially improve the accuracy29

of existing influenza forecasting models by modernizing influenza vaccine development and30

increasing global sequencing capacity.31

32

Introduction33

Seasonal influenza virus infections cause approximately half amillion deaths per year (WorldHealth34

Organization, 2014). Vaccination provides the best protection against hospitalization and death,35

but the rapid evolution of the influenza surface protein hemagglutinin (HA) allows viruses to es-36

cape existing immunity and requires regular updates to influenza vaccines (Petrova and Russell,37

2018). The World Health Organization (WHO) meets twice a year to decide on vaccine updates for38

theNorthern and SouthernHemispheres (Morris et al., 2018). The dominant influenza vaccine plat-39
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form is an inactivated whole virus vaccine grown in chicken eggs (Wong and Webby, 2013) which40

takes 6 to 8 months to develop and contains a single representative vaccine virus per seasonal41

influenza subtype including A/H1N1pdm, A/H3N2, and B/Victoria (Morris et al., 2018). As a result,42

the WHO must select a single immunologically-representative virus per subtype approximately43

12 months before the peak of the next influenza season. These selections depend on the diver-44

sity of currently circulating phylogenetic clades, groups of influenza viruses that all share a recent45

common ancestor. The WHO’s understanding of that genetic diversity comes from HA sequences46

collected by the WHO’s Global Influenza and Surveillance and Response System (GISRS) (Hay and47

McCauley, 2018) and submitted to the Global Initiative on Sharing All Influenza Data (GISAID) EpiFlu48

database (Shu and McCauley, 2017). The fastest evolving influenza subtype A/H3N2 accumulates49

3–4 HA amino acid substitutions per year (Smith et al., 2004; Kistler and Bedford, 2023) such that50

the clades circulating 12months after the vaccine decision can be antigenically distinct from clades51

that were circulating at the time of the decision.52

Given the 12-month lag between the decision to update an influenza vaccine and the peak of the53

following influenza season, the vaccine composition decision is commonly framed as a long-term54

forecasting problem (Lässig et al., 2017). For this reason, the decision process is partially informed55

by computational models that attempt to predict the genetic composition of seasonal influenza56

populations 12 months in the future based on current genetic and phenotypic data (Morris et al.,57

2018). The earliest of these models predicted future influenza populations from HA sequences58

alone (Łuksza and Lässig, 2014; Neher et al., 2014; Steinbrück et al., 2014). Recent models include59

phenotypic data from serological experiments (Morris et al., 2018;Huddleston et al., 2020;Meijers60

et al., 2023, 2024), but these models still heavily rely on HA sequences to determine the viruses61

circulating at the time of a forecast. Unfortunately, the average lag between collection of a seasonal62

influenza A/H3N2 HA sample and submission of its sequence had been ∼3 months in the era prior63

to the SARS-CoV-2 pandemic (Figure 1A). While long-term forecasting models continue to improve64

technically, the constraints of a 12-month forecast horizon and the availability of enough recent,65

representative HA sequences impose an upper bound on the accuracy of long-term forecasts.66

The global response to the SARS-CoV-2 pandemic in 2020 showed the speed with which we can67

develop new vaccines and capture real-time viral genetic diversity. Decades of research on mRNA68

vaccines enabled the development of multiple effective vaccines a year after the emergence of69

SARS-CoV-2 (Mulligan et al., 2020; Baden et al., 2021). This mRNA-based vaccine platform also70

enabled the approval of booster vaccines targeting Omicron only 3 months after the recommen-71

dation of an Omicron-based vaccine candidate (Grant et al., 2023). In parallel to vaccine devel-72

opment, expanded funding and capacity building for viral genome sequencing enabled unprece-73

dented dense sampling of a pathogen’s genetic diversity over a short period of time (Chen et al.,74

2022). By 2021, the average time between collection of a SARS-CoV-2 sample and submission of the75

sample’s genome sequence to GISAID EpiCoV database had decreased to approximately 1 month76

(Brito et al., 2022). This reduction in submission lags reflects both increased emergency funding77

and the sustained efforts by more public health organizations to adopt best practices for genomic78

epidemiology (Kalia et al., 2021; Black et al., 2020). Assessments of SARS-CoV-2 short-term fore-79

casts have shown how such reductions in forecast horizon and submission lags can improve the80

accuracy of short-term forecasts and real-time estimates of clade frequencies (Abousamra et al.,81

2024).82

These technological and societal changes in response to SARS-CoV-2 suggest that we could re-83

alistically expect the same outcomes for seasonal influenza. Work on mRNA vaccines for influenza84

viruses dates back over a decade (Petsch et al., 2012; Brazzoli et al., 2016; Pardi et al., 2018; Feld-85

man et al., 2019). A switch from the current egg-based inactivated virus vaccines tomRNA vaccines86

could reduce the time between vaccine design decisions and the peak influenza season from 1287

months to 6 months. Similarly, the expanded global capacity for sequencing SARS-CoV-2 genomes88

could reasonably extend to broader and more rapid genomic surveillance for seasonal influenza,89

reducing submission lags from 3 months to 1 month on average. Even in the years immediately90
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after the onset of the SARS-CoV-2 pandemic, we have observed a trend toward a reduced average91

submission lag of 2.5 months that we would expect from increased global capacity for genome92

sequencing (Figure 1—figure Supplement 1).93

In this work, we tested the effects of similar reductions in forecast horizons and submission94

lags on the accuracy of long-term forecasts for seasonal influenza. Building on our previously pub-95

lished forecasting framework (Huddleston et al., 2020), we performed a retrospective analysis of96

HA sequences from simulated and natural A/H3N2 populations. For each population type, we pro-97

duced forecasts from 12, 9, 6, and 3months prior to a given influenza season (Figure 1A). Wemade98

each forecast under three different submission lag scenarios including a realistic lag (3 months on99

average), an ideal lag (1 month on average), and no lag (Figure 1B). First, we measured the accu-100

racy and precision of forecasts under these different scenarios by calculating the genetic distance101

between predicted and observed future populations using the same earthmover’s distancemetric102

that we originally used to train our forecasting models (Rubner et al., 1998). Next, we calculated103

the effect of forecast horizon and submission lags on clade frequencies which are the values we104

use to communicate predictions to WHO decision-makers (Huddleston et al., 2024). We quanti-105

fied the effect of reduced submission lags on initial clade frequencies, and we calculated forecast106

accuracy as the difference between predicted and observed clade frequencies of future popula-107

tions. Finally, we calculated the relative improvement in forecast accuracy produced by different108

realistic interventions including reduced vaccine development time, reduced submission lags, and109

the combination of both. In this way, we show the potential to improve the accuracy of existing110

long-term forecasting models and, thereby, the quality of vaccine design decisions by simplifying111

the forecasting problem through realistic societal changes.112

Results113

Reducing forecast horizons and submission lags decreases distances between pre-114

dicted and observed future populations115

Previously, we trained long-term forecasting models that minimized the genetic distance between116

predicted and observed future populations of HA sequences (Huddleston et al., 2020). We pre-117

dicted each population 12 months in the future based on the frequencies and fitness estimates118

of HA sequences in the current population. We calculated the distance between predicted and119

observed future populations with the earth mover’s distance metric (Rubner et al., 1998). This120

metric provided an average genetic distance between amino acid sequences of the two popula-121

tions weighted by the frequencies of sequences in each population. This approach allowed us to122

measure forecasting accuracy without first defining phylogenetic clades, a process that can borrow123

information from the future or change clade definitions between initial and future timepoints. We124

identified the best forecasting models as those that minimized this distance between populations.125

The most accurate sequence-only model for the 12-month forecast horizon estimated fitness with126

local branching index (LBI) (Neher et al., 2014) and mutational load (Łuksza and Lässig, 2014). As a127

positive control, we calculated the posthoc empirical fitness of each initial population based on the128

composition of the corresponding future population. These empirical fitnesses provided the lower129

bound on the earth mover’s distance which represented the number of amino acid substitutions130

accumulated between populations.131

To understand the effects of reducing forecast horizons and submission lags on long-term fore-132

cast accuracy, we produced forecasts 3, 6, 9, and 12 months into the future using HA sequences133

available at each initial timepoint under each submission lag scenario including no lag, ideal lag134

(∼1-month average), and realistic lag (∼3-month average) (Figure 1, Figure 1—figure Supplement 2,135

Figure 1—figure Supplement 3). For both natural and simulated populations, we assigned ideal and136

realistic lags to each sequence from themodeled distributions in Figure 1B. This approach allowed137

us to assign uncorrelated lag values to both population types while avoiding the biases associated138

with historical submission patterns for natural A/H3N2 HA sequences. For natural A/H3N2 pop-139
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Figure 1. Model of forecast horizons and submission lags. A) Long-term forecasting models historically
predicted 12 months into the future from April and October because of the time required to develop and
distribute a new vaccine (Łuksza and Lässig, 2014). We tested three additional shorter forecast horizons in
three-month intervals of 9, 6, and 3 months prior to the same time in the future season. For each forecast
horizon, we calculated the accuracy of forecasts under each of the three submission lags reflected above
including no lag (blue), realistic lag (green), and ideal lag (orange). B) Observed lags in days between collection
of viral samples and submission of corresponding HA sequences to GISAID (purple) for samples collected in
2019 have a mean of 98 days (approximately 3 months). A gamma distribution fit to the observed lag
distribution with a similar mean and shape (green) represents a realistic submission lag that we sampled
from to assign “submission dates” to simulated and natural A/H3N2 populations. A gamma distribution with a
mean that is one third of the realistic distribution (orange) represents an ideal submission lag analogous to
the 1-month average observed lags for SARS-CoV-2 genomes. Retrospective analyses including fitting of
forecasting models typically filter HA sequences by collection date instead of submission dates in which case
there is no lag (blue).
Figure 1—figure supplement 1. Distribution of submission lags in days for the pre-pandemic era
(2019-2020) and pandemic era (2022-2023)
Figure 1—figure supplement 2. Number and proportion of A/H3N2 sequences available per timepoint and
lag type
Figure 1—figure supplement 3. Number and proportion of simulated A/H3N2-like sequences available per
timepoint and lag type
Figure 1—source data 1. Distribution of lags between sample collection and sequence submission in
prepandemic and pandemic eras; see https://zenodo.org/records/13742375

ulations, we used the best sequence-only forecasting model, LBI and mutational load, which we140

previously trained on 12-month forecasts without any submission lag. For simulated A/H3N2-like141
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populations, we used the observed fitness per sample provided by the simulator. For each forecast142

horizon and submission lag type, we calculated the earth mover’s distance between the predicted143

future populations under the given lag scenario and the observed future populations without any144

lag in sequence availability. As a control, we also calculated the optimal distance between initial145

and future populations based on posthoc empirical fitness of the initial population. We anticipated146

that reducing either the forecast horizon or the submission lag would reduce the distance to the147

future in amino acids (AAs), representing increased accuracy of the forecasting models.148

We found that reducing the forecast horizon from the current standard of 12 months linearly149

reduced the distance to the future population predicted by the LBI and mutational load model150

(Figure 2). Under the all three submission lag scenarios, the distance to the future reduced by ap-151

proximately 1 AAon average for each 3-month reduction in forecast horizon (Table 1). We observed152

the greatest average reduction in distance to the future (∼1.4 AAs) between the 6- and 3-month153

forecast horizons. Reducing the forecast horizon also noticeably reduced the variance per time-154

point in predicted future populations across all lag scenarios (Figure 2). For example, the standard155

deviation of distances to the future reduced from ∼2.6 AAs at the 12-month horizon to ∼1 AA at the156

3-month horizon (Table 1). We observed the same patterns for forecasts of simulated A/H3N2-like157

populations (Figure 2—figure Supplement 1) and optimal distances to the future for natural and158

simulated populations (Figure 2—figure Supplement 2 and Figure 2—figure Supplement 3). Thus,159

reducing how far we have to predict into the future increased both forecast accuracy and precision.160

Distance to future (mean +/- std dev AAs)
Horizon No lag Ideal lag Realistic lag

3 2.91 +/- 0.86 3.32 +/- 0.96 3.85 +/- 1.05
6 4.44 +/- 1.39 4.74 +/- 1.54 5.03 +/- 1.66
9 5.48 +/- 2.05 5.84 +/- 2.14 6.04 +/- 2.15
12 6.45 +/- 2.72 6.77 +/- 2.80 6.78 +/- 2.61

Table 1. Distance to the future in amino acids (mean +/- standard deviation AAs) by forecast horizon (in
months) and submission lag for A/H3N2 populations.

In contrast, we found that reducing submission lags from a ∼3-month average lag in the re-161

alistic scenario to a ∼1-month average lag in the ideal scenario had a weaker effect on distance162

to the future. At the 12-month forecast horizon, the ideal and realistic lag scenarios produced163

similar predictions, with the only noticeable improvement observed under the scenario without164

any submission lags (Figure 2). As the forecast horizon decreased, the effect of submission lags165

appeared more prominent, with the greatest effect of reduced lags observed at the 3-month fore-166

cast horizon. However, the average improvement from the realistic to the ideal submission lag167

scenario at the 3-month horizon was still only ∼0.3 AAs (Table 1). Reducing submission lags also168

had little effect on the variance per timepoint in predicted future populations. Interestingly, we169

observed a stronger effect of reducing submission lags in simulated A/H3N2-like populations, with170

the best average improvement between realistic and ideal lags of ∼0.7 AAs at the 3-month horizon171

(Figure 2—figure Supplement 1). As with natural A/H3N2 populations, the effect of reducing sub-172

mission lags appeared to increase as the forecast horizon decreased. These results indicate that173

reducing submission lags may have little effect under the current 12-month forecast approach174

used for influenza vaccine composition, but reducing submission lags should become increasingly175

important as we forecast from closer to future influenza populations.176

Reducing submission lags improves estimates of current clade frequencies177

Although the distance between predicted and observed future populations in amino acids provides178

an unbiased metric to optimize forecasting models, in practice, we use these models to forecast179
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Figure 2. Distance to the future per timepoint (AAs) for natural A/H3N2 populations by forecast horizon and
submission lag type based on forecasts from the local branching index (LBI) and mutational load model. Each
point represents a future timepoint whose population was predicted from the number of months earlier
corresponding to the forecast horizon. Points are colored by submission lag type including forecasts made
with no lag (blue), an ideal lag (orange), and a realistic lag (green).
Figure 2—figure supplement 1. Distance to the future for simulated A/H3N2-like populations
Figure 2—figure supplement 2. Optimal distance to the future for natural A/H3N2 populations
Figure 2—figure supplement 3. Optimal distance to the future for simulated A/H3N2-like populations
Figure 2—source data 1. Distances to the future for natural A/H3N2 populations.
Figure 2—source code 1. Jupyter notebook used to produce this figure and the supplemental figure lives in
workflow/notebooks/plot-distances-to-the-future-by-delay-type-and-horizon-for-population.py.ipynb.

clade frequencies. Wepredict each clade’s future frequency as the sumof predicted future frequen-180

cies for each HA sequence in the clade. We calculate these sequence-specific future frequencies181

as the initial sequence frequency times the estimated sequence fitness (Łuksza and Lässig, 2014;182

Huddleston et al., 2020). Given the importance of initial clade frequencies in these forecasts, we183

tested the effect of submission lags on current clade frequency estimates. For each timepoint and184

clade with a frequency greater than zero under the scenario without lags, we calculated the clade185

frequency error as the difference between clade frequency without submission lags and the fre-186

quency with either an ideal or realistic lag. Positive error values represented underestimation of187

current clades, while negative values represented overestimation.188

Across all clade frequencies, we found that errors in current clade frequencies for A/H3N2 ap-189

peared normally distributed with lower variance in the ideal lag scenario than under realistic lags190

(Figure 3A and B). Of the 822 clades under the scenario without lags, 613 (75%) had a frequency less191

than 10%, representing small, emerging clades. The remaining 209 (25%) had a frequency of 10%192

or greater, representing larger clades that could bemore likely to succeed. To understand whether193

lags had different effects on these small and large clades, respectively, we inspected clades from194

these latter two groups separately. For small clades, errors under ideal lags ranged from -4% to195

4% with a standard deviation of 1%, while realistic lags produced errors ranging from -8% to 7%196

with a standard deviation of 2% (Figure 3C). We did not observe a bias toward underestimation or197
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overestimation of initial small clade frequencies under either lag scenario. For large clades, errors198

under ideal lag ranged from -9% to 14% with a standard deviation of 3% (Figure 3D). Errors un-199

der realistic lags ranged from -16% to 29% with a standard deviation of 6%. We observed a slight200

bias toward underestimation of large clades under the realistic lag scenario, with a median error201

of 1%. These results show that reducing submission lags for natural A/H3N2 populations from a202

3-month average to a 1-month average could reduce the bias toward underestimated large clade203

frequencies and reduce the standard deviation of all current clade frequency errors by 50%.204

Lagged submissions similarly affected clade frequencies for simulated A/H3N2-like populations205

(Figure 3—figure Supplement 1). Small clade errors under ideal lags ranged from -4% to 6% (stan-206

dard deviation of 1%) and under realistic lags ranged from -9% to 8% (standard deviation of 2%)207

(Figure 3—figure Supplement 1C). For large clades, errors under ideal lags ranged from -8% to 18%208

(standard deviation of 3%) and under realistic lags from -14% to 40% (standard deviation of 7%)209

(Figure 3—figure Supplement 1D). As with natural A/H3N2 populations, we observed a slight bias210

in simulated populations under realistic lags toward underestimation of large clade frequencies211

with a median error of 2%. We also observed a similar reduction in standard deviation of cur-212

rent frequency errors for these simulated A/H3N2-like populations when switching from realistic213

to ideal submission lags.214

Reducing forecast horizons increases theaccuracyandprecisionof clade frequency215

forecasts216

Next, we estimated the effects of different forecast horizons and submission lags on the accu-217

racy of clade frequency forecasts. As with the current clade frequency analysis, we analyzed small218

clades (<10% initial frequency) and large clades (≥10% initial frequency) separately. For each com-219

bination of initial timepoint, future timepoint, and lag scenario (Figure 1A), we calculated initial220

and predicted future frequencies for all clades present under the given lag and then calculated the221

corresponding observed future frequencies without lag for clades that descended from the clades222

present at the initial timepoint. We calculated the error in forecast frequencies as the difference223

between predicted future frequencies under the given lag scenario and observed future frequen-224

cies without any lag. We used absolute forecast errors to evaluate forecast accuracy and overall225

forecast errors to evaluate forecast bias.226

Absolute forecast errors trended strongly toward values less than 30% with long tails reaching227

80% for both small and large clades (Figure 4). Each 3-month reduction of the forecast horizon lin-228

early reduced the variance in forecast errors, but mean andmedian absolute errors only improved229

after reducing the forecast horizon below 9 months (Figure 4 and Table 2). For small clades, reduc-230

ing the forecast horizon most noticeably reduced the range of errors, while reducing submission231

lags had little effect (Figure 4A). For large clades, almost all decreases in forecast horizon and sub-232

mission lag (except lags at the 12-month horizon) reduced the standard deviation of absolute fore-233

cast errors (Figure 4B). Overall, reducing the forecast horizon had a greater effect on the mean,234

median, and standard deviation of absolute forecast errors than reducing submission lags. For235

example, the standard deviation of absolute errors at the 12-month horizon under realistic sub-236

mission lags was 23%, while the standard deviation for the 6-month horizon under realistic lags237

was 14% (Table 2). In contrast, the standard deviation at the 12-month horizon under ideal submis-238

sion lags did not change from the realistic lags at 23%, and the average absolute error increased by239

1% from 20%. For all other forecast horizons, reducing the submission lags from realistic to ideal240

only reduced themean and standard deviation of absolute errors by 1–2%. We observed the same241

general patterns in simulated populations (Figure 4—figure Supplement 1).242

The majority of forecast frequency errors appeared to be normally distributed, indicating lit-243

tle bias toward over- or underestimating future clade frequencies (Figure 4—figure Supplement 2244

and Figure 4—figure Supplement 3). This pattern matched our expectation that at any given initial245

timepoint the overestimation of one clade’s future frequency must cause an underestimation of246

another current clade’s future frequency. However, we observed a long tail of small clades with247
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Figure 3. Clade frequency errors for natural A/H3N2 clades at the same timepoint calculated as the
difference between clade frequencies without submission lag and corresponding frequencies with either A)
ideal or B) realistic submission lags. Distributions of frequency errors appear normally distributed in both lag
scenarios for both C) small clades (>0% and <10% frequency) and D) large clades (≥10%). Dashed lines
indicate the median error from the distribution of the lag type with the same color.
Figure 3—figure supplement 1. Current clade frequency errors for simulated A/H3N2-like populations
Figure 3—source data 1. Current and future clade frequencies for natural A/H3N2 populations by forecast
horizon and submission lag type.
Figure 3—source code 1. Jupyter notebook used to produce this figure and the supplemental figure lives in
workflow/notebooks/plot-current-clade-frequency-errors-by-delay-type-for-populations.py.ipynb.

underestimated future frequencies at all forecast horizons, indicating that correctly predicting the248
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Figure 4. Absolute forecast clade frequency errors for natural A/H3N2 populations by forecast horizon in
months and submission lag type (none, ideal, or observed) for A) small clades (<10% initial frequency) and B)
large clades (≥10% initial frequency).
Figure 4—figure supplement 1. Absolute forecast clade frequency errors for simulated A/H3N2-like
populations.
Figure 4—figure supplement 2. Forecast clade frequency errors for natural A/H3N2 populations.
Figure 4—figure supplement 3. Forecast clade frequency errors for simulated A/H3N2-like populations.
Figure 4—source code 1. Jupyter notebook used to produce this figure and the supplemental figures lives in
workflow/notebooks/plot-forecast-clade-frequency-errors-by-delay-type-and-horizon-for-population.py.ipynb.

growth of small clades remains more difficult than predicting their decline (Figure 4—figure Sup-249

plement 2A). The strongest effect of reducing submission lagswas the reduction inmaximumerror,250

corresponding to reduction in underestimation of large clades. The switch from realistic to ideal251

lags at 12-, 9-, 6-, and 3-month horizons reduced the maximum forecast error by 4%, 21%, 22%,252

and 14%, respectively (Table 2). These results show that reducing submission lags can substantially253
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Clade frequency error (%) Absolute frequency error (%)
Horizon Lag type Mean Median Std Dev Min Max Mean Median Std Dev

3 none 1 0 9 -28 28 7 6 6
3 ideal 1 0 11 -32 36 8 6 7
3 realistic 1 0 13 -31 50 10 7 9
6 none 1 0 17 -48 45 12 9 11
6 ideal 1 0 19 -50 53 13 9 13
6 realistic 1 0 20 -52 75 15 12 14
9 none 0 -1 23 -66 59 16 10 17
9 ideal 1 -1 25 -67 58 18 11 18
9 realistic 1 -1 26 -67 79 19 12 19
12 none 0 0 30 -82 76 20 10 22
12 ideal 1 0 31 -80 74 21 9 23
12 realistic 0 0 31 -78 78 20 12 23

Table 2. Errors in clade frequencies between observed and predicted values by forecast horizon (in months)
and submission lag for A/H3N2 clades with an initial frequency ≥10% under the given lag scenario.

lower the upper bound for forecasting errors.254

Reduced vaccine development time provides the best improvement in forecast ac-255

curacy of available realistic interventions256

Although we have investigated the effects of a range of forecast horizons and submission lags, not257

all of these scenarios are currently realistic. The most we can hope to reduce the forecast horizon258

with current mRNA vaccine technology is from 12 months to 6 months and the most we could re-259

duce submission lags would be from an average of 3 months to 1 month (Grant et al., 2023). In260

practice, we wanted to know how much a reduction in forecast horizon or submission lag could261

improve the accuracy of forecasts to each future timepoint. To determine the effects of realistic262

interventions on forecast accuracy, we inspected the reduction in total absolute forecast error per263

future timepoint associated with improved vaccine development (reducing forecast horizon from264

12months to 6months), improved genomic surveillance (reducing lags from a 3-month average to265

1 month), and the combination of both improvements. We selected all forecasts with a 12-month266

horizon and a realistic lag, to represent current forecast conditions or “the status quo”. For the267

same future timepoints present in the status quo conditions, we selected the corresponding fore-268

casts for a 6-month horizon and a realistic lag, a 12-month horizon and an ideal lag, and 6-month269

horizon and an ideal lag. Since forecasts between different initial and future timepoints could be270

represented by different clades, we could not compare forecasts for specific clades between in-271

terventions. Instead, we calculated the total absolute clade frequency error per future timepoint272

under each intervention and calculated the improvement in forecast accuracy as the difference in273

total error between the status quo and each intervention. In addition to this clade-based analy-274

sis, we also estimated effects of interventions on the difference in distance to the future between275

different scenarios for both estimated and empirical fitnesses. For all analyses, positive values276

represented improved forecast accuracy under a given intervention scenario and negative values277

represented a reduction in accuracy.278

Both interventions with improved vaccine development increased forecast accuracy for thema-279

jority of future timepoints (Figure 5, Table 3, and Figure 5—figure Supplement 1). Improving vac-280

cine development alone increased total forecast accuracy by 53% on average, while the addition281

of improved genomic surveillance under that 6-month forecast horizon increased total forecast ac-282

curacy by 54% on average. In contrast, the intervention that only improved genomic surveillance283
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Figure 5. Improvement of clade frequency errors for A/H3N2 populations between the status quo (12-month
forecast horizon and realistic submission lags) and realistic interventions of improved vaccine development
(reducing 12-month to 6-month forecast horizon), improved surveillance (reducing submission lags from 3
months on average to 1 month), or a combination of both interventions. We measured improvements from
the status quo as the difference in total absolute clade frequency error per future timepoint. Positive values
indicate increased forecast accuracy, while negative values indicate decreased accuracy. Each point
represents the improvement of forecasts for a specific future timepoint under the given intervention.
Horizontal dashed lines indicate median improvements. Horizontal dotted lines indicate upper and lower
quartiles of improvements.
Figure 5—figure supplement 1. Distribution of total absolute clade frequency errors summed across clades
per future timepoint for A/H3N2 populations.
Figure 5—figure supplement 2. Improvement of clade frequency errors for simulated A/H3N2-like
populations.
Figure 5—figure supplement 3. Distribution of total absolute clade frequency errors summed across clades
per future timepoint for simulated A/H3N2-like populations.
Figure 5—figure supplement 4. Improvement of distances to the future (AAs) for A/H3N2 populations
between the status quo (12-month forecast horizon and realistic submission lags) and realistic interventions.
Figure 5—figure supplement 5. Improvement of distances to the future (AAs) for simulated A/H3N2-like
populations between the status quo (12-month forecast horizon and realistic submission lags) and realistic
interventions.
Figure 5—source data 1. Differences in total absolute clade frequency error per future timepoint and clade
between the status quo and realistic interventions for A/H3N2 populations.
Figure 5—source code 1. Jupyter notebook used to produce effects of interventions on total absolute clade
frequency errors
workflow/notebooks/plot-forecast-clade-frequency-errors-by-delay-type-and-horizon-for-population.py.ipynb.
Figure 5—source code 2. Jupyter notebook used to produce effects of interventions on distances to the
future lives in
workflow/notebooks/plot-distances-to-the-future-by-delay-type-and-horizon-for-population.py.ipynb.

decreased forecast accuracy by an average of 11%. Based on the distributions of total absolute284

forecast error per future timepoint, we would expect improved genomic surveillance to improve285

forecast accuracy at a forecast horizon of 3 months (Figure 5—figure Supplement 1). We observed286

similar effects of interventions in simulated A/H3N2-like populations except that the average ef-287

fect of reducing submission lags alone was positive for these populations (Figure 5—figure Sup-288

plement 2 and Figure 5—figure Supplement 3). When we calculated the effects of interventions on289

distances to the future instead of total absolute clade frequency errors, we observed the same pat-290
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Forecast accuracy improvement (%) Timepoints improved
Intervention Mean Median Std Dev Total Proportion

improved vaccine 53 49 112 19 0.61
improved surveillance -11 -13 56 10 0.32

improved vaccine and surveillance 54 29 124 18 0.58
Table 3. Improvement in A/H3N2 clade frequency forecast accuracy under realistic interventions of improved
vaccine development (reducing 12-month to 6-month forecast horizon), improved surveillance (reducing
submission lags from 3 months on average to 1 month), or a combination of both interventions. We
measured improvements from the status quo (12-month forecast horizon and 3-month average submission
lag) as the difference in total absolute clade frequency error per future timepoint and the number and
proportion of future timepoints for which forecasts improved under the intervention.

terns for natural and simulated populations (Figure 5—figure Supplement 4 and Figure 5—figure291

Supplement 5). Based on these results, the single most valuable intervention we could make to im-292

prove forecast accuracy would be to reduce the forecast horizon to 6months or less throughmore293

rapid vaccine development. However, as we reduce the forecast horizon, reducing submission lags294

should have a greater effect on improving forecast accuracy.295

We hypothesized that the decrease in average accuracy of natural A/H3N2 forecasts under the296

improved genomic surveillance intervention could reflect the bias of the LBI and mutational load297

fitness metrics. For example, we previously showed how LBI fitness estimates can overestimate298

the future growth of large clades (Huddleston et al., 2020). Adding more sequences at initial time-299

points where LBI already overestimates clade success could increase the LBI of those clades and300

exacerbate the overestimation. To test this hypothesis, we calculated the effects of the same inter-301

ventions on the optimal distances to the future for both natural and simulated populations. Since302

optimal distances reflected the empirical fitnesses of the initial populations, the effects of inter-303

ventions should be independent of biases from fitness metrics. We expected all interventions to304

maintain or improve the optimal distance to the future without any cases where an intervention305

decreased accuracy. As expected, all interventions improved on the optimal distance to the future306

for both populations (Figure 6 and Figure 6—figure Supplement 1). For natural A/H3N2 popula-307

tions, the average improvement of the vaccine intervention was 1.1 AAs and the improvement of308

the surveillance intervention was 0.27 AAs or approximately 25% of the vaccine intervention. The309

average improvement of both interventions was only slightly less than additive at 1.28 AAs. These310

results confirmed the relatively stronger effect of reducing forecast horizons compared to submis-311

sion lags. They also confirmed that reducing submission lags can improve forecasts under optimal312

forecasting conditions. For this reason, we expect that simultaneous improvements to forecasting313

models and genomic surveillance will have a mutually beneficial effect on forecast accuracy.314

Discussion315

In this work, we showed that decreasing the time to develop new vaccines for seasonal influenza316

A/H3N2 and decreasing submission lags of HA sequences to public databases improves our esti-317

mates of future and current populations, respectively. We confirmed that forecasts became more318

accurate and more precise with each 3-month reduction in forecast horizon from the status quo319

of 12 months. Although decreasing submission lags only marginally improved long-term forecast320

accuracy, shorter lags increased the accuracy of current clade frequency estimates, reduced the321

bias toward underestimating current and future frequencies of larger clades, and improved fore-322

casts 3 months into the future. Under a realistic scenario where a faster vaccine development323

timeline allowed us to forecast from 6 months before the next season, we found a 53% average324

improvement in forecasts of total absolute clade frequency and a 25% reduction in average ab-325

solute forecast frequency errors for large clades from 20% to 15%. We confirmed these effects326
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Figure 6. Improvement of optimal distances to the future (AAs) for A/H3N2 populations between the status
quo (12-month forecast horizon and realistic submission lags) and realistic interventions of improved vaccine
development (reducing 12-month to 6-month forecast horizon), improved surveillance (reducing submission
lags from 3 months on average to 1 month), or a combination of both interventions. We measured
improvements from the status quo as the difference in optimal distances to the future per future timepoint.
Positive values indicate increased forecast accuracy, while negative values indicate decreased accuracy. Each
point represents the improvement of forecasts for a specific future timepoint under the given intervention.
Horizontal dashed lines indicate median improvements. Horizontal dotted lines indicate upper and lower
quartiles of improvements.
Figure 6—figure supplement 1. Improvement of optimal distances to the future (AAs) for simulated
A/H3N2-like populations between the status quo (12-month forecast horizon and realistic submission lags)
and realistic interventions.
Figure 6—source data 1. Differences in optimal distances to the future per future timepoint between the
status quo and realistic interventions for A/H3N2 populations.
Figure 6—source code 1. Jupyter notebook used to produce optimal effects of interventions on distances to
the future lives in
workflow/notebooks/plot-distances-to-the-future-by-delay-type-and-horizon-for-population.py.ipynb.

with a previously validated forecasting model using both simulated and natural populations and327

two different metrics of forecast accuracy including earth mover’s distances between populations328

and clade frequencies. We expect that decreasing forecast horizons and submission lags will have329

similar relative effect sizes in other forecasting models, too.330

Even without these recommended improvements to vaccine development and sequence sub-331

missions, these results inform important next steps to improve forecasting models. Current and332

future frequency estimates should be presented with corresponding uncertainty intervals. From333

this work, we know that our current frequency estimates for large clades (≥10% frequency) un-334

der realistic submission lags have a wide range of errors (-16% to 29%). Similarly, the range of335

12-month forecast frequency errors under realistic lags include overestimates by up to 78% and336

underestimates up to 78%. Long-term forecasts with incomplete current data are highly uncertain337

by their nature. To support informed decisions about vaccine updates, wemust communicate that338

uncertainty of the present and future to decision-makers. One simple immediate strategy to pro-339

vide these uncertainty estimates is to estimate current and future clade frequencies from count340

data with multinomial probability distributions. Another immediate improvement would be to de-341

velop models that can use all available data in a way that properly accounts for geographic and342

temporal biases. Current models based on phylogenetic trees need to evenly sample the diversity343

of currently circulating viruses to produce unbiased trees in a reasonable amount of time. Models344
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that could estimate sample fitness and compare predicted and future populations without trees345

could use more available sequence data and reduce the uncertainty in current and future clade346

frequencies. Finally, we could improve existing models by changing the start and end times of our347

long-term forecasts. We could change our forecasting target from the middle of the next season348

to the beginning of the season, reducing the forecast horizon from 12 to 9 months. We could also349

start forecasting from one month prior to the current date to minimize the effect of submission350

lags on our estimates of the current global influenza population.351

Despite the small effect that reducing sequence submission lags had on long-term forecasting352

accuracy, we still see a need to continue funding global genomic surveillance at higher levels than353

the pre-pandemic period. Compared to estimates of current viral diversity, forecasts of future354

influenza populations only represent one component of the overall decision-making process for355

vaccine development. For example, virologists must choose potential vaccine candidates from the356

diversity of circulating clades well in advance of vaccine composition meetings to have time to357

grow virus in cells and eggs andmeasure antigenic drift with serological assays (Morris et al., 2018;358

Loes et al., 2024). Similarly, prospectivemeasurements of antigenic escape from human sera allow359

researchers to predict substitutions that could escape global immunity (Lee et al., 2019; Greaney360

et al., 2022; Welsh et al., 2023). The finding of even a few sequences with a potentially important361

antigenic substitution could be enough to inform choices of vaccine candidate viruses. Finally, our362

results here reflect uncorrelated submission lags for each sequence, but actual lags can strongly363

correlate between sequences from the same originating and submitting labs. These correlated364

lags could further decrease the accuracy of frequency estimates beyond our more conservative365

estimates. More rapid sequence submission will improve our understanding of the present and366

give decision-makers more choices for new vaccines. Such reductions in submission lags depend367

on substantial, sustained funding and capacity building globally.368

Methods and Materials369

Selection of natural influenza A/H3N2 HA sequences370

We downloaded all A/H3N2 HA sequences and metadata from GISAID’s EpiFlu database (Shu and371

McCauley, 2017) as of November 2023. We evenly sampled sequences geographically and tem-372

porally as previously described (Huddleston et al., 2020). Briefly, we selected 90 sequences per373

month, evenly sampling from major continential regions (Africa, Europe, North America, China,374

South Asia, Japan and Korea, Oceania, South America, Southeast Asia, and West Asia) and exclud-375

ing sequences labeled as egg-passaged or missing complete date annotations. For our forecasting376

analyses, we selected sequences collected between April 1, 2005 and October 1, 2019.377

Simulation of influenza A/H3N2-like HA sequences378

We simulated A/H3N2-like populations as previously described (Huddleston et al., 2020). Briefly,379

we simulated A/H3N2 HA sequences with SANTA-SIM (Jariani et al., 2019) for 10,000 generations380

or 50 years at 200 generations per year. We discarded the first 10 years of simulated data as a381

burn-in period and used the next 30 years of the remaining data for our analyses. We sampled 90382

viruses per month to match the sampling density of natural populations.383

Estimating and assigning submission lags384

We estimated the lag between sample collection and submission of A/H3N2 hemagglutinin (HA)385

sequences to the GISAID EpiFlu database (Shu and McCauley, 2017) by calculating the difference in386

GISAID-annotated submission date and collection date in days for samples collected between Jan-387

uary 1, 2019 and January 1, 2020 and with a submission date prior to October 1, 2020. We selected388

this period of time as representative ofmodern genomic surveillance efforts prior to changes in cir-389

culation patterns of influenza caused by the SARS-CoV-2 pandemic. Of the 104,392 HA sequences390

in GISAID EpiFlu, 11,222 (11%) were collected during this period with a mean submission lag of 98391
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days (∼3 months) and a median lag of 74 days. Only 11% of sequences (N=1,210) were submitted392

within 4 weeks of collection, and only 36% (N=4,057) were submitted within 8 weeks (Figure 1A,393

purple).394

We modeled the shape of the observed lag distribution as a gamma distribution using a max-395

imum likelihood fit from SciPy 1.10.1 (Virtanen et al., 2020). With this approach, we estimated a396

shape parameter of 1.76, a scale parameter of 53.18, and location parameter of 3.98. The product397

of these shape and scale values corresponded to a mean lag of 93.76 days (Figure 1A, green). To398

assign realistic submission lags to each sample in our analysis, we randomly sampled from this399

gamma distribution and calculated a “realistic submission date” by adding the sampled lag in days400

to the observed collection date. This approach allowed us to assign realistic lags to natural and sim-401

ulated populations without the biases and autocorrelations associated with historical submission402

patterns across different submitting labs.403

Based on the observed rapid submission of SARS-CoV-2 genomes during the first years of the404

pandemic, we expected that an achievable “ideal” submission lag for seasonal influenza sequences405

would have a 1-month average lag instead of the observed ∼3-month lag from the pre-pandemic406

period. Wemodeled this ideal submission lag distribution by dividing the gamma shape parameter407

by 3 to get a value of 0.59 and a corresponding mean lag of 31.25 days (Figure 1A, orange). This ap-408

proach effectively shifted the realistic gamma toward zero, while maintaining the relatively longer409

upper tail of the distribution. To assign ideal submission lags to each sample in our analysis, we410

randomly sampled from this modified gamma distribution and added the sampled lag in days to411

the observed collection date. Additionally, we required that each sample’s “ideal” lag be less than412

or equal to its “realistic” lag.413

To estimate the effect of increased global sequencing capacity associated with the response to414

the SARS-CoV-2 pandemic, we summarized the lag distribution for sequences submitted to GISAID415

EpiFlu between January 1, 2022 and January 1, 2023. During this period, global influenza circulation416

had rebounded to its prepandemic level and 26,394 HA sequences were collected. The mean and417

median submission lags during this period were 76 and 62 days, respectively, representing a trend418

toward reduced lags compared to the prepandemic era (Figure 1—figure Supplement 1).419

Phylogenetic inference420

We inferred time-scaled phylogenetic trees for HA sequences as previously described (Huddleston421

et al., 2020). Briefly, we aligned sequences withMAFFT v7.520 (Katoh et al., 2002; Katoh and Stand-422

ley, 2013) using the augur align command in Augur v22.3.0 (Huddleston et al., 2021). We inferred423

phylogenies with IQ-TREE v2.2.3 (Nguyen et al., 2014) using the augur tree commandwith IQ-TREE424

parameters of -ninit 2 -n 2 -me 0.05 and a general time reversible (GTR) model. We inferred425

time-resolved phylogenies with TreeTime v0.10.1 (Sagulenko et al., 2018) with the augur refine426

command.427

Forecasting with different forecast horizons428

We tested the effect of forecasting future influenza populations at forecast horizons of 3, 6, 9, and429

12 months (Figure 1B). Previously, we produced forecasts every 6 months starting from October430

1 and April 1 and predicting 12 months into the future (Huddleston et al., 2020). To support fore-431

casts in 3-month intervals, we produced annotated time trees for 6 years of HA sequences every432

3 months with data available up to the first day of January, April, July, and October. We produced433

these trees for each timepoint with three different lag scenarios: no lag, ideal lag, and realistic lag.434

For each scenario, we selected sequences for analysis at a given timepoint based on their collection435

date, ideal submission date, or realistic submission date, respectively. This experimental design436

produced forecasts for three lag types at each of the four forecast horizons (e.g., Figure 1B, blue,437

green, and orange initial timepoints for the 3-month forecast horizon).438

Since reliable submission dates were not available prior to April 2005, our analysis of natural439

A/H3N2 sequences spanned fromApril 1, 2005 toOctober 1, 2019. To simplify the data required for440
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these analyses, we produced forecasts of natural A/H3N2 populations with our best sequence-only441

model from our prior work (Huddleston et al., 2020), a composite model based on local branch-442

ing index (LBI) (Neher et al., 2014) and mutational load (Łuksza and Lässig, 2014). For simulated443

A/H3N2-like populations, we produced forecasts with the “true fitness” model that relies on the444

normalized fitness value of each simulated sample.445

Each forecast generated a predicted future frequency per sequence in the initial timepoint’s446

tree. As in our prior work, we calculated the earth mover’s distance (Rubner et al., 1998) between447

the predicted and observed future populations using HA amino acid sequences from initial and448

future timepoints, predicted future frequencies from the initial timepoint, and observed future fre-449

quencies from future timepoint. For the future timepoint, we used data from the “no lag” scenario450

as our truth set, regardless of the lag scenario for the initial timepoint. This design allowed us to451

measure the effect of ideal and realistic submission lags on forecast accuracy relative to a scenario452

with no lags.453

Defining clades454

Official clade definitions do not exist for all time periods of our analysis of A/H3N2 populations and455

do not exist at all for simulated A/H3N2-like populations. Therefore, we defined clades de novo for456

both population types with the same clade assignment algorithm used to produce “subclades”457

for recent seasonal influenza vaccine composition meeting reports (Huddleston et al., 2024). The458

complete algorithm description and implementation is available at https://github.com/neherlab/459

flu_clades. Briefly, the algorithm scores each node in a phylogenetic tree based on three criteria460

including the number of child nodes descending from the current node, the number of epitope461

substitutions on the branch leading to the current node, and the number of amino acid mutations462

since the last clade assigned to an ancestor in the tree. After assigning and normalizing scores, the463

algorithm traverses the tree in preorder, assigning clade labels to each internal node whose score464

exceeds a predefined threshold of 1.0. Clade labels follow a hierarchical nomenclature inspired465

by Pangolin (O’Toole et al., 2021) such that the first clade in the tree is named “A” and its first466

immediate descendant is named “A.1”. For each population type, we applied this algorithm to a467

single phylogeny representing all HA sequences present in our analysis. This approach allowed us468

to produce a single clade assignment per sequence and easily identify related sequences between469

initial and future timepoints using the hierarchical clade nomenclature.470

Estimating current and future clade frequencies471

We estimated clade frequencies with a kernel density estimation (KDE) approach as previously de-472

scribed (Huddleston et al., 2020) with the augur frequencies command (Huddleston et al., 2021).473

Briefly, we represented each sequence in a given phylogeny by a Gaussian kernel with a mean474

at the sequence’s collection date and a variance of two months. We estimated the frequency of475

each sequence at each timepoint by calculating the probability density function of each KDE at that476

timepoint and normalizing the resulting values to sum to one.477

We calculated clade frequencies for each initial timepoint in our analysis by first summing the478

frequencies of individual sequences in a given timepoint’s tree by the clade assigned to each se-479

quence and then summing the frequencies for each clade and its descendants to obtain nested480

clade frequencies. To inspect the effects of submission lags on clade frequency estimates, we481

calculated the clade frequency error per timepoint and clade by subtracting the clade frequency482

estimated with ideal or realistic lagged sequence submission from the corresponding clade fre-483

quency without lags. We compared the effects of submission lags for clades of different sizes by484

filtering clades by their frequency estimated without lags to small clades (>0% and<10%) and large485

clades (≥10%).486

To estimate the accuracy of clade frequency forecasts, we needed to calculate the predicted487

and observed future clade frequencies for each combination of lag type, initial timepoint, and488

future timepoint in the analysis. We calculated predicted future frequencies for all clades that489
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existed at given initial timepoint and lag type by first summing the predicted future frequency per490

sequence by the clade assigned to each sequence and then summing the predicted frequencies for491

each clade and its descendants. Clades that existed at any given future timepoint were not always492

represented at a corresponding initial timepoint either because the clades had not emerged yet493

or sequences for those clades had a lagged submission. For this reason, we calculated observed494

future clade frequencies in a multi-step process. First, we calculated the frequencies of clades495

observed at the future timepoint without submission lag by summing the individual frequencies of496

all sequences in each clade. Then, wemapped each future clade to its most derived ancestral clade497

that circulated at the initial timepoint by progressively removing suffixes from the future clade’s498

label until we found a match in the initial timepoint. For example, if the future timepoint had a499

clade named A.1.1.3 and the initial timepoint had the ancestral clade A.1, we would test for the500

presence of A.1.1.3, A.1.1, and A.1 at the initial timepoint until we found a match. The hierarchical501

nature of the clade assignment algorithm guaranteed that each future clade mapped directly to a502

clade at each initial timepoint and lag type. Finally, we summed the frequencies of future clades503

by their corresponding initial clades to get the observed future frequencies of clades circulating504

at the initial timepoint. We calculated the accuracy of clade frequency forecasts as the difference505

between the predicted and observed future clade frequencies.506

Data and software availability507

Sequence data are available from the GISAID EpiFlu Database using accessions provided in Supple-508

mental File S1. Source code for the analysis workflow and manuscript are available in the project’s509

GitHub repository (https://github.com/blab/flu-forecasting-delays). Supplemental data are available510

on Zenodo at DOI 10.5281/zenodo.13742375.511
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Figure 1—figure supplement 1. Distribution of submission lags in days for the pre-pandemic era
(2019-2020 in blue) and pandemic era (2022-2023 in orange). Vertical dashed lines representmean
lags for each distribution.
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Figure 1—figure supplement 2. A) Number of A/H3N2 sequences available per timepoint and lag
type. B) Proportion of all A/H3N2 sequences without lag per timepoint and lag type.
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Figure 1—figure supplement 3. A) Number of simulated A/H3N2-like sequences available per
timepoint and lag type. B) Proportion of all simulated A/H3N2-like sequences without lag per time-
point and lag type.
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Figure 2—figure supplement 1. Distance to the future per timepoint (AAs) for simulated A/H3N2-
like populations by forecast horizon and submission lag type based on forecasts from the “true
fitness” model.
Figure 2—figure supplement 1—source data 1. Distances to the future for simulated A/H3N2-like popula-
tions; see https://zenodo.org/records/13742375
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Figure 2—figure supplement 2. Optimal distance to the future per timepoint (AAs) for natural
A/H3N2 populations by forecast horizon and submission lag type based on posthoc empirical fit-
ness of the initial population.
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Figure 2—figure supplement 3. Optimal distance to the future per timepoint (AAs) for simulated
A/H3N2-like populations by forecast horizon and submission lag type based on posthoc empirical
fitness of the initial population.
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Figure 3—figure supplement 1. Clade frequency errors between simulated A/H3N2-like HA pop-
ulations with ideal or realistic submission lags and populations without any submission lag.
Figure 3—figure supplement 1—source data 1. Current and future clade frequencies for simulated A/H3N2-
like populations by forecast horizon and submission lag type; see https://zenodo.org/records/13742375
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Figure 4—figure supplement 1. Absolute forecast clade frequency errors for simulated A/H3N2-
like HA populations by forecast horizon inmonths and submission lag type (none, ideal, or realistic)
for A) small clades (<10% initial frequency) and B) large clades (≥10% initial frequency).
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Figure 4—figure supplement 2. Forecast clade frequency errors for natural A/H3N2 HA popula-
tions by forecast horizon in months and submission lag type (none, ideal, or realistic) for A) small
clades (<10% initial frequency) and B) large clades (≥10% initial frequency).
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Figure 4—figure supplement 3. Forecast clade frequency errors for simulated A/H3N2-like HA
populations by forecast horizon in months and submission lag type (none, ideal, or realistic) for A)
small clades (<10% initial frequency) and B) large clades (≥10% initial frequency).
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Figure 5—figure supplement 1. Distribution of total absolute clade frequency errors summed
across clades per future timepoint for A/H3N2 populations. We calculated the effects of interven-
tions as the difference between these values per future timepoint under the status quo (12-month
forecast horizon and realistic submission lag) and specific interventions.
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Figure 5—figure supplement 2. Improvement of clade frequency errors for simulated A/H3N2-
like populations between the status quo and realistic interventions.
Figure 5—figure supplement 2—sourcedata 1. Differences in total absolute clade frequency error per future
timepoint and clade between the status quo and realistic interventions for simulated A/H3N2-like populations;
see https://zenodo.org/records/13742375
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Figure 5—figure supplement 3. Distribution of total absolute clade frequency errors summed
across clades per future timepoint for simulated A/H3N2-like populations.
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Figure 5—figure supplement 4. Improvement of distances to the future (AAs) for A/H3N2 pop-
ulations between the status quo (12-month forecast horizon and realistic submission lags) and
realistic interventions. The effects of interventions are the differences between distances to the
future per future timepoint under the status quo and specific interventions.
Figure 5—figure supplement 4—source data 1. Improvement of distances to the future per future timepoint
for A/H3N2 populations; see https://zenodo.org/records/13742375

647

improved vaccine improved surveillance improved vaccine and surveillance
Intervention

2

0

2

4

6

8

D
iff

er
en

ce
 in

 d
is

ta
nc

e 
to

 fu
tu

re
 p

er
 ti

m
ep

oi
nt

(s
ta

tu
s 

qu
o 

- i
nt

er
ve

nt
io

n)

more accurate

less accurate

Figure 5—figure supplement 5. Improvement of distances to the future (AAs) for simulated
A/H3N2-like populations between the status quo (12-month forecast horizon and realistic submis-
sion lags) and realistic interventions. The effects of interventions are the differences between dis-
tances to the future per future timepoint under the status quo and specific interventions.
Figure 5—figure supplement 5—source data 1. Improvement of distances to the future per future timepoint
for simulated A/H3N2-like populations; see https://zenodo.org/records/13742375
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Figure 6—figure supplement 1. Improvement of optimal distances to the future (AAs) for sim-
ulated A/H3N2-like populations between the status quo (12-month forecast horizon and realistic
submission lags) and realistic interventions.
Figure 6—figure supplement 1—source data 1. Improvement of optimal distances to the future per future
timepoint for simulated A/H3N2-like populations; see https://zenodo.org/records/13742375
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