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Abstract

During the COVID-19 pandemic, SARS-CoV-2 variants drove large waves of infec-
tions, fueled by increased transmissibility and immune escape. Current models focus
on changes in variant frequencies without linking them to underlying transmission
mechanisms of intrinsic transmissibility and immune escape. We introduce a frame-
work connecting variant dynamics to these mechanisms, showing how host population
immunity interacts with viral transmissibility and immune escape to determine rel-
ative variant fitness. We advance a selective pressure metric that provides an early
signal of epidemic growth using genetic data alone, crucial with current underreport-
ing of cases. Additionally, we show that a latent immunity space model approximates
immunological distances, offering insights into population susceptibility and immune
evasion. These insights refine real-time forecasting and lay the groundwork for research
into the interplay between viral genetics, immunity, and epidemic growth.

Introduction

The COVID-19 pandemic was marked by the successive emergence of SARS-CoV-2 variant
viruses, driving repeated epidemics globally [1, 2]. While these repeated large waves oc-
curred with the emergence of novel variants, the mechanism driving these variants’ success
changed over time. The spread of early variants such as Alpha, Beta, Gamma and Delta
were largely driven by increases in intrinsic transmissibility [3]. The Omicron variant
showed substantial immune escape [3] and subsequent derived lineages within Omicron
including XBB, EG.5.1 and JN.1 appear to be driven by immune escape as evidenced
through molecular studies of neutralization using human sera [4–7]. Since 2022, there
has been repeated replacement by subsequent Omicron-derived lineages. This rapid viral
population turnover is consistent with antigenic evolution and is observed in other viruses
such as seasonal influenza [8], although SARS-CoV-2 currently remains an outlier in terms
of pace of its evolution [9]. This transition from transmissibility-driven to immune escape-
driven success is a consequence of the interplay between population immunity and variant
fitness.

With the increased temporal and geographical scale of sequencing alongside a detailed
genetic nomenclature [10] and bioinformatic tools for lineage assignment [11,12], we have
gained more data for SARS-CoV-2 than for other circulating viruses giving a unique
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opportunity for insight into its evolution. Several models of variant frequency have been
developed to estimate the fitness of emerging SARS-CoV-2 variants [13–18]. These models
estimate the relative fitness (or selective advantage) of circulating variant viruses from their
frequency in sequencing data, typically represented by counts of variant sequences over
time within a geographic region. Relative fitness in these models is often assumed to be
constant and intrinsic to the variant of interest. However, this may be an oversimplification
of the transmission process.

It has been shown that these transmission advantages differ geographically and tempo-
rally, suggesting that variant transmission advantages are not necessarily fixed and may
be informed by within-region population differences [15, 19]. In fact, heterogeneity in
transmission advantages may be well explained by regional differences in immune struc-
ture as Dadonaite et al. [20] show deep mutational scanning estimates of immune escape
are well correlated with estimated variant growth advantages. Existing models that allow
variant transmission advantages to change in time generally do not have a mechanistic
underpinning for why transmission advantages exist and vary geographically and tempo-
rally [15, 16]. This lack of mechanistic grounding limits our ability to accurately predict
variant dynamics, especially in diverse geographic regions with varying levels of population
immunity.

In response to this gap, we introduce a novel framework that links variant dynamics di-
rectly to transmission mechanisms using compartmental models of infectious diseases. By
modeling both intrinsic transmissibility and immune escape, we explain how shifts in pop-
ulation immunity shape the relative fitness of viral variants and select for immune escape
over intrinsic transmissibility with increasing past exposure. Furthermore, including these
mechanisms suggests that relative fitness varies in time, reflecting the evolving landscape
of population immunity and exposure regardless of the underlying mechanism.

Here, we present a novel non-parametric method for estimating time-varying fitness re-
gardless of the underlying transmission mechanism. Alongside this development we in-
troduce a “selective pressure” metric that quantifies the impact of variant turnover on
population-level epidemic growth rates, as well as a latent immunity model that we use to
estimate the underlying proportion of pseudo-immune groups within multiple geographies
and pseudo-immune escape rates for circulating variants. Overall, our framework bridges
the gap between genetic data and transmission dynamics, offering a new way to predict
and manage viral outbreaks.

Results

Variant dynamics and relative fitness in multistrain models

Multi-strain models of epidemics have been developed to understand the competition
between different viral strains that exhibit different levels of cross-immunity [21, 22].
These models have typically been used to explain strain evolution in antigenically variable
pathogens like seasonal influenza virus [8] and seasonal coronaviruses [23,24].

We begin by modeling a population of V exponentially growing variant viruses each with
prevalence Iv(t) and time-varying growth rate rv(t). By considering the difference in these
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growth rates, we can define the relative fitness as λv,u(t) = rv(t) − ru(t). This relative
fitness determines the change in the frequencies of the variants in the population

fv(t) =
fv(0) exp

(∫ t
0 λv,v∗(s)ds

)
∑V

u=1 fu(0) exp
(∫ t

0 λu,v∗(s)ds
) , (1)

where v∗ is a chosen pivot variant that has relative fitness zero.

In order to better understand frequency dynamics of pathogens with multiple co-circulating
variants, we apply the above framework to compartmental models of epidemics, which can
be written as time-varying exponential growth (detailed in Supplementary Text S1). These
models provide an intuition of how strain-level selection depends on the assumed transmis-
sion mechanism of the underlying epidemic model. This framework also generalizes several
existing methods for relative fitness estimation and prediction (detailed in Supplementary
Text S2). We summarize dynamics of a three-variant mechanistic transmission model in
Fig. 1, where we compare a transmission variant T with a 50% increase in transmissibility
(ρ = 0.5) to an escape variant E that infects 5% of hosts possessing wildtype immunity
(η = 0.05).

Our approach shows that relative fitness is often dependent on the past exposure of a
population (as discussed in Supplementary Text S1 and extended to full immune history
models in Supplementary Text S3). This suggests that serology, vaccination history, and
immunological data generally can be informative of relative fitness. Additionally, when
working with variant classifications, non-neutral evolution within a variant will cause the
relative fitness of that variant to change in time. However, even in the absence of external
data that can inform relative fitness, there is still hope.

We develop a method for using approximate Gaussian processes to model variant relative
fitness. Gaussian processes are probability distributions over functions, where the struc-
ture and smoothness of these functions are defined by a kernel that encodes correlations
in time. These models are flexible and allow us to encode smoothness constraints, period-
icity, and other structures [25]. Gaussian processes allow us a non-parametric estimate of
the relative fitness for variants through time (see Materials and Methods).

Traditional Gaussian processes, while flexible, face challenges for large time series and
large data sets. Our approach overcomes this using a Hilbert Space Gaussian Process
(HGSP) approximation, making the framework scalable for many variants and long time
periods [26]. This enables real-time variant fitness estimation and can be applied to any
frequency data regardless of the underlying mechanism. This model is used in Fig. S1 to
estimate the relative fitnesses of different variants through time based on simulated variant
sequence counts from frequencies shown in Fig. 1.

Later, we apply this model to empirical SARS-CoV-2 sequence data from 50 US states
and England from 2021 to 2022 to estimate relative fitness for variants circulating in that
period, but first we continue analytic investigation into fitness dynamics.
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Fig. 1. Simulated variant dynamics in a mechanistic model. Mechanistic transmission
models constrain variant frequency dynamics by specifying a functional form for relative fitnesses.
Simulations of a three-variant model including wildtype W , an intrinsic transmission variant T ,
and an immune escape variant E show the relationship between population-level transmission and
selection. We begin the simulation with initial wildtype prevalence IW (0) = 1, effective reproduc-
tion number R0,W = 1.4, and duration of infection 1/γ = 3.0 days. We introduce transmissibility
variant T at t = 20 with frequency fT (20) = 10−5 and a 50% increase in transmissibility ρT = 0.5.
We introduce escape variant E at t = 70 with frequency fE(70) = 10−6 that infects 5% of hosts
possessing wildtype immunity ηE = 0.05. A. Prevalence I by variant. B. Exponential growth rate
r by variant. C. Variant frequency f . D. Fitness relative to wildtype λ. E. Underlying immune
pools. F. Effective reproduction number Rt by variant.

Determining the transmisibility-escape tradeoff

To understand the fitness trade-off between transmissibility and immune escape, we con-
sider dynamics with a wildtype virus W with ρW = 0 and ηW = 0, an increased transmis-
sibility variant T with ρT > 0 and ηT = 0 and an immune escape variant E with ρE = 0
and ηE > 0.

Following Equation 33, we write relative fitnesses of the escape variant or transmissibility
variant as

λE,W = ηβφW (t) (2)

λT,W = ρβS(t). (3)

In the simplest case where individuals are either susceptible or have wildtype immunity
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(S(t) +φW (t) = 1), we can compute the critical immune fraction φ∗ at which λE,W (φ∗) =
λT,W (φ∗) as

φ∗ =
ρ

η + ρ
. (4)

For past exposure level greater than φ∗ escape variants have a higher relative fitness. This
trade off shows that increasing degree of escape entails that a lower proportion of past
exposure is needed for escape variants to be preferred (Fig. 2). Additionally, this shows
that when intrinsic transmissibility increases are limited escape is more likely to be a
dominant mechanism for variant turnover.

Fig. 2. Trade-off between degree of immune escape and increased transmissibility. A.
Relative fitness for a transmissibility increasing variant T with ρT = 0.2 and an immune escaping
variant E with ηE = 0.3 for R0,W = 2.8 and 1/γ = 3.0 days. The intersection point shows that
after 40% of the population has wildtype immunity, the escape variant has higher fitness. B.
The critical exposure proportion is shown for various escape fraction and transmissibility increase.
Above the critical exposure proportion, we expect dominance of escape variants. C. The minimum
escape fraction needed for second waves to be comprised of escape variant assuming competition
with transmissibility increase variants and first wave with a given R0.

Initial growth rates insufficient for predicting short-term frequency growth

One question of interest is whether knowledge of mechanism meaningfully informs our
ability to forecast short-term frequency growth. The first step to addressing this is to
understand how the relative fitness may change in time to understand the predictability
of relative fitness in the short-term.

We find that the mechanistic forms analyzed in this paper (Supplementary Text S1) can be
represented as weighted combinations of B time-varying functions Υb(t) with weights βb.
We can think of each of these functions Υb as an immune background and the coefficient
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βb as a transmission differential, so that

λv,u(t) =
∑

1≤b≤B
βbΥb(t). (5)

Even in the case of complete knowledge of the relative fitness and the underlying fit-
ness contributions in the present and past, we have that change in the relative fitness is
determined by

dλv,u
dt

=
∑

1≤b≤B
βb
dΥb

dt
(t). (6)

By considering a Taylor expansion of the relative fitness about the point of estimation t0,
we can approximate the relative fitness in the future as

λv,u(t) ≈ λv,u(t0) + (t− t0)
∑

1≤b≤B
βb
dΥb

dt
(t0). (7)

This suggests small differences in the form of λv,u(t) can lead to meaningful differences in
the future relative fitnesses through changes in the underlying immune backgrounds.

We investigate whether relative fitnesses vary predictably in the short-term regardless of
mechanism. To do so, we apply the two-variant model developed in previous sections for
different mechanisms of immune escape and increased transmissibility. We fix the relative
fitness of the novel variant at a prediction time t0 using Equation 4 and assess the change
in the relative fitness in the short-term. We find that although relative fitness trajectories
share the same decreasing shape, they may decline at different rates depending on the
mechanism (Fig. S2). This can lead to substantial changes in the predicted incidence
depending on the assumed mechanism and affects to overall rate of turnover.

Correlations insufficient for mechanism identification

Although correlations between vaccination uptake and variant growth advantage are often
observed, these alone may not be sufficient to identify the mechanism behind a variant’s
success. A variant’s fitness advantage may arise from increased transmissibility, immune
escape, or a combination of both. Even in the absence of immune escape, the relative fitness
of a variant depends on the proportion of the population that is susceptible to infection
and therefore changes with both past exposure and vaccine uptake (Supplementary Text
S1). To illustrate this, we simulate the spread of a variant with increased transmissibility
in populations with varying initial vaccination levels.

In populations with lower vaccination levels, the variant’s prevalence peaks more sharply
and its relative fitness declines quickly as immunity accumulates within the population
(Fig. 3A-C). In contrast, higher vaccination levels constrain relative fitness, leading to
a delayed peak in prevalence and more stable relative fitness as the existing immunity
limits the variant’s spread (Fig. 3A-C). Even without immune escape, estimated growth
advantages for this variant decrease with increasing vaccination uptake near the beginning
of an epidemic (Fig. 3D). Later in the epidemic, this relationship reverses with estimated
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Fig. 3. Relative fitness is correlated with vaccination levels in the absence of immune
escape. We simulate the growth of a pure transmissibility increased variant at varying levels of
vaccination. Darker colors represent lower vaccine uptake. We identify an early growth period
where relative fitness is at its highest; the cutoff for this period is denoted with a vertical dashed
line. A. Prevalence of variant, each line is its own simulation. B. Frequency of variant. C. Relative
fitness for variant over time. D. Estimated log growth advantage using linear regression of log
relative frequency of variant over wildtype using only data before the early cutoff. E. Same as D.
but using data from the entire period shown.

growth advantages over the full period increasing with initial vaccination levels, which
may be mistaken as signal for immune escape (Fig. 3E).

This analysis shows that correlation-based methods alone may struggle to identify the true
mechanisms driving a variant’s success especially under the assumption of a fixed growth
advantage. By explicitly considering how immunity and transmissibility interact within
populations, models that incorporate these dynamics may provide a stronger foundation
for understanding why certain variants spread.

Quantifying selective pressure

Although it is useful to quantify the relative fitnesses of individual variants, we are often
interested in quantifying the overall effects of selection in the population. With this in
mind, we can derive a metric of overall selective pressure

ψ(t) = Ef(t)

[
dλv
dt

]
+ Vf(t)[λv] (8)

that describes the distribution of relative fitness in the population. This selective pressure
metric serves as an indicator for high fitness variants arising in the population as change.
High fitness variants rising from initially low frequency leads to large increases in the
variance of the fitness distribution and therefore increases in the selective pressure.
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The selective pressure metric enables us to decompose changes in the average growth rate
in the population, dr̄/dt, to an evolutionary component ψ and a residual baseline growth
rate rW following

dr̄

dt
=
drW
dt

+ ψ(t). (9)

This shows that increased selective pressure through emerging high fitness variants can
drive waves of infection. Further, this suggests that differences between growth rates
based on selective pressure alone and observed rates are attributable to changes in baseline
transmission over time. This mirrors ideas of Fisher’s theorem of natural selection and
its later interpretations with the variance of fitness contributing directly to the change in
transmission rates (or fitness) [27, 28]. This definition of selective pressure captures how
relative fitness contributes to epidemic growth. This is similar to ideas quantifying rates
of adaptation via fitness flux [29].

In this case, the overall growth rate r̄ and relative incidence I(t)/I(0) can be written
directly

r̄(t) = r̄(0) + [rW (t)− rW (0)] + Ψ(t), (10)

I(t)

I(0)
= exp

(∫ t

0
[rW (s) + Ψ(s)]ds

)
, (11)

using the cumulative selective pressure Ψ(t) =
∫ t

0 ψ(s)ds. In addition to estimating the
relative fitness, metrics derived from these models can inform us of much more.

Our “selective pressure” metric allows us to model the contribution of evolution to changes
in the epidemic growth rate of a population and is independent of pivot choice for rel-
ative fitness estimation. This metric acts as an early warning system for variant-driven
outbreaks, especially in scenarios where case data are sparse or delayed. This metric can
be computed using any method that estimates variant frequency and relative fitnesses
and serves as a simple tool for understanding the contribution of selection to the overall
population dynamics.

The full derivation of this metric and its contribution to the overall growth rate can be
found in Supplementary Text S4.

Predicting epidemic growth rates using selective pressure

Motivated by the relationship between epidemic growth rate and selective pressure demon-
strated above, we develop a predictive model of epidemic growth rate using estimates of
selective pressure. Using empirical SARS-CoV-2 case and sequence data from 50 US states
between January 2021 and November 2022, we estimate epidemic growth rates through
time in each state using case counts, and estimate selective pressure through time using
our approximate Gaussian process model on sequence counts (Fig. 4 A–C.) Here we group
variants at the granularity of Nextstrain clades [12] resulting in 28 distinct variants over
this time period. As expected we see that relative fitness increases through time and that
selective pressure corresponds to speed of clade turnover where the sweep of Omicron
BA.1 (clade 21K) yields the strongest signal of selective pressure (Figs. S3–S7). We use
these estimates to fit a gradient-boosted regressor to predict epidemic growth rates using
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selective pressure from the most recent 28 days, reserving data between July 2022 and
November 2022 for testing (Fig. 4 D–I, Fig. S8). This regressor is chosen via time series
cross-validation among model architectures and grid-search parameter tuning (Fig. S9).

Fig. 4. Predicting epidemic growth rate using estimated selective pressure. A. Variant
frequency estimated using the Gaussian process relative fitness model between January 2021 and
November 2022 for sequence count data from Washington state. B. Case counts from Washington
state. C. Selective pressure computed using estimated variant frequencies and relative fitnesses
from Washington state. D-F. Predictions for empirical growth rate from selective pressure for
selected US states. The light gray period is the training period and the darker gray is the testing
period. G-I. Predictions for empirical growth rate from selective pressure for countries South
Africa, South Korea and the UK. J. Prevalence estimates for England from ONS Infection Survey.
K. Estimated selective pressure in England. L. Empirical growth rates (gray) computed from
prevalence estimates and predictions from our model (green) computed from selective pressure.

We observe a strong correspondence between observed epidemic growth rate and model
predictions with Pearson R2 in the training period of 0.576 and a weaker Pearson R2 in
the testing period of 0.077. As case reporting declined over this period, we expect weaker
correspondence between our predictions and epidemic growth rates computed from case
data. To address this, we sought to evaluate the out-of-sample fit on case data from other
countries e.g. South Africa, South Korea, and the United Kingdom, achieving an R2 of
0.196.

To address the potential for this method under steady reporting rates, we validate this
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method by predicting the epidemic growth rates in England derived from the Office for Na-
tional Statistics (ONS) Coronavirus Infection Survey between February 2022 and Novem-
ber 2022. The ONS Infection Survey represented a randomly sampled panel survey of
households where nasal swabs were collected regardless of symptom status allowing for
prevalence estimates despite faltering case reporting [30]. Our model is able to replicate
patterns seen in epidemic growth rates in England derived from ONS data (Fig. 4 J–L),
achieving a coefficient of variation of R2 = 0.329 and mean absolute error of 0.026. Per-
formance is significantly better for the first two subsequent waves, falling off in accuracy
for the fall 2022 BQ.1 (clade 22E) wave.

Although these predictions can be biased by non-evolutionary effects on the epidemic
growth, this approach provides a simple measure of epidemic growth in the absence of
high quality case counts using sequence data alone.

Latent factor model of relative fitness

The representation of relative fitness using discrete immune backgrounds suggests that
there may be low-dimensional structure to variant relative fitness. To generate pseudo-
estimates of this latent factors, we develop and implement our method for latent factors
models of relative fitness. This model assumes that variants intrinsically escape the im-
mune responses with particular groups and that differences in a variant’s relative fitness
between geographies is attributable to differences in immunity between populations. This
enables us to estimate a pseudo-escape rates for variants as well as pseudo-immunity
groups within geographies over time.

We generate Pango lineage-level sequence counts for 18 countries and 53 variants between
March 2023 and March 2024. These 18 countries were chosen based on availability of
sequence data. Small lineages that do not meet a count threshold are collapsed into their
parent lineages. This leaves us with a total of 53 variants, so that each variant met a
threshold for number of sequences available.

Using these sequence counts, we apply our latent factor model to estimate the relative
fitness of each variant over time in each country, pseudo-escape rates for each variant,
and pseudo-immunity for each country simultaneously for D = 10 pseudo-immune groups.
This model is significantly constrained relative to estimating the time-varying fitness inde-
pendently in each location, resulting in a model with 2,752 parameters compared to 7,488
parameters in the independent model.

The results of this model are visualized in Fig. 5 for several selected variants and countries
of interest. Our results show that closely related Pango lineages are often assigned similar
pseudo-escape values suggesting that this is capturing some evolutionary structure to
immune escape. Further, our model shows that these groups of lineages tend to target
particular immune groups such as clade 24A (JN.1, JN.1.1, JN.1.4) has high pseudo-escape
in dimensions 3 and 4. If immune escape is the dominant mechanism for relative fitness
difference, we expect that differences in immune response between variants from serological
data would mirror differences in our pseudo-escape space. Using human serological data
from Jian et al [7], we compute titer distances as average log2 differences in titer values
between pairs of variants. We compare these distances to distances in our pseudo-escape
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space (Fig. 5G), finding the distances between distinct pairs in the pseudo-escape space
are correlated with these titer differences between variants (R2 = 0.402). We bootstrap
this analysis among 1,000 replicates to assess significance of this relationship (Fig. S10,
p < 0.001). Additionally, we subset by exposure history and find that cohorts with only
very recent infection correlate more poorly than WT vaccine cohort or cohorts with more
complex exposure histories (Fig. S11).

Fig. 5. Latent factor models of immunity describe variant dynamics. We fit the latent
immunity factor model to recent SARS-CoV-2 sequence data globally. A. Variant frequency. Lines
are colored to show 4 variants of interest (of 53 total variants) with the style of the line denoting 3
countries of interest (of 18 total countries). B. Estimated relative fitness for selected variants and
countries. C. Estimated pseudo-immunity cohorts (PIC) over time for multiple countries ordered
by decreasing share in the first geography D, E. Dimensionality-reduced pseudo-escape rates using
multidimensional scaling (MDS). F. Estimated pseudo-escape rates for each variant relative to
pivot variant. H. Comparing pairwise distance between variants in the pseudo-immune space to
observed distances in human titer data.

We chose D = 8 for our primary analysis by noting the point at which the loss function
seems to stagnate with increasing D, i.e., the “elbow” method (Fig. S12A). Further, we
observe that Bayesian Information Criterion (BIC) is minimized between 7 and 9 groups
(Fig. S12D). However, the exact choice of latent immune dimensionality is necessarily
somewhat arbitrary and we observe significant correlations with empirical titer data for
fewer dimensions as well, although D = 8 also maximizes this correlation (Fig. S12B) and
its significance is maintained for all dimensions D > 8 tested. Analogous figures showing
pseudo immunity and pseudo antigenic relationships across variants can be seen for D = 2
in Fig. S13, D = 4 in Fig. S14, D = 6 in Fig. S15 and D = 10 in Fig. S16.

This approach can be applied to other antigenically variable pathogens, such as influenza,
making it broadly applicable beyond SARS-CoV-2. In fact, there is more utility for
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pathogens with larger geographic differences in immunity since this approach enables to
estimate the proportion of these latent immune pools in the population and how they
vary geographically and over time alongside variant difference. By approximating anti-
genic differences using sequence data alone, this method offers for a deeper understanding
of immune dynamics and how they shape variant success in the presence of immune es-
cape. This enables an embedding similar to those from antigenic cartography but without
the need for serological data and based purely on observed variant fitness.

Discussion

Our study demonstrates the utility of multi-strain mechanistic models in interpreting
variant frequency dynamics. This enables a more detailed picture of variant success in
environments with heterogeneous population immunity. Our mechanistic grounding of
variant fitness allows for investigations into trade-offs between intrinsic transmissibility
increase and immune escape, prediction of epidemic dynamics from sequence data alone
and inference of antigenic relatedness among variants from differences in success across
geographies.

Despite these advances, there are limitations to our approach. Long-term forecasts remain
difficult, particularly as new variants with unknown fitness profiles emerge. This frame-
work suggests that considering both the escape against individual immune backgrounds
and the diversity in human immune escape is most useful for improving forecasts of rel-
ative fitness. Additionally, our models, while powerful in estimating short-term variant
dynamics, rely on assumptions about transmission mechanisms that may not always hold
across different pathogens or contexts. In fact, as we’ve shown, it’s entirely possible for
shifts in population immunity to change the dominant transmission mechanism.

Furthermore, the models considered here are deterministic in nature and do not explicitly
model the emergence of variant viruses only the dynamics after their successful introduc-
tion. In reality, there are biological constraints on the types of variants that are produced
in nature and even if there is a ‘true’ fitness boost, the chance for stochastic extinction of
beneficial variants remains. These constraints present trouble for long-term forecasting as
it will require a model of mutation or emergence, tying the potential for a variant to emerge
with its potential to transmit in the current environment. Future work should focus on
improving the integration of real-time genomic data with serological and epidemiological
data, providing a more comprehensive understanding of variant dynamics over time.

In conclusion, our framework represents a significant advance in our understanding of viral
evolution and transmission dynamics. By linking variant fitness to specific transmission
mechanisms, we provide a more nuanced and accurate prediction of how variants will
spread and impact population-level epidemic growth. The selective pressure metric and
latent immunity model offer new tools for public health agencies to monitor viral evolution
in real time, enabling proactive intervention and insight into the variant difference and
wave potential. While our work has been applied to SARS-CoV-2, the methods developed
here are broadly applicable to other evolving pathogens, offering a versatile approach for
improving epidemic forecasting, variant monitoring, and overall pandemic preparedness.
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Materials and Methods

Generating sequence counts We prepared sequence count data sets using the Nextstrain-
curated SARS-CoV-2 sequence metadata [31] which is created using the GISAID EpiCoV
database [32]. These sequences were tallied according to either their annotated Nextstrain
clade or Pango lineage [12] depending on the data set to produce sequence count for each
variant, for each day over the period of interest, and in each country analyzed.

Likelihood of sequence counts given frequencies The models discussed in this
paper use observed counts of variant sequences to inform the underlying variant frequency
in the population. This is accomplished using a multinomial likelihood, so that given
count of sequences Sv(t) of variant v at time t and total sequences N(t) collected at time
t, we have that

Sv(t) ∼ Multinomial(N(t), fv(t)), (12)

where fv(t) is the frequency of variant v at time t. This is a simple model of sequence
counts to frequencies and does not account for over-dispersion of sequence counts relative
to a multinomial. However, all models can be extended to estimate and account for over-
dispersion by replacing the above likelihood with a Dirichlet-Multinomial likelihood.

Approximate Gaussian processes for relative fitness estimation To generate
smooth non-parametric estimates of variant growth rates, we develop a Gaussian process
based model for relative fitnesses. That is, we model the relative fitness for each variant
over time λv(t) as a multivariate normal distribution:

λv ∼ Normal(µ,Σ) (13)

Σs,t = Kθ(s, t), (14)

where Kθ is a potentially parameterized kernel function. This induces a structure on the
covariance of the relative fitness values over time points s and t.

For computational efficiency, we implement a Hilbert Space Gaussian Process (HSGP)
approximation instead of fitting V independent Gaussian processes. This approximation
allow us to share basis functions between variants [26]. Under this approximation, the
relative fitnesses are computed as

λv(t) ≈
m∑
j=1

Sθ(
√
µj)

1/2 · φj(t) · βj , (15)

where Sθ is the spectral density of the kernel Kθ, µj and φj are the eigenvalues and
eigenfunctions of the Laplacian, and βj ∼ Normal(0, 1) [26]. Since the eigenvalues and
eigenfunctions are shared across variants, this allows us to re-use values across variants,
simplifying the computation to a matrix multiplication as

λt = Φt

√
Sθβ. (16)
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For the analyses in this paper, we use this approximate Gaussian process with a Matérn
5/2 kernel and shared hyperparameters across variants. We demonstrate this model for
simulated data from Fig. 1 and show resulting relative fitnesses through time in Fig. S1.

Correlations are insufficient for mechanism identification To assess how vacci-
nation uptake affects the growth advantage of a variant with increased transmissibility, we
simulate the spread of a more transmissible variant across populations with different initial
past exposure and vaccination levels. This enables us to isolate the effects of transmis-
sibility within different immunity landscapes, examining how relative fitness and growth
advantage shift based on population vaccination coverage alone in the absence of immune
escape. We begin with the 2-variant SIR model described in Supplementary Text S1. We
simulate this model for 100 days with generation time τ = 1/γ = 3.0 days, R0,W = 1.4,
IW (0) = 100 individuals, Iv(0) = 1 individual, a 50% transmissibility increase ρ = 0.5,
and no immune escape η = 0.0. We divide the period into early and late epidemic with
the breakpoint being t = 50. In Fig. 3D-E, we estimate the log growth advantage for the
variant in the early and full periods using a logit-linear model

log

(
fv(t)

1− fv(t)

)
= βt/τ + α, (17)

where we take the model slope β to be our log growth advantage.

We repeat these simulations for a range of vaccination levels starting from 0% and ending
at 65%.

Predicting epidemic growth rate from selective pressure The derivation of the
selective pressure metric shows that the selective pressure can be a useful tool in predicting
the epidemic growth rate. To develop a predictive model of epidemic growth rate using
selective pressure, we begin by generating estimates of selective pressure and epidemic
growth rate from a period with high sequencing and case surveillance.

We take sequence count and case count data from all states in the United States between
January 2021 and November 2022. State-level daily case counts were obtained from US-
AFacts downloaded on August 7, 2024 at https://usafacts.org/visualizations/coronavirus-
covid-19-spread-map/.

Using the sequence counts, we compute selective pressure estimates from relative fitness
and frequencies estimated with our approximate Gaussian process relative fitness model.
From the case data, we derive the empirical growth rate using a 14-day moving average
on case counts Ĉt and computing the empirical growth rate as r̂t = log(Ĉt) − log(Ĉt−1).
We then use the past 28 days of selective pressure to predict the empirical growth rate.

We use a gradient boosting regressor model which is fit using a mean absolute error loss
function. This model was selected as it achieved the minimal error via time series cross-
validation averaged across 10 splits among candidate models (Fig. S9). The candidate
models include linear regression, ridge regression, Lasso regression, random forests, and
gradient-boosted trees as implemented in scikit-learn [33]. We additionally tune the hy-
perparameters of this model using grid search cross-validation.
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We validate our model by comparing our predicted epidemic growth rates to held-out case
data for US states, and additionally to estimates of the epidemic growth rates in England
derived from data from the Office for National Statistics (ONS) Coronavirus Infection
Survey [30]. Estimates of prevalence from the ONS Infection Survey were obtained for
January 2022 to September 2022 from www.ons.gov.uk/peoplepopulationandcommunity/
healthandsocialcare/conditionsanddiseases/datasets/coronaviruscovid19infectionsurveydata.
Epidemic growth rates are computed on this data in the same way as the state-level anal-
ysis.

Latent immune factor model We show that relative fitness dynamics can be ex-
plained by low-dimensional immunity when transmission dynamics are described with
compartmental models (Supplementary Text S1). This motivates a model to learn this
low-dimensional structure that is inspired by latent-factor models. We start by assuming
that the relative fitness of variant v at time t and in geographic location g can be described
by D latent factors so that

λgv(t) =
D∑
d=1

ηv,d φ
g
d(t). (18)

As the structure here resembles Equation 41, we call ηv,d “pseudo-escape” of variant v
from group d and φgd “pseudo-immunity” group d in geographic location g. To make
this more consistent with our intuition here, we model φgd to be in [0, 1] and model it
as smoothly varying in time. We model logit(φgd) using 4th order splines with 6 knots
placed uniformly over the time period modeled. Though we choose to model these latent
factors with splines, other models would work here. For example, one alternative would
be the approximate Gaussian processes described above. Additionally, in order to ensure
identifiability of the parameter estimates, we fix some base variant v∗ which fitness is
defined relative to, so that ηv∗,d = 0 for all 1 ≤ d ≤ D. For the same reason, we fix the
order of components, so that the components are numbered in decreasing order by their
share in the arbitrarily defined base geography.

We apply this model to SARS-CoV-2 sequence counts in the period between March 2023
to March 2024 for 14 countries. To access the necessary number of immune dimensions,
we vary the number of immune dimensions between D = 2 to D = 12. Looking at the loss
for the latent factor model for increasing D, we choose D = 10 for our primary analysis
by noting the point at which the loss function seems to stagnate with increasing D i.e.
the “elbow” method (Fig. S12).

We compare the distances between variant pairs in our estimated pseudo-escape space to
distances in log2 titer. Using human titer data from Jian et al [7], we compute neutraliza-
tion titer distances as the average of differences in log2 neutralization titers between pairs
of variants for a cohort of individuals. This analysis is repeated among 1,000 bootstrapped
samples to create a distribution of R2 values (Fig. S10). Additionally, we subset this by
exposure history and repeat this analysis to find which exposure groups best explain dis-
tances in pseudo-escape space (Fig. S11).
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Supplementary Information for
Frequency dynamics predict viral fitness, antigenic

relationships and epidemic growth

Supplementary Text

S1 Exponentially growing populations to frequency dynamics

We consider a viral population consisting of V exponentially-growing variant viruses each
with prevalence Iv. Defining the time-varying growth rate for the prevalence of variant v
as rv(t), we can model the prevalence using an ordinary differential equation

dIv
dt

= rv(t)Iv(t), v = 1, 2, . . . , V. (19)

The above differential equation has a known solution in terms of the integral of the time-
varying growth rate and initial prevalence,

Iv(t) = Iv(0) exp

(∫ t

0
rv(s)ds

)
, (20)

where Iv(0) is the initial prevalence of variant v.

Now turning to the frequency dynamics of the population, we write the frequency of
variant v in the population as fv(t) = Iv(t)/

∑V
u=1 Iu(t). This allows us to derive an

ODE for variant frequency in terms of the variant growth rates using the quotient rule for
differentiation

dfv
dt

= fv

(
V∑
u=1

[rv(t)− ru(t)]fu

)
(21)

= fv

(
rv(t)−

V∑
u=1

ru(t)fu

)
. (22)

This system of differential equations resembles a logistic growth equation and can be
shown to have the following solution in terms of the initial frequencies fv(0) and the
variant growth rates

fv(t) =
fv(0) exp(

∫ t
0 rv(s)ds)∑V

u=1 fu(0) exp(
∫ t

0 ru(s)ds)
. (23)

The above representation of the variant frequency will serve as a centerpiece for many of
the arguments to follow. We see that by tracking the rate at which variant viruses are
spreading, we can construct the corresponding frequency dynamics without knowing the
absolute prevalence of any variant.
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Relative frequency and relative fitness Using the above equation for the variant
frequencies, we can write the relative frequency of variant v over u as xv,u(t) = fv(t)/fu(t)
to see

xv,u(t) =
fv(t)

fu(t)
=
fv(0)

fu(0)
exp

(∫ t

0
[rv(s)− ru(s)]ds

)
(24)

= xv,u(0) exp

(∫ t

0
λv,u(s)ds

)
. (25)

Notice this relative frequency change depends on the initial relative frequencies and the
relative fitness λv,u(t) = rv(t)− ru(t) of v over u. This relative fitness has the same units
as the exponential growth rate (e.g. per day). Using the definition of relative fitness, we
can notice that

λv,u(t) = rv(t)− ru(t) =
d

dt
[log (xv,u(t))] = −λu,v(t). (26)

We can see that there is a symmetry in the relative fitnesses and that the associated fre-
quency dynamics depend on the differences between relative fitnesses. This suggests that
absolute fitness (in terms of the growth of infections) may not be inferable from frequencies
alone. This definition of relative fitness becomes essential in describing various existing
modeling approaches for frequency dynamic data and motivates possible extensions since
we can represent these models as having the form:

fv(t) =
fv(0) exp(

∫ t
0 λv,v∗(s)ds)∑V

u=1 fu(0) exp(
∫ t

0 λu,v∗(s)ds)
, (27)

where the growth rate of v is expressed as relative to an arbitrary pivot variant v∗.

Cumulative relative-fitness and frequency change Above we saw that within our
framework frequency change over time intervals depends only on the cumulative relative
fitness over time intervals Λv,u(0, t) =

∫ t
0 λv,u(s)ds. We can then characterize approaches

for modeling frequency change in terms of how they represent, estimate, and forecast
these relative fitnesses. This framework includes various existing methods for analyzing
frequency data such as the seasonal influenza forecasting models of Lässig and  Luksza [34]
and Huddleston et al [35], multinomial logistic regression for frequency estimation [13] and
the SARS-CoV-2 mutational fitness model of Obermeyer et al [36].

Though this framework can be used to describe existing statistical methods for frequency
modeling, it is also applicable to traditional compartmental models of epidemics. In fact,
applying these ideas to compartmental models enables to see how mechanistic assumptions
on the transmission process determine relative fitness of variant viruses.

Two-strain SIR For simplicity, we will begin by analyzing a two-strain SIR model in
which a variant virus v can differ from wildtype virus wt by increased intrinsic transmis-
sibility (via ηT ) and immune escape against wild-type immunity (via ηE). This gives a
system of 5 ordinary differential equations
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dS

dt
= −βSIW − βρSIv, (28)

dIW
dt

= βSIW − γIW , (29)

dIv
dt

= β(1 + ρ)SIv + β(1 + ρ)ηφW Iv − γIv, (30)

dφW
dt

= γIW − β(1 + ρ)ηφW Iv, (31)

dφv
dt

= γIv, (32)

where IW denotes wild-type prevalence, Iv denotes variant prevalence and φW denotes
immunity derived from wild-type infection. In this model, the variant virus can infect both
susceptible individuals S and individuals with immunity to wild-type virus φW . Increased
intrinsic transmissibility increases the baseline transmission rate from β in wild-type to
βρ in the variant virus and immune escape increases the transmission rate against those
with wildtype immunity, so that the at-risk population is ηφW .

Writing that rW (t) = βS − γ and rv(t) = ρβS + β(1 + ρ)ηφW − γ, we can then write the
relative fitnesses as:

λv,W (t) = ρβS(t) + (1 + ρ)ηβφW (t). (33)

From this representation of relative fitness, we can see that given fixed increases to overall
transmission (ρ > 0) or immune escape (η > 0), the observed fitness boost at the level
of variant relative fitness still depends on the proportion of the population at risk for
infection.

n-strain SIR This model can also be extended to an n-strain SIR model where each
variant strain vi with 2 ≤ i ≤ n is described by its own advantage parameters θi =
(ρ(i), η(i)) relative to the wildtype (θW = θ1 = (0, 0))

dS

dt
= −βSIW − β(1 + ρ)SIvi (34)

dIW
dt

= βSIW − γIW (35)

dIvi
dt

= β(1 + ρi)SIvi + β(1 + ρi)ηiφW Ivi − γIvi (36)

dφW
dt

= γIW − β(1 + ρi)ηiφW Ivi (37)

dφvi
dt

= γIvi , i ∈ {2, . . . , n}. (38)

In this formulation, the variant viruses compete only for susceptible population and those
with previous wild-type infection. This formulation can be generalized to allow for compe-
tition between all variants for any exposure history and will be discussed in the following
sections. In Fig. 1, we implement and simulate a 3-strain model with wildtype as above, an
escape variant E with θ2 = (0, η), and a transmissibility increase variant T with θ3 = (ρ, 0).

S3

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2025. ; https://doi.org/10.1101/2024.12.02.24318334doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318334
http://creativecommons.org/licenses/by/4.0/


Models of immune escape against heterogeneous backgrounds We’ll now con-
sider a model where all hosts are assumed to fall into one of B immune backgrounds φb for
b = 1, . . . , B. We assume that infection by each variant v then leaves recovered hosts in the
corresponding immune background of the most recent infection bv. Variant transmission
then occurs via immune escape against a background leading to a matrix of escape rates
η = ηv,b for variants v and background b.

We can then write the system of ordinary differential equations as

dIv
dt

= β
∑

1≤b≤B
ηv,bφbIv − γIv, v = 1, . . . , V (39)

dφb
dt

= −β
∑

1≤v≤V
ηv,bφbIv +

∑
v: bv=b

γIv. (40)

With this model, susceptible and recovered compartments in the standard SIR model can
be thought of as immune backgrounds. This allows us to represent the standard SIR
model as S = φS , I = IW , R = φW and ηW,S = 1, ηW,W = 0 and bW = W . We can
also think of the two-strain SIR with ρ = 1 as a special case of this model where we set
S = φS , ηW,S = 1, ηW,W = 0, ηv,S = 1, ηv,W = η and keep all other parameters the same.

With this formulation of immune escape, we can then write the relative fitnesses in terms
of the escape rates ηv,b and the immune background proportions φb as

λv,u(t) = β
∑

1≤b≤B
(ηv,b − ηu,b)φb(t). (41)

Under this model of immune escape, we can see relative fitness among variants can be
decomposed into differences in immune escape among immune backgrounds within a pop-
ulation. Due to the dependence here on the proportion of each immune background in
determining fitness, this suggests that the overall distribution of susceptibility to strains
is potentially an important consideration when translating individual-level measures of
immune escape to population-level estimates of variant fitness. Understanding the size
and complexity of this immune space may therefore be useful for parameterization and
forecasting of variant frequencies. However, the extent to which modeling this complexity
affects estimates of relative fitness also depends on how quickly the distribution of immune
backgrounds change i.e. dφb

dt .

Though the derivation above uses a simplified model of using most recent infection to sort
individuals into an immune group, we show that a more complicated model that accounts
for the entire exposure history of the host also gives a similar decomposition to relative
fitness in Supplementary Text S3.

S2 Revisiting existing models for frequency growth

Using the theory developed for exponentially-growing variant populations, we now re-visit
existing methods for modeling viral frequency dynamics.
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Multinomial Logistic Regression We begin with multinomial logistic regression (MLR)
with fixed relative fitness. This model can be written as

fv(t) =
fv(0) exp(λvt)∑
u fu(0) exp(λut)

, (42)

where fv(t) is the frequency of variant v at time t and λv is the relative fitness of variant
v. This provides estimates of the relative fitness compared to some reference strain u∗

for which λu∗ = 0. In this model, initial frequencies fv(0) and relative fitness λv are esti-
mated from frequency dynamics. Converting this estimate to an estimate of transmission
advantage (relative effective reproduction number) requires assuming a delta distribution
of the generation time [37].

Comparing this to equation 33, we can see this model of fixed relative fitness results from
assuming that the at-risk populations are constant over-time. This assumption is useful
since it requires no outside knowledge of the at-risk population and relative infection rates,
though this may be less useful for longer forecasts or when there is large turnover in at-risk
populations due to infection.

Fitness models of seasonal influenza Motivated by the observed antigenic evolution
of seasonal influenza, Lässig and  Luksza [34] and Huddleston et al [35] approximate the
cumulative relative fitness between influenza seasons on the level of individual strains as

Λv,u(t+ ∆t, t) = (β1xv,1 + · · ·+ βpxv,p)∆t = (β · xv)∆t, (43)

where the relative fitness is determined by strain-specific predictors xv and the regression
parameter βv are estimated.

This formulation fits neatly into the framework we’ve developed as the cumulative fitness
here can be written as the integral of a relative fitness λv,u = β · xv over the time period
of interest:

Λv,u(t+ ∆t, t) =

∫ t+∆t

t
λv,u(s)ds =

∫ t+∆t

t
(β · xv)ds. (44)

Therefore, these models can be thought as regression-based predictors of relative fitness
where frequency and external covariates contribute to estimated relative fitness.

S3 Relative fitness for full immune history models

We show that the simple background model is consistent with an expanded immune history
model. Beginning with the model from Lazebnik and Bunimovich-Mendrazitsky 2022 [38],
we consider the differential equation for the individuals with strain infection history J and
current infecting strain i RJIi

dRJIi
dt

= −γJ,iRJIi + βJ,iRJ
∑

K∈P (M),i/∈K

RKIi. (45)
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Here, infection can occur from any individual infected with strain i assuming their past
immune history does not include i and the infected are any recovered individual with
immune history J RJ . To compute the strain growth rate, we can sum over all possible
immune histories for individuals infected with strain i, so that

dIi
dt

=
∑

J∈P (M),i/∈J

dRJIi
dt

(46)

= −γiIi +
∑

J∈P (M),i/∈J

βi,JRJ
∑

K∈P (M),i/∈K

RKIi (47)

= −γiIi +
∑

J∈P (M),i/∈J

βi,JRJIi (48)

=

−γi +
∑

J∈P (M),i/∈J

βi,JRJ

 Ii (49)

=

−γ + β
∑

J∈P (M),i/∈J

ηi,JRJ

 Ii. (50)

(51)

Assuming that the transmission rate can be decomposed as a base transmission rate β
and a strain i and immune history J specific escape rate ηi,J and that the recovery rate is
constant, we notice this is identical to our previous immune background model. Therefore,
our relative fitnesses simplify to

λi,j = β
∑

B∈P (M)

(ηi,B − ηj,B)RB, (52)

where for simplicity we define ηv,B = 0 if v ∈ B.

S4 Selective pressure and contribution to epidemic growth rates

In this section, we derive our selective pressure metric ψ(t) and show how it contributes
to the overall epidemic growth rate in the population.

Beginning again from our assumption of inhomogeneous exponential growth, we can write
a differential equation for the total prevalence I(t) =

∑
v Iv(t),

dI

dt
=
∑
v

dIv
dt

=
∑
v

rv(t)Iv(t) (53)

=

(∑
v

rv(t)fv(t)

)
I(t), (54)

S6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2025. ; https://doi.org/10.1101/2024.12.02.24318334doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318334
http://creativecommons.org/licenses/by/4.0/


where we’ve used that Iv(t) = fv(t)I(t). This allows us to see that r(t) =
∑

v rv(t)fv(t) is
the average growth rate of the prevalence. Re-writing the average in terms of some base
exponential growth rate and the relative fitnesses so that rv(t) = λv(t) + rW (t), we get
that r(t) =

∑
v λv(t)fv(t) + rW (t). We can simplify this by writing r(t) = λ(t) + rW (t)

where λ(t) =
∑

v λv(t)fv(t) is the mean fitness of the population. We can now look at the
rate of change in the average growth rate by taking its derivative

dr

dt
=
drW
dt

+
dλ

dt
(55)

=
drW
dt

+
∑
v

[
dλv
dt

fv(t) + λv(t)
dfv
dt

]
(56)

=
drW
dt

+
∑
v

[
dλv
dt

fv + λvfv(λv − λ)

]
(57)

=
drW
dt

+
∑
v

dλv
dt

fv(t) +
∑
v

λv(λv − λ)fv (58)

=
drW
dt

+
∑
v

dλv
dt

fv(t) +
∑
v

λ2
vfv − λ

∑
v

λvfv (59)

=
drW
dt

+ Ef(t)

[
dλv
dt

]
+ Vf(t)[λv]. (60)

Here, we’ve written the last line in terms of expectations relative to sampling according
to the frequency distribution. This shows us that the change in the average growth rate
of the epidemic can be written in terms of the growth rate of the pivot category, the mean
rate of change in the relative fitness, and the variance of the relative fitnesses. We will
call terms which can be computed in terms of quantities derived from frequencies alone
the selective pressure

ψ(t) = Ef(t)

[
dλv
dt

]
+ Vf(t)[λv]. (61)

We can use this idea to directly write the prevalence in terms of the selective pressure and
the base growth rate. First, we define a cumulative selective pressure

Ψ(t) =

∫ t

0
ψ(s)ds. (62)

We can then use this to reconstruct the relative incidence

I(t)

I(0)
= exp

(∫ t

0
r(s)ds

)
(63)

= exp

(∫ t

0
[rW (s) + Ψ(s)]ds

)
. (64)
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Supplementary Figures

Fig. S1. Estimating relative fitness with Gaussian processes. Gaussian processes allow
us a non-parametric estimate of the relative fitness for variants through time. This figure uses
Gaussian processes to model the 3 variant example shown in Fig. 1. A. Synthetic sequence counts
generated using a multinomial distribution with frequencies from Fig. 1C. B. Frequencies and
posterior frequencies according to Gaussian process model. Intervals show the 80% credible interval.
C. Relative fitnesses. Dashed line shows true relative fitnesses from underlying mechanistic model.
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Fig. S2. Differences in fitness mechanisms impact frequency and prevalence in the
short-term. Comparing simulations from two independent two-variant systems with either an
escape variant E (orange) or a transmissibility variant T (purple). We fix the initial relative fitness
for the two variants using Equation 4 and simulate dynamics for 365 days. A. The prevalence for
the variants. B. The relative fitness from the variants. C. The cumulative wildtype incidence as
a function of the initial wildtype frequency. D. The difference between the cumulative incidence
between the escape variant and the transmissibility variant as a function of wildtype incidence.
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Fig. S3. Estimated variant frequencies, relative fitnesses, and selective pressure. Al-
abama through Georgia.
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Fig. S4. Estimated variant frequencies, relative fitnesses, and selective pressure.
Hawaii to Maryland.
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Fig. S5. Estimated variant frequencies, relative fitnesses, and selective pressure. Mas-
sachusetts to New Jersey.
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Fig. S6. Estimated variant frequencies, relative fitnesses, and selective pressure. New
Mexico to South Carolina.
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Fig. S7. Estimated variant frequencies, relative fitnesses, and selective pressure.
South Dakota to Wyoming.
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Fig. S8. Predictions for empirical growth rate using selective pressure for all locations.
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Fig. S9. Cross-validation error by model We compare the errors between models fit on 10
time series cross-validation splits.
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Fig. S10. Bootstrapping pseudo-immune distance and human titer distance analysis
(Nreplicate = 1, 000).
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Fig. S11. Comparing pseudo-escape distance and titer distance between exposure
groups.

Fig. S12. Comparing latent factor model by number of latent immune dimensions.
A. Maximum a posteriori loss by number of latent immune dimensions. B. Spearman correlation
between pseudo-immune and titer distance by number of latent immune dimensions. C. Number
of parameters by number of latent immune dimensions. D. Bayesian Information Criterion (BIC)
by number of latent immune dimensions.
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Fig. S13. Latent factor model with D = 2 pseudo immune dimensions.

Fig. S14. Latent factor model with D = 4 pseudo immune dimensions.
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Fig. S15. Latent factor model with D = 6 pseudo immune dimensions.

Fig. S16. Latent factor model with D = 10 pseudo immune dimensions.
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