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Abstract

Accurately estimating relative transmission rates of SARS-CoV-2 variants remains
a scientific and public health priority. Recent studies have used the sample propor-
tions of different variants from genetic sequence data to describe variant frequency
dynamics and relative transmission rates, but frequencies alone cannot capture the
rich epidemiological behavior of SARS-CoV-2. Here, we extend methods for infer-
ring the effective reproduction number of an epidemic using confirmed case data to
jointly estimate variant-specific effective reproduction numbers and frequencies of co-
circulating variants using cases and sequences across states in the US from January
2021 to March 2022. Our method can be used to infer structured relationships be-
tween effective reproduction numbers across time series allowing us to estimate fixed
variant-specific growth advantages. We use this model to estimate the effective repro-
duction number of SARS-CoV-2 Variants of Concern and Variants of Interest in the
United States and estimate consistent growth advantages of particular variants across
different locations.

Introduction

As SARS-CoV-2 evolves, variants may emerge that increase in their ability to transmit
and escape acquired immunity [1]. Quantifying the observed growth advantages of SARS-
CoV-2 variants allows us to better understand biological differences between circulating
viruses [2, 3]. Relating genomic data of SARS-CoV-2 variants to epidemic surveillance
data is difficult. Although it is typical to use phylodynamic methods to analyze genetic
sequence data from epidemics, the sheer amount of data as well as challenges to describ-
ing fitness effects in phylodynamic models make these methods hard to apply to potential
differences in transmission rate among circulating variants. In order to deal with the limi-
tations of phylodynamic inference, previous studies have estimated the growth of variants
using observed frequencies in sequenced SARS-CoV-2 samples [4–7]. Such methods often
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model the frequency of variants using multinomial logistic regression [4,6], which generally
assumes that genetic variants have a fitness advantage over one another which is fixed in
time and acts as a estimate for the selective advantage of different variants at the level
of frequencies. Although a consistent increase in frequency of one variant over another is
expected to reflect differences in transmission rate, these models do not directly account
for the complicated infection and transmission dynamics which influence which variants
lead to local and regional epidemics. When dealing with competition between variants,
variants which are declining in frequency can still lead to an increasing number of infec-
tions. Similarly, growth in frequency does not necessarily entail an increase in absolute
infections.

To more fully capture epidemiological dynamics, there are methods which describe the
growth in number of infections using confirmed case, hospitalization, or death data to es-
timate changes in the effective reproduction number Rt, the average number of infections
a single infectious individual generates at a given point of time t. Although these meth-
ods are excellent for describing overall epidemic growth rates, they cannot capture the
evolutionary dynamics and fitness changes between different variants since they generally
assume the population dynamics are described by a singular Rt trajectory [8, 9], which
internally is unrelated to the genetic and phenotypic composition of the population. This
is of particular importance in the analysis of an epidemic in which a dominant variant
may be declining overall, but a minor variant is rapidly increasing in frequency and ab-
solute prevalence, creating the potential for a secondary wave of infections that may go
unnoticed at first glance. To overcome this we require models that partition case counts
into contributions from different variants to estimate variant-specific effective reproduction
numbers.

Ongoing SARS-CoV-2 evolution serves as an important example of this phenomenon. After
initial emergence in late 2020, over the course of 2021, Variant of Concern (VOC) and
Variant of Interest (VOI) viruses spread throughout the world and replaced existing viral
diversity. Multiple WHO designated [10] VOC and VOI viruses circulated in spring and
early summer 2021, but this diversity was largely replaced by Delta variant viruses which
became globally dominant in late summer 2021. Subsequently, Delta variant viruses were
rapidly eclipsed by Omicron variant viruses after Omicron’s emergence in October 2021 [11].
Although it is now clear that Delta’s spread was driven by greater transmissibility than
other co-circulating variants and Omicron’s rapid spread was primarily driven by escape
from existing population immunity, rigorous estimates of the relative fitness of circulating
variant viruses are of interest. Here, we develop a joint epidemiological and population
genetic model of SARS-CoV-2 to assess the growth of different variants over time and
infer differences in the effective reproduction numbers of SARS-CoV-2 variants as well as
underlying frequency of variants under noisy sampling. We apply this model to sequence
data and case count data from the United States between January 2021 and March 2022
to estimate differences in transmissibility between circulating VOC and VOI viruses.

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2021.12.09.21267544doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267544
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results

Model Overview We implement two models of variant-specific effective reproduction
number based on a renewal equation framework of epidemic spread (see Methods), a fixed
growth advantage model and a time-varying growth advantage model (growth advantage
random walk — GARW). These models assume that new infections are determined by
two essential parameters: the effective reproduction number which determines the average
number of secondary infections generated over the course of a primary infection and the
generation time which determines length of infection and relative transmissibility over
the course of the infection. In both models, variants generate infections independently
of one another, but the sum of infections across variants is observed through surveillance
data like case counts or hospitalizations. In order to disaggregate infections by variant we
rely on frequency estimates which are informed by counts of sequenced samples using a
Dirichlet-multinomial likelihood.

The transmission of each variant is modeled using a deterministic renewal equation which
allows for realistic delay distributions between infection, transmission, and detection as
a case. With this approach, we need only to determine the initial number of infections
and the variant-specific effective reproduction numbers to estimate the frequency of each
variant in the population over time. Due to this, the differences between the two models
is determined in how each parameterizes variant-specific effective reproduction numbers.

Each variant in the fixed growth advantage model has its own multiplicative growth advan-
tage which acts as a scaling to a single non-variant Rt trajectory (Fig. 1). With this fixed
growth advantage model, we parameterize fitness of variants at the level of transmission by
inferring variant-specific effective reproduction numbers. This differs from previous work
on variant effective reproduction numbers which often parameterize these differences by
assuming logistic growth of frequencies [12, 13]. Though, in general, our method allows
one to estimate variant growth in the frequency domain in terms of effective reproduction
number differences, we find that assuming a fixed advantage for variants results in esti-
mates which are qualitatively similar to the aforementioned models which assume fixed
growth advantages in frequency growth. This model provides the benefit of the inferred
parameters being interpretable as scaling the effective reproduction number.

In cases where a singular fixed growth advantage is insufficient to describe the data, we
extend our model to allow time-varying growth advantages (Fig. 2). In the GARW model,
we introduce a variant Rt which infers the effective reproduction number of each variant as
having a time-varying growth advantage relative to a base variant to allow for more complex
relationships between the growth rates of different variants over time. Each variant effective
reproduction number is parameterized using an exponentiated spline basis, so that the log
effective reproduction numbers are described by a linear basis expansion. Therefore, we
can use smoothing priors on the coefficients of these basis expansions to regularize the
inferred time-varying growth advantages of each variant.

We demonstrate these models on data from Washington State with results from the fixed
growth advantage model shown in Figure 1 and results from the GARW model is shown in
Figure 2. Further example model output for California, Florida, Michigan and New York
is provided in the supplemental appendix in Figures S1–S8.
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Figure 1. Fitting the fixed growth advantage model to Washington state data. (a)
Posterior expected cases without weekly seasonality in reporting rate. Gray bars are observed daily
case counts, while blue lines are model inferences with 50%, 80% and 95% credible intervals. (b)
Posterior expected cases by variant. Each colored line is a different variant with intervals of varying
opacity showing 50%, 80% and 95% credible intervals. (c) Posterior variant frequency against
observed sample frequency. Dots represent observed weekly frequencies in sequence data and
each colored line is a different variant with shaded CIs. (d) Variant-specific effective reproduction
numbers. (e) Posterior growth advantage by variant.

Estimating growth advantages in the United States We estimate the effective
reproduction numbers of SARS-CoV-2 Variant of Concern and Variant of Interest viruses
in the United States using daily confirmed case counts obtained from the US CDC and
sequence counts annotated by variant obtained from the Nextstrain-curated ‘open’ dataset
[14] (see Data and code accessibility). Each sequence is labeled with a Nextstrain clade
[14], and we partition clades into variants based on WHO VOC/VOI designation [10].
Nextstrain clades annotated in the fashion correspond to a subset of lineages designated
by Pango [15]. We consider the following 8 variants which have been flagged as variants
of interest or concern and which circulated in the US during 2021 and early 2022: Alpha
(Pango lineage B.1.1.7, Nextstrain clade 20I), Beta (lineage B.1.351, clade 20H), Gamma
(lineage P.1, clade 20J), Delta (lineage B.1.617.2, clade 21A), Epsilon (lineage B.1.427/429,
clade 21C), Iota (lineage B.1.526, clade 21F), Mu (lineage B.1.621, clade 21H) and Omicron
(lineage B.1.1.529, clade 21M). We use a cutoff of 2000 sequences from a particular variant
across states to determine threshold of circulation. This eliminates Eta, Theta, Kappa and
Lambda from consideration and groups these variants along with ancestral ‘non-variant’
viruses into a single ‘other’ category. We use a cutoff of 12,000 sequences from a particular
state as basis for including the state in the dataset. This cutoff left 34 states available for
inference.

In order to inform our estimates of the frequency of genetic variants, we divide sequences
from each state into daily sample counts for each of the 8 variants above and a single
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Figure 2. Fitting the GARW model to Washington state data. (a) When assessing
epidemic growth rates, we often compute a single effective reproduction number trajectory which is
effectively an average over the all viruses in population. We show the posterior smoothed incidence
over time as well as the average effective reproduction number. Gray bars are observed daily case
counts, while black intervals are the posterior 50%, 80% and 95% credible intervals. (b-d) Epidemics
are made of different variants which may differ in fitness. We show the posterior variant-specific
smoothed incidence (b) as well as the average and variant-specific effective reproduction numbers
(c-d). (e-f) Using case counts alongside sequences of different variants allows us to understand the
proportion of different variants in the infected population.

‘other’ category. We then use these counts alongside the daily case counts in each state
to estimate the effective reproduction number for individual variants using the GARW
Rt model. We find that overall there appears to be consistent trends in the effective
reproduction numbers of variants across the United States (Fig. 3). We see that early
VOCs Alpha and Gamma initially had Rt > 1, but saw Rt decline below one across most
states in April and May respectively. Upon arrival in May, Delta shows significantly higher
values of Rt that don’t decline below 1 until September. Initial Omicron Rt in November
and December is significantly greater than earlier variants, but declines below 1 in late
January and early February after driving large epidemics across states.

In order to transform these observed trends to a variant-specific growth advantage, we
rely on our fixed growth advantage model which infers a fixed variant-specific growth
advantage as a multiplicative scaling of the effective reproduction number. Using the fixed
growth advantage model, we find that most variants identified share some positive growth
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Figure 3. Inferred effective reproduction numbers from GARW model in 34 states
show consistent trends of variants across states. Each panel shows a series of 34 trajectories,
representing Rt through time for this variant across states. Shaded intervals show 50%, 80% and
95% credible intervals.

advantage except for Epsilon (Fig. 4). Further, these growth advantages appear to be
consistent between the states analyzed. These results from the fixed growth advantage
model are consistent with a multinomial logistic growth analysis (Fig. S9). Alpha, Beta,
Gamma and Iota show modest growth advantage over largely ancestral ‘other’ viruses,
while Mu and Delta show larger growth advantages. Mu has previously been associated
with increased neutralization resistance to convalescent serum [16], and its advantage of
1.2–1.8 across states is perhaps partially driven by immune escape. Despite this, Mu’s
growth advantage whether from immune escape or otherwise was insufficient to outcompete
Delta in any of the states analyzed. Delta’s advantage of 1.6–2.0 across states is particularly
significant. Given this large growth advantage was evident in May (Fig. 3), Delta’s rapid
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rise in frequency and sizable epidemic should have been clear at the time. The significant
growth advantage observed in Delta is recapitulated in other studies including Obermeyer
et al. [6] and Vöhringer et al. [17]. In the case of Omicron, we see significant variability in
the growth advantage which spans 2.0–4.4. This large variability could be motivated by
multiple factors including state-level variation in population immunity.

Figure 4. Using fixed growth advantage model, we infer growth advantages for 8
variants in 34 US states. (a) Growth advantages for variants of concern. Each point is the
median growth advantage inferred from a single state. (b) Same as (a) but with state medians
visualized by variant.

To better address the potential for change in variant growth advantage over time, we use
our GARW model on the same data set to assess how variants increased or decreased in
their growth advantages over time. We see growth advantages which are overall consistent
with our fixed growth advantages, but are clearly able to discern time periods of variable
growth advantage (Fig. 5). We observe oscillations in Delta’s growth advantage from June
to January. For Omicron, we also observe a large variability in the time-varying growth
advantage though there appears to be an upward trend after December.
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Figure 5. Estimating variant growth advantages in 34 states using GARW model.
Each panel shows a series of 34 trajectories, representing ∆v through time for variants across
states. Histograms show the distribution of the variant’s growth advantage over time. Shaded
intervals show 50%, 80% and 95% credible intervals.

Discussion

We find that a model that partitions case count data based on variant frequency in se-
quence data works well to describe SARS-CoV-2 variant dynamics in the United States
from January 2021 to March 2022. In each state, spring waves in 2021 were primarily
driven by the arrival of Alpha, Beta, Gamma, and Iota variants. However, as these waves
subsided, the arrival of Delta with a significantly greater growth advantage, drove a large
wave in summer 2021. Omicron’s arrival in November 2021 drove a much larger wave
in January/February 2022 due to significant immune escape of the variant. Importantly,
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we can directly estimate a variant-specific Rt, which for example, shows that Delta was
a growing rapidly sub-epidemic across states in May, before its impact was noticeable in
overall case counts, and that Omicron’s initial Rt was estimated to be between 2 and 3 in
December 2021, presaging a substantial Omicron driven wave.

We imagine that this approach could provide early warning of imminent epidemics driven
by low-frequency but highly transmissible variants and generally serve to identify newly
arising variants that show significant transmission advantages and that may drive epi-
demics. Indeed, we have continually updated estimates of spread of Omicron and Omicron
sublineages BA.2, BA.2.12.1, BA.4 and BA.5 using this method and shared results in real-
time online at github.com/blab/rt-from-frequency-dynamics. As an example, we estimate
the growth advantages of Omicron sublineages BA.2, BA.2.12.1, BA.4, and BA.5 during
their rise in the United States in Figure 6. These real-time estimates have served as a basis
for reporting to public health, policy makers and the general public.

Figure 6. Estimating growth advantages of Omicron sublineages relative to BA.1 in 33
US states. (a) Time-varying growth advantages for BA.2, BA.2.12.1, BA.4, and BA.5 relative to
BA.1 using the GARWmodel. Histograms denote the distribution of the variant growth advantages
across all times. (b) Fixed growth advantages for Delta and BA.2 relative to BA.1 using fixed
growth advantage model. (c) Same as (b) but with state medians visualized by variant.

With this mind, this work is not without limitations. The underlying transmission model
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is deterministic and does not account for demographic stochasticity and over-dispersion
in transmission which has been documented in SARS-CoV-2 transmission [18]. As with
all methods which depend on parameterizations of the generation time, misspecification of
the generation time can be lead to biased estimates of the effective reproduction number
or growth advantages [19]. In order to quantify this source of error, we derive an equation
relating our inferred growth advantages, the epidemic growth rates, and the mean and
standard deviation of the generation time distribution. This source of error can be partially
combated by converting effective reproduction numbers to their corresponding epidemic
growth rates under the generation time assumption (see Supplement Appendix). There
is also a general need to account for biases in the case data which may not faithfully
describe the infection dynamics of SARS-CoV-2 due to changes in case ascertainment rate,
as possibly caused by differences in testing intensity, infection severity among other reasons.
However, we suspect that case ascertainment remained largely consistent from January to
∼Dec 2021, even if it declined with the advent of widespread circulation of Omicron.

We do not explicitly model additional introductions of variants outside a fixed seeding
period which can play an important role in variants establishing themselves in different ge-
ographies at low infection counts and could bias our estimates of the effective reproduction
number if not properly accounted for [8,20]. However, we expect once local transmission is
predominant that estimated Rt will reflect characteristics intrinsic to the variant in the lo-
cal geography. Using hierarchical models of variants to jointly estimate growth advantages
and pool estimates across locations could be a useful approach for analyzing consistency
between growth advantages of variants geographically and beginning to combat the issue
of multiple introduction events. That said, fully combating this issue would likely involve
incorporating demographic stochastic into the model at the level of transmission and likely
reduce the speed of inference, scalability, and limit available inference options.

Although there are several ways to improve these methods and expand their applicability,
our current model does have utility as a way of assessing early claims of variant advantages
and is able to show there is evidence of consistent variant advantages shared between
different geographies. Additional work is needed to attribute these inferred advantages to
biological mechanisms like immune escape and transmissibility [1]. Modeling the effect of
changes in other factors such as contact patterns or non-pharmaceutical interventions can
be done with the current formulation of the model by including quantities of interest as
features in the Rt model as in Sharma et al. [21].

In general, the development of methods which can account for fitness differences between
genetic variants is much needed in order for proper epidemic preparedness. Our method
provides one way of analyzing the growth rates of SARS-CoV-2 variants without directly
parameterizing how variants grow in terms of frequency by instead focusing on differences
in the effective reproduction number. In cases where the assumption of a fixed growth
advantage is warranted and justified, our fixed growth advantage model provides a way of
quantifying variant growth advantages at the level of transmission which allow for various
delays between infection, transmission, and sampling. When a fixed growth advantage is
unjustified, our GARW model can be used infer trends in variant growth advantages over
time. Currently, our GARW model can be used to assess claims of growth advantages of
variants and their sublineages.
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This method can be extended further to analyze the role of specific constituent mutations
defining a variant or lineage in changing the effective reproduction number of specific
variants directly, similar to the model formulation of Obermeyer et al. [6]. With this in
mind, our method potentially has use for evolutionary forecasting of variants for SARS-
CoV-2 as we inform the frequency dynamics of co-circulating variants by describing their
population-level transmission dynamics [22]. Extending the model further towards this aim
will likely require methods for quantifying various sources population immunity as well as
escape potential for circulating and emerging SARS-CoV-2 variants as a way to explain
these growth advantages and their underlying mechanisms using data. With these issues in
mind, surveillance of variants should be folded into standard epidemiological surveillance
as knowledge of variant-specific growth advantages will be useful for forecasting growth
of cases, hospitalization, deaths, vaccine effectiveness among other key metrics related to
epidemic response.

Further, as case surveillance for COVID-19 has decreased in reliability after 2022, we
note that this method is still applicable using other proxies for infection incidence such as
hospitalization data or wastewater testing. However, even in the absence of these forms of
data, our approach highlights the distinction between relative fitness of viral variants and
their overall transmission rates allowing us to attribute changes in incidence to selection
and variant turnover.

Methods

Using sampled counts of sequences from different variants as well as case data, we can
jointly infer the proportion of variants in the larger population and the effective reproduc-
tion number of these variants.

Modeling the infection process We estimate the effective reproduction number of
competing variants using a deterministic renewal equation based framework. These equa-
tions arise as the expectation of a Bellman-Harris branching process [23] which is a type
of Branching process in which offspring generation depends on the age of infection.

The renewal equation framework allows one to model infection processes in a way that
is mathematically equivalent to standard epidemic models like the SEIR compartment
model [24], but in a way that can be more suitable for estimating the effective reproduction
number and forecasting using arbitrary generation times. This renewal equation can be
written as

I(t) = Rt

∫ t

0
I(τ)gt−τdτ, (1)

where g is the generation time. In addition, we also include onset distribution o for
symptoms which allows us to compute the prevalence, or the number of active infections,
as

P (t) =

∫ t

0
I(τ)ot−τdτ. (2)

We bin the generation time g and the onset distribution o to the nearest day, so that we
estimate the daily incidence I(t) and prevalence P (t) as
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I(t) = Rt
∑
τ<t

I(τ)gt−τ (3)

P (t) =
∑
τ<t

I(τ)ot−τ (4)

We parameterize all variants excluding Delta and Omicron as having generation time g as
having Gamma distribution with mean 5.2 and standard deviation 1.2 in line with the es-
timates of [25]. Due to observed shorter serial intervals for Delta and Omicron, we instead
use a mean generation time of 3.6 for Delta and a mean of 3.2 for Omicron [26–28]. For
all variants, we parameterize the onset time o as having LogNormal with mean 6.8 and
standard deviation 2.0 in line with [29]. We note that the choice of generation time can
have strong effects on the inferred effective reproduction number and growth advantage
under renewal equation model. The effect of generation time choice is quantifiable as shown
in Figures S10, S12 and Supplemental Appendix (see Relating epidemic growth rates to
relative effective reproduction numbers). Though converting the posterior effective repro-
duction numbers to epidemic growth rates may be more robust to changes in generation
time as can be seen in Figure S11.

This method of using delays to represent lags between infection and observation can be
extended to use multiple delays to better fit other data sources such as hospitalization or
deaths.

Modeling variant frequencies In the case of V variants co-circulating in a population,
we denote incidence of variant v at time t as Iv(t) and prevalence as Pv(t). In this case,
we can compute the frequency of variant v in the population at time t under the infection
process outlined above as

fv(t) =
Pv(t)∑

1≤v≤V Pv(t)
. (5)

Since we’ve defined the frequency in terms of the transmission dynamics, the variant-
specific effective reproduction numbers Rt,v and initial infections Iv(0) determine the fre-
quency dynamics directly. Therefore, we do not need to impose a parametric form on fv(t)
directly as in other models of variant frequency.

Observation process for cases As most case time series in the United States and
elsewhere exhibit day of the week biases, we estimate a reporting rate which varies by day
of the week, so that ρ = (ρ1, . . . , ρ7) as in [9]. We then define the observation likelihood
using a negative binomial distribution as follows

Yt ∼ NegBinom(ρ[t]P (t), α), (6)

where [t] = t mod 7+1, α is an over-dispersion parameter relative to the Poisson distribu-
tion and NegBinom(µ, α) is the negative binomial distribution with mean µ and variance
µ + αµ2. In the case of multiple variants, we use P (t) =

∑
1≤v≤V Pv(t). The negative

binomial likelihood is often used for modeling observation noise for count data such as
epidemic time series which are often over-dispersed relative to a Poisson distribution. In

12

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2021.12.09.21267544doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267544
http://creativecommons.org/licenses/by-nc-nd/4.0/


order to account for zero-counts due to a lack of observations, we also include zero-inflation
on the case counts.

Observation process for variant annotations Suppose we’re tracking the growth of
V variants, our data for a given day t takes the form of daily counts Ct = (Ct,1, . . . , Ct,V )
of sequences of each variant with daily total Nt =

∑
1≤v≤V Ct,v. We then assume that the

likelihood of observing these counts of each variant is described by a Dirichlet-multinomial
distribution, so that

Ct ∼ DirMultinomial
(
Nt, f(t) ·

(
1 − ξ

ξ

))
, (7)

given variant frequencies f(t) = (f1(t), . . . , fV (t)) and over-dispersion parameter 0 < ξ < 1.
Here, we use a Dirichlet-multinomial distribution to account for possible over-dispersion
in the counts relative to the standard Multinomial distribution.

Basis expansions of log effective reproduction numbers Instead of inferring Rt
directly, we parameterize the log effective reproduction number using a basis of cubic
splines. Each basis spline is written as a column in the design matrix X, so that

lnRt = Xβ, (8)

where the β are to be estimated to parameterize the effective reproduction number. We
then use locally adaptive smoothing of order one with a Laplace prior on the coefficients β
to promote smoothness on the inferred Rt trajectory [30]. This method also allows one to
use other predictors such as vaccination proportion, intervention indicators, temperature,
humidity, etc.

Modeling variant-specific effective reproduction numbers To model the variant-
specific reproduction numbers, we can infer individual independent effective reproduction
number trajectories for each variant

lnRt,v = Xβv, (9)

where each variant v gets its own vector of parameters βv in this model. We use the same
prior structure as above to promote smoothness on inferred trajectories.

Modeling variant-specific growth advantages In order to use our model to infer
growth advantages for specific variants, we can instead parameterize the effective repro-
duction numbers as

lnRt,v = Xβ + δv, (10)

where the parameters β are shared between all variants and δv is the log-scale variant-
specific growth advantage of variant v. We consider ∆v = exp(δv) to be the variant-specific
growth advantage which can be seen in Figure 4. This model is referred to as the “fixed
growth advantage model” throughout the paper.
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Estimating time varying growth advantages In reality, the growth advantage of
a variant may vary in time due to factors like cross-immunity between variants, overall
immune escape, etc. This can additionally occur under variant generation time misspeci-
fication [31].

To combat these issues, we extend our model to allow for time-varying growth advantages.
We consider a growth advantage random walk model (GARW) in which the time-varying
variant growth advantage δt,v relative to a chosen “base” variant is modeled as a spline
whose coefficients βv have a Laplace Random Walk prior

lnRt,base = Xβbase

δt,v = Xβv

lnRt,v = lnRt,base + δt,v.

This model is referred to as the GARW model throughout the paper and can be seen in
Figure 2

Estimating an average effective reproduction number for an epidemic Given
variant-specific effective reproduction numbers Rt,v and the frequency of variants in the
population fv(t), we define the average effective reproduction number to be

Rave
t =

∑
1≤v≤V

Rt,vfv(t), (11)

which is the sum of the variant-specific effective reproduction numbers weighted by their
frequency. This quantity can be seen in Figure 2.

Priors for Bayesian Inference For both models, we provide a Laplace random walk
prior on the spline coefficients β with scale parameter γ which itself has a HalfNormal(0, 0.1)
prior distribution. In the fixed growth advantage model, only a baseline Rt trajectory is
parameterized by β and the variant advantages δv are given a Normal(0, 1) prior. For
the GARW model, the variant growth advantage spline coefficients are modeled with a
Laplace random walk with scale parameter γδ which has HalfNormal(0, 0.01) prior distri-
bution. The initial infected individuals for each variant have a uniform prior between 0
and 300,000. The weekly reporting rates ρ[t] each follow a Beta(5, 5) prior, and the case
observation over-dispersion is given a HalfNormal(0, 0.05) prior on α

1
2 . Finally, the over-

dispersion parameter ξ is given a Beta(1, 99) prior to penalize high levels of over-dispersion
in sequencing.

Inference The model is implemented in NumPyro [32] in Python and approximate
Bayesian inference was conducted using Stochastic Variational Inference [33] using the
ADAM optimizer [34] with a learning rate of 0.01. For the analyses presented, all models
are fit using a full-rank Gaussian variational distribution / Multivariate Normal autogu-
ide as implemented in NumPyro [32] which approximates the posterior (with appropriate
constraints on the individual parameter spaces) as a multivariate normal distribution.

Models for each individual state in the United States variants data set were fit for 60,000
iterations and 3000 posterior samples were produced under both the fixed growth advantage
model and the GARW model.
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Data and code accessibility

Case counts and sequence data was obtained March 26, 2022. Case count data was obtained
from the US CDC using the ‘United States COVID-19 Cases and Deaths by State over
Time’ dataset available from data.cdc.gov. Sequence data including date and location
of collection as well as clade annotation was obtained via the Nextstrain-curated ‘open’
dataset [14] that pulls from sequences shared to NCBI GenBank. Sequence metadata
is available from data.nextstrain.org. Clades in this dataset are assigned via Nextclade
annotation [35]. Here, we subsetted to sequences with specimens collected from the USA
between January 1, 2021 and March 1, 2022. We additionally filtered to sequences with
known collection date, assigned Nextstrain clade and dropped samples that were flagged
as ‘bad’ by Nextclade QC. This subsetting resulted in 1,906,759 sequences for analysis.
However, we reduced dataset to just the 34 states with more 12,000 sequences available in
this timeframe. Doing so reduced the full dataset to 1,541,099 sequences for analysis.

Derived data of sequence counts and case counts, along with all source code used to analyze
this data and produce figures is available via the GitHub repository github.com/blab/rt-
from-frequency-dynamics.
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Figure S1. Fitting the GARW model to California data.

Figure S2. Fitting the fixed growth advantage model to California data.
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Figure S3. Fitting the GARW model to Florida data.

Figure S4. Fitting the fixed growth advantage model to Florida data.
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Figure S5. Fitting the GARW model to Michigan data.

Figure S6. Fitting the fixed growth advantage model to Michigan data.
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Figure S7. Fitting the GARW model to New York state data.

Figure S8. Fitting the fixed growth advantage model to New York state data.
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Supplemental Results

Relationship to multinomial logistic regression

Other papers have tried to infer growth advantages of variants from sequence data alone,
we show that the multinomial logistic regression model typically used in these analysis is
roughly equivalent to our fixed growth advantage model, but that inferring relative effec-
tive reproduction numbers between variants using multinomial logistic regression requires
additional restrictions on the generation time. Multinomial logistic regression typically
models the probability of a given observation belong to class v at time t as

fv(t) =
pv exp(βvt)∑

1≤u≤V pu exp(βut)
. (12)

For our purpose, we can assume this probability is equivalent to the true frequency of
variant v in the population and in this case, pv is considered to be related to the prevalence
on variant v in the population at t = 0 and βv can be considered to be the growth advantage
relative to a pivot class u∗ which has βk∗ = 0. In order to see the connection between the
above model and ours, we return to the original renewal equation of the form

I(t) = Rt

∫ t

0
I(t− τ)g(τ). (13)

Assuming that g is a point mass at a mean generation time Tg, we have that

I(nTg) =

(
n∏
i=1

RiTg

)
I(0). (14)

Assuming that there are several variants following these same dynamics, we have that the
frequency of a given variant v can be written as

fv(nTg) =
Iv(nTg)∑

1≤u≤V Iu(nTg)
. (15)

If we assume a constant growth advantage as in our model, we then have that Rt,v = ∆vRt,
so that

fv(nTg) =
∆n
v Iv(0)∑

1≤u≤V ∆n
uIu(0)

. (16)

Writing ∆v = exp(δv) and t = nTg, allows us to see that

fv(t) =
Iv(0) exp( δvTg t)∑

1≤u≤V Iu(0) exp( δuTg t)
. (17)

By fixing one pivot class so that Iu∗ = 1 and δu∗/Tg = 0, we can identify our model with
the multinomial logistic regression by relating the parameters as

δv = βvTg (18)
Iv(0) = pv. (19)

S6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 18, 2024. ; https://doi.org/10.1101/2021.12.09.21267544doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.09.21267544
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S9. Estimating variant growth advantages in various states using Multinomial Logistic
Regression model assuming generation time Tg = 5.2. (a) Growth advantages visualized by state.
(b) Same as (a) but grouped by variant.

This shows that the multinomial logistic regression functions similarly to our fixed growth
advantage model except with the additional assumption that the generation time is a point
mass at Tg. This assumption additionally allows us to relate the epidemic growth rate r and
the effective reproduction number as R = exp(rTg) [36]. Therefore, by further assuming
that the variant infections are exponentially growing with rates rv, we can then identify
βv = rv − ru∗ . This means that the relative effective reproduction number for any two
variants can be written as

ln

(
Rt,v
Rt,u

)
= (βv − βu)Tg.
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Relating epidemic growth rates to relative effective reproduction numbers

An important relationship of interest is between the epidemic growth rate of an epidemic
and its effective reproduction number. In the case of our analysis, we are particularly
interested in the effect of generation time assumptions on estimated variant-specific effec-
tive reproduction numbers. First, notice that the effective reproduction number and the
epidemic growth rate of an epidemic are related by

Rt =
1∫∞

0 exp(−rτ)g(τ)dτ
=

1

Mg(−r)

according to the Lotka-Euler equation [36] where r is the epidemic growth rate and Mg is
the moment-generating function of the generation time g.

This allows us to write the relative reproduction number of two variants v and u as a
function of their epidemic growth rates, so that

Rt,v
Rt,u

=
Mg(−ru)

Mg(−rv)
.

We’ll consider three common generation time assumptions. First, we consider the case
where the generation time is a point mass at Tg. In which case, Mg(−r) = exp(−rTg) and
we recover the relationship

Rt,v = exp(rvTg).

In this case, the relative effective reproduction number will depend on only the difference
between the epidemic growth rates and therefore, is commonly used when converting esti-
mated growth advantages to relative reproduction numbers in the case of logistic growth
models.

Second, we consider the case where the generation time is an exponential distribution with
mean Tg. This assumption is often implicit and common in models of infectious diseases
such as ODEs and their stochastic variants. Using the corresponding moment-generating
function, we see that

Rt,v = 1 + rvTg

Next, we consider the Gamma distributed generation times with mean Tg and standard
deviation s. This is often used in models of infectious diseases via the chain trick in which
multiple compartments are chained together to obtain non-exponential generation times
or infectious periods. Re-parameterizing the Gamma distribution in terms of its mean and
standard deviation and using its moment generating function, we have that

Rt,v =

(
1 + rv

(
s2

Tg

))T 2
g /s

2

.

From this equation, we can see that increases in the mean of the generation time of v leads
to decreasing estimates of Rt,v during epidemic decline (rv < 0) and increased estimates
during epidemic growth (rv > 0) assuming rv and s are fixed. Additionally, increases in
the standard deviation will generally lead to lower inferred variant advantages. This effect
is also visualized in Figure S10.
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Variant growth-advantages are sensitive to generation time In the case where we
have two variants u, v with Gamma-distributed generation times with means Tu, Tv and
standard deviations su, sv respectively, we can then write the relative effective reproduction
number of v over u as

Rt,v
Rt,u

=

[
1 + rv

(
s2v
Tv

)]T 2
v /s

2
v

[
1 + ru

(
s2u
Tu

)]T 2
u/s

2
u
.

It follows that increases in the mean of the generation time of v leads to decreasing in-
ferred variant advantages during epidemic decline and increased advantages during epi-
demic growth when all quantities are fixed. On the other hand, increases in the standard
deviation will generally lead to lower inferred variant advantages.

Taking a logarithm, we can also evaluate the sensitivity of our inferred growth advantages
from our fixed growth advantage model with respect to the generation time assuming it is
Gamma distributed as

δv = ln

(
Rt,v
Rt,0

)
=

(
T 2
g

s2

)
ln

1 + rv

(
s2

Tg

)
1 + r0

(
s2

Tg

)
 .

As the log of the relative effective reproduction number, the behavior here is analogous
to that discussed above when the mean Tg and standard deviation s are changed. This
effects of varying mean and standard deviation are illustrated in Figure S12. Although the
effective reproduction number and the growth advantage appear to have strong dependence
on generation time parameters, we find that the epidemic growth rate r is more robust to
changes in generation time (see Figure S11).

The cases of exponential and Gamma-distributed generation times highlight that for non-
deterministic generation times there is no guarantee that the relative effective reproduction
number depends on only the difference in epidemic growth rates. In fact, these estimates
based on the deterministic generation times correspond to the case in which the stan-
dard deviation shrinks zero, they are likely overestimates of variant advantages given the
observed variation in the serial interval of SARS-CoV-2 infections.

Fixed growth advantages become time-varying under generation time misspec-
ification We’ll now consider the case where there is a true fixed-variant growth ad-
vantage. Suppose for a two-variant system that δ is the constant (log) growth advan-
tage of the variant virus over the wildtype under the variant generation time gT , so that
δ = ln

(
RgTt,v/R

gT
t,wt

)
. Here subscripts denote the generation time used when computing Rt.

Under the misspecified variant generation time gM , we can then write the inferred growth
advantage as

δM = ln

(
RgMt,v
RgTt,wt

)
= ln

(
RgMt,v
RgTt,v

)
+ δ.

In general, the term inside the log is non-constant meaning that fixed variant growth advan-
tages under one generation time become non-constant under generation time specification.
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Figure S10. Sensitivity of effective reproduction number to changes in generation
time. (a) We vary the mean of Omicron generation time keeping a constant standard deviation
1.2 and plot against effective reproduction number estimates for Omicron in Washington state on
February 1st, 2022 using our GARW model. (b) The same as (a), but we instead vary the standard
deviation of Omicron generation time keeping a constant mean 3.1.

Figure S11. Sensitivity of epidemic growth rates to changes in generation time. (a)
We vary the mean of Omicron generation time keeping a constant standard deviation 1.2 and plot
against exponential growth rates for Omicron in Washington state on February 1st, 2022 using our
GARW model and assuming a Gamma-distributed generation time. (b) The same as (a), but we
instead vary the standard deviation of Omicron generation time keeping a constant mean 3.1.
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Figure S12. Sensitivity of growth advantages to changes in generation time. (a) We vary
the mean of Omicron generation time keeping a constant standard deviation 1.2 and plot against
exponential growth rates for Delta in Washington state on July 1st, 2021 using our fixed growth
model. (b) The same as (a), but we instead vary the standard deviation of Omicron generation
time keeping a constant mean 3.2.
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