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Abstract

The emergence of divergent SARS-CoV-2 lineages has raised concern that novel variants

eliciting immune escape or the ability to displace circulating lineages could emerge within

individual hosts. Though growing evidence suggests that novel variants arise during pro-

longed infections, most infections are acute. Understanding how efficiently variants emerge

and transmit among acutely-infected hosts is therefore critical for predicting the pace of

long-term SARS-CoV-2 evolution. To characterize how within-host diversity is generated

and propagated, we combine extensive laboratory and bioinformatic controls with metrics of

within- and between-host diversity to 133 SARS-CoV-2 genomes from acutely-infected indi-

viduals. We find that within-host diversity is low and transmission bottlenecks are narrow,

with very few viruses founding most infections. Within-host variants are rarely transmitted,

even among individuals within the same household, and are rarely detected along phyloge-

netically linked infections in the broader community. These findings suggest that most varia-

tion generated within-host is lost during transmission.

Author summary

RNA viruses generate diversity within individual, infected hosts. This genetic diversity

can be used to trace how viruses evolve during the course of infection within individuals,

and transmission between them. To investigate how SARS-CoV-2 diversity is generated

and propagated, we deep sequenced 133 SARS-CoV-2 genomes isolated from acutely

infected individuals in Wisconsin. We capitalize on a large dataset of consensus genomes

from Wisconsin to investigate how variants are transmitted within the surrounding
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community, and use a unique household dataset to estimate the number of viruses that

are transmitted between epidemiologically linked individuals. We find that most SARS-

CoV-2 infections are characterized by limited within-host diversity, and that the vast

majority of intra-host single nucleotide variants (iSNVs) are lost during transmission. We

do not find evidence that variation is frequently propagated along phylogenetically linked

infections, and estimate that most infections are founded by very few unique virions. The

combination of limited within-host diversity and tight transmission bottlenecks may slow

the pace of SARS-CoV-2 evolution in the future, and suggests that extensive within-host

evolution is likely rare.

Introduction

The recent emergence of variants of concern has spurred uncertainty about how severe acute

respiratory coronavirus 2 (SARS-CoV-2) will evolve in the longer term. SARS-CoV-2 acquires

a fixed consensus mutation approximately every 11 days as it replicates in a population [1].

However, lineages of SARS-CoV-2 have arisen harboring more variants than expected based

on this clock rate, with some variants rapidly displacing existing circulating lineages and/or

conferring antibody escape [2,3]. The emergence of these lineages has raised concern that

SARS-CoV-2 may rapidly evolve to evade vaccine-induced immunity, and that vaccines may

need to be frequently updated. A current leading hypothesis posits that these lineages may

have emerged during prolonged infections. Under this hypothesis, longer infection times, cou-

pled with antibody selection [4], may allow more time for novel mutations to be generated and

selected before transmission. Studies of SARS-CoV-2 [4–8] and other viruses [9,10] support

this hypothesis. Longitudinal sequencing of SARS-CoV-2 from immunocompromised or per-

sistently infected individuals accordingly reveals an accumulation of intrahost single-nucleo-

tide variants (iSNVs) and short insertions and deletions (indels) during infection [4–6,11]. In

influenza virus and norovirus infections, variants that arose in immunocompromised patients

were later detected globally, suggesting that long-term infections may mirror global evolution-

ary dynamics [9,12]. Mutations defining novel variant lineages resulting in lineage displace-

ment and/or immune escape in SARS-CoV-2 Spike, like Δ69/70, N501Y and E484K, have

already been documented arising in persistently infected and immunocompromised individu-

als [4,5].

While prolonged infections occur, the vast majority of SARS-CoV-2 infections are acute

[13]. Viral evolutionary capacity is limited by the duration of infection [14], and it is not yet

clear whether the evolutionary patterns observed during prolonged SARS-CoV-2 infections

also occur commonly in acutely infected individuals. Replication-competent virus has rarely

been recovered from individuals with mild to moderate coronavirus disease 2019 (COVID-19)

beyond ~10 days following symptom onset [15,16]. Multiple studies of influenza viruses show

that immune escape variants are rarely detected during acute infection, even within vaccinated

individuals [17–19]. Detailed modeling of influenza dynamics suggests that the likelihood of

within-host mutation emergence depends on the interplay of immune response timing, the

de-novo mutation rate, and the number of virus particles transmitted between hosts [14].

Understanding the speed with which SARS-CoV-2 viruses acquire novel mutations that may

escape population immunity will be critical for formulating future vaccine updates. If novel

immune-escape variants emerge primarily within long-term infections, then managing long-

term infections in an effort to reduce any onward transmission may be critical. Conversely, if
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novel variants are efficiently selected and transmitted during acute infections, then vaccine

updates may need to occur frequently.

A clear consensus on how frequently variants are shared and transmitted between individu-

als has been elusive. Estimates of SARS-CoV-2 diversity within hosts have been highly variable,

and comparing results among labs has been complicated by sensitivity to variant-calling

thresholds and inconsistent laboratory controls [20–23]. Data suggests that SARS-CoV-2

genetic diversity within individual hosts during acute infections is limited [20,24] and shaped

by genetic drift and purifying selection [21,25–27]. Estimates of the size of SARS-CoV-2 trans-

mission bottlenecks [21,28,29] have ranged considerably, and recent validation work has

shown that estimates of within-host diversity and transmission bottleneck sizes are highly sen-

sitive to sequencing protocols and data analysis parameters, like the frequency cutoff used to

identify true within-host variants [20,30]. Clarifying the extent to which within-host variants

arise and transmit among acutely infected individuals, while controlling for potential error, is

critical for assessing the speed at which SARS-CoV-2 evolves and adapts.

To characterize how within-host variants are generated and propagated, we employ exten-

sive laboratory and bioinformatic controls to characterize 133 SARS-CoV-2 samples collected

from acutely-infected individuals in Wisconsin, United States. Unlike other existing studies,

we explicitly designed our investigation with controlling for bioinformatic and laboratory

error in mind, sequencing every sample in technical replicate and validating our variant calls

with an entirely separate bioinformatic pipeline. By comparing patterns of intrahost single

nucleotide variants (iSNVs) to densely-sampled consensus genomes from the same geographic

area, we paint a clear picture of how variants emerge and transmit within communities and

households. We find that overall within-host diversity is low during acute infection, and that

iSNVs detected within hosts almost never become dominant in later-sampled sequences. We

find that iSNVs are infrequently transmitted, even between members of the same household,

and we estimate that transmission bottlenecks between putative household pairs are narrow.

This suggests that most iSNVs are transient and very rarely transmit beyond the individual in

which they have originated. Our results imply that during typical, acute SARS-CoV-2 infec-

tions, the combination of limited intrahost genetic diversity and narrow transmission bottle-

necks may slow the pace by which novel variants arise, are selected, and transmit onward.

Finally, our findings are consistent with the hypothesis that novel variants are more likely to be

selected to high frequencies during the course of prolonged infections, and that a minority of

infections, either acute or prolonged, may play outsize roles in the emergence of novel variants.

Followup studies that continue to dissect the degree with which individual infections, includ-

ing both acute and chronic, contribute to global evolution will be necessary for confirming this

hypothesis. Finally, future examination of how SARS-CoV-2 evolution proceeds in individuals

with prior exposure via vaccination or infection will be necessary for extending these results as

SARS-CoV-2 continues to circulate and evolve.

Results

Within-host variation is limited and sensitive to iSNV-calling parameters

Viral sequence data provide rich information about how variants emerge within, and transmit

beyond, individual hosts. Viral nucleotide variation generated during infection provides the

raw material upon which selection can act. However, viral sequence data are sensitive to multi-

ple sources of error [20,22,23], which has obscured easy comparison among existing studies of

SARS-CoV-2 within-host evolution. Here, we take several steps to minimize sources of error

and to assess the robustness of our results against variable within-host single nucleotide variant

(iSNV)-calling parameters.
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We identified spurious iSNVs introduced by our library preparation pipeline by sequencing

in duplicate a clonal, synthetic RNA transcript identical to our reference genome

(MN90847.3). We considered only variants found in both technical replicates, which we refer

to as “intersection iSNVs”. We detected 7 intersection iSNVs at�1% frequency (S1 Table); 2

of these were previously identified by a similar experiment in Valesano et al. [20]. We excluded

all 7 of these iSNVs from downstream analyses. To exclude laboratory contamination, we

sequenced a no-template control (water) with each large sequencing batch and confirmed that

these negative controls contained <10x coverage across the SARS-CoV-2 genome (S1 and S2

Figs). To ensure that spurious variants were not introduced by our bioinformatic pipelines, we

validated our iSNV calls using a second pipeline which employs distinct trimming, mapping,

and variant calling softwares. We found near-equivalence between the two pipelines’ iSNV

calls (R2 = 0.998; S3A Fig), providing additional independent support for our bioinformatic

pipeline to accurately call iSNVs.

Viral iSNV calls are also sensitive to the variant-calling threshold (i.e., a minimum fre-

quency at which iSNVs must occur to be considered non-artefactual) applied [22] and the

number of viral input copies. Work by Grubaugh et al. [31] showed highly accurate iSNV calls

with tiled amplicon sequencing using technical replicates and a 3% frequency threshold. Con-

sistent with this observation, we observed a near-linear correlation between iSNVs called in

each replicate at a 3% frequency threshold (R2 = 0.992) (Fig 1A). Unsurprisingly, we find the

proportion of intersection iSNVs compared to all iSNVs within a given sample increases as the

frequency threshold increases (S3B Fig). Additionally, 57/102 iSNVs detected in our clonal

RNA controls occur<3% frequency in a single replicate (S3C Fig). We detected no intersec-

tion iSNVs<3% frequency.

Consistent with previous studies, we observed a negative correlation between Ct and the

overlap in variants between replicates such that high-Ct (i.e., low vRNA copy number) samples

had fewer intersection iSNVs called in each replicate (Fig 1B) [22,31]. Although we do not

have access to absolute quantification for viral input copies for our sample set, we can use

results of semi-quantitative clinical assays on the sequenced specimens as a proxy for viral

RNA (vRNA) concentration. Samples with low viral RNA copy numbers can sometimes result

in an excess of spuriously detected iSNVs [22], so we wanted to ensure that we did not detect a

greater number of iSNVs in samples in our dataset with low RNA concentrations. Using input

data from two different clinical assay platforms, we find no correlation between viral input

copies and the number of intersection iSNVs detected, consistent with findings reported by

others, and supporting the robustness of our iSNV calls to RNA copy numbers [21,32] (S3D

and S3E Fig).

Based on these observations, we chose to use a 3% iSNV frequency cutoff for all down-

stream analyses, and report only iSNVs that were detected in both technical replicates, at a fre-

quency�3%. Using these criteria, we found limited SARS-CoV-2 genetic diversity in most

infected individuals: 22 out of 133 samples did not harbor even a single intersection iSNV at

�3% frequency. Among the 111 samples that did harbor within-host variation, the average

number of iSNVs per sample was 3.5 (standard deviation = 2.6, median = 3, range = 1–11)

(Fig 1C). Most iSNVs were detected at<10% frequency (Fig 1D). Compared to expectations

under a neutral model, every type of mutation we evaluated (synonymous, nonsynonymous,

intergenic region, and stop) was present in excess at low frequencies, consistent with purifying

selection or population expansion within the host (Fig 1D). Taken together, our results con-

firm that the number of iSNVs detected within-host are dependent on variant-calling criteria.

Once rigorous laboratory and bioinformatic controls are applied, we find that most infections

during the spring 2020 are characterized by 0–6 iSNVs, primarily detectable at�10%

frequency.
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Recurrent iSNVs consist of Wuhan-1 reversions and common polymorphic

sites

Previous studies of SARS-CoV-2 evolution have noted the unusual observation that iSNVs are

sometimes shared across multiple samples. Understanding the source and frequency of shared

iSNVs is important for measuring the size of transmission bottlenecks and for identifying

potential sites of selection. In our dataset, 143/184 (77%) iSNVs were unique to a single sample

(Fig 2A). However, 41 iSNVs were detected in at least 2 samples. These “shared iSNVs” were

detected across multiple sequencing runs (S5 Fig), and were absent in our negative controls,

suggesting they are unlikely to be artefacts of method error. Most of the shared iSNVs we

detect fall into two categories: iSNVs that occur within or adjacent to a homopolymer region

(8/41 iSNVs, Fig 2B, yellow and purple bars), or iSNVs that represent “Wuhan-1 reversions”

(31/41 iSNVs, Fig 2B, blue and purple bars). We classified iSNVs as “Wuhan-1 reversions”

when a sample’s consensus sequence had a near-fixed variant (50–97% frequency) relative to

the Wuhan-1 reference, with the original Wuhan-1 nucleotide present as an iSNV. For exam-

ple, if a consensus change from C to T was found at 95%, we called the C at 5% an iSNV in our

dataset. iSNVs in or near homopolymer regions were defined as those that fall within or one

nucleotide outside of a span of at least 3 identical nucleotide bases. Shared iSNVs were detected

Fig 1. Within host variation is limited after data quality control. a. iSNV frequencies in replicate 1 are shown on the x-axis and frequencies in replicate 2 are shown

on y-axis. The yellow box highlights low-frequency iSNVs (3–15%), which is expanded out to the right. b. The Ct value is compared to the percent of iSNVs shared

between technical replicates. The blue line is a line of best fit to highlight the observed negative trend. c. Distribution of the number of total iSNVs detected per sample.

22 out of 133 samples harbor no iSNVs at all, and the maximum number of iSNVs in a single sample was 11. d. The proportion of iSNVs that were detected at various

within-host frequency bins is shown. Error bars represent the variance in the proportion of total within-host iSNVs within that frequency bin across samples in the

dataset as calculated by bootstrapping. There was a single stop variant in the entire dataset, so no error bar is shown for the stop category. The solid grey line indicates

the expected proportion of variants in each frequency bin under a neutral model.

https://doi.org/10.1371/journal.ppat.1009849.g001

PLOS PATHOGENS SARS-CoV-2 genetic diversity within and between hosts

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009849 August 23, 2021 5 / 26

https://doi.org/10.1371/journal.ppat.1009849.g001
https://doi.org/10.1371/journal.ppat.1009849


Fig 2. Shared iSNVs represent homopolymers and common polymorphic sites. a. The number of iSNVs (y-axis) present within n individuals (x-axis) is shown.

143/184 (77%) of iSNVs are found in only a single sample. 6 iSNVs are shared by at least 10 samples. b. Each iSNV detected in at least 2 samples is shown. Variants

that occur within, or 1 nucleotide outside of, a homopolymer region (classified as a span of the same base that is at least 3 nucleotides long) are colored in yellow.

Variants that represent the minor allele for variants that were nearly fixed at consensus (annotated here as “Wuhan1 reversions”) are shown in blue, and variants that

were both Wuhan1 reversions and occurred in homopolymer regions are colored in purple. c. For each unique iSNV detected within a host, the x-axis represents the

number of samples in which that iSNV was detected, and the y-axis represents the number of times it is present on the global SARS-CoV-2 phylogenetic tree. The

counts on the phylogenetic tree represent the number of times the mutation arose along internal and external branches. The variants labeled with text are those that

are detected at least 5 times within-host and at least 5 times on the phylogeny. Two of the most commonly detected iSNVs, T3037C and T241C (shown as the furthest

to the left in panel b), are also frequently detected on the phylogenetic tree.

https://doi.org/10.1371/journal.ppat.1009849.g002
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in homopolymer regions a total of 44 times across samples, with strong enrichment in A/T

homopolymers (39/45 detections) compared to G/C homopolymers (6/45 detections). S5

Table lists all iSNV frequencies, genome locations, and protein changes (amino acid changes)

detected in our dataset. A visualization of this information is shown in S12 Fig. Overall, this

suggests that shared variants in our dataset may be at least partially explained by viral polymer-

ase incorporation errors, potentially in A/T-rich regions, and at sites that are frequently

polymorphic.

The most commonly detected iSNVs in our dataset represent Wuhan-1 reversions at nucle-

otide sites 241 (detected 18 times; within/adjacent to a homopolymer region) and 3037

(detected 21 times; not in a homopolymer region). Both of these sites are polymorphic deep in

the SARS-CoV-2 phylogeny near the branch point for clade 20A (Nextstrain clade nomencla-

ture). Within-host polymorphisms at sites 241 and 3037 were also detected in recent studies in

the United Kingdom and Austria [21,28]. T241C and T3037C are both synonymous variants,

and have emerged frequently on the global SARS-CoV-2 phylogenetic tree, suggesting that

these sites may be frequently polymorphic within and between hosts across multiple geo-

graphic areas (Fig 2C).

Within-host variants are found only once in phylogenetically linked

infections

The emergence of divergent SARS-CoV-2 lineages has raised concerns that new variants may

be selected during infection and efficiently transmitted onward. We next sought to character-

ize whether iSNVs arising within hosts contribute to consensus diversity sampled later in time.

Using the Wisconsin-specific phylogenetic tree (S6 Fig), we queried whether iSNVs detected

within hosts are ever found at consensus in tips sampled downstream. For each Wisconsin tip

that lay on an internal node and for which we had within-host data, we traversed the tree from

that tip to each subtending tip. We then enumerated each mutation that occurred along that

path, and compared whether any mutations that arose on downstream branches matched

iSNVs detected within-host (see Fig 3A for a schematic). Of the 110 Wisconsin tips harboring

within-host variation, 93 occurred on internal nodes. Of those, we detect only a single instance

in which an iSNV detected within a host was later detected at consensus. C1912T (a synony-

mous variant) was present in USA/WI-UW-214/2020 at ~4% frequency, and arose on the

branch leading to USA/WI-WSLH-200068/2020 (Fig 3B). USA/WI-UW-214/2020 is part of a

large polytomy, so this does not necessarily suggest that USA/WI-UW-214/2020 and USA/

WI-WSLH-200068/2020 fall along the same transmission chain. These results indicate that

despite relatively densely sampling of consensus genomes from related viruses from Wisconsin

(1% of all confirmed cases as of February 16, 2021), we do not find evidence that iSNVs fre-

quently rise to consensus along phylogenetically linked infections.

If iSNVs arising during infection are adaptive and efficiently transmitted, then they should

be enriched on internal nodes of the phylogenetic tree. For each within-host variant detected

in our dataset, we queried the number of times it occurred on the global SARS-CoV-2 phylog-

eny on tips and internal nodes. We then compared the ratio of detections on tips vs. internal

nodes to the overall ratio of mutations on tips vs. internal nodes on the phylogeny. 42% (77/

184) of iSNVs are present at least once at consensus level on the global phylogeny (S7 Fig). Of

the iSNVs from our dataset that also occur in consensus genomes on the global tree, only 15

are found at least 10 times (Figs 3C and S7). iSNVs that are also found at consensus are present

on internal nodes and tips at a ratio similar to that of consensus mutations overall (ratio of

mutations on phylogeny nodes:tips = 4,637:17,200; ratio of iSNVs on nodes:tips = 128:411,

p = 0.16, Fisher’s exact test). Although this is the predominant pattern, we detect one
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exception. C28887T is present in one sample in our dataset at a frequency of ~6%, but is found

on 10 internal nodes and 15 tips (p = 0.028, Fisher’s exact test) (Fig 3C). C28887T encodes a

threonine-to-isoleucine change at position 205 in the N protein, and is a clade-defining muta-

tion for the B.1.351 lineage. Although the functional impact of this mutation is not completely

Fig 3. Variants are not common in consensus sequences or in downstream branches. a. We traversed the Wisconsin-focused full-genome SARS-CoV-2

phylogeny from root to tip. For each Wisconsin tip for which we had within-host data, we queried whether any of the iSNVs detected in that sample were ever

detected in downstream branches at consensus. In this example, the purple tip represents a Wisconsin sample for which we have within-host data. This sample

harbors 2 iSNVs, A and B. iSNV A arises on a tip that falls downstream from the starting, purple tip. iSNV B is present on a downstream branch leading to an

internal node. Both A and B would be counted as instances in which an iSNV was detected at consensus in a downstream branch. b. In the Wisconsin-specific

phylogenetic tree, we applied the metric described in a. Among 110 Wisconsin samples that harbored within-host variation, 93 occurred on internal nodes. Of

those, we detect one instance in which a mutation detected as an iSNV in one sequence was detected in a downstream consensus sequence. (C1912T, an iSNV in

USA/WI-UW-214/2020, was detected downstream in USA/WI-WSLH-200068/2020.) c. For each iSNV identified in the study (in at least 1 sample), we

enumerated the number of times that variant occurred on the global SARS-CoV-2 phylogeny on an internal node (yellow) or on a tip (blue). The results for

every variant are shown in S6 Fig. Here, we show only the variants that were detected at least 10 times on the global phylogeny. Each such iSNV is found at

internal nodes and tips at a ratio comparable to overall mutations on the tree, except for C28887T, which is enriched on internal nodes (p = 0.028, Fishers’ exact

test). � indicates p-value< 0.05.

https://doi.org/10.1371/journal.ppat.1009849.g003
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understood, N T205I may increase stability of the N protein [33,34]. Despite the detection

within-host and subsequent emergence of N205I globally, this iSNV was only detected in our

dataset in one sample at low frequency. In general, across our dataset, the frequency with

which iSNVs were detected within-host vs. on the phylogenetic tree is not correlated (Fig 2C).

This suggests that although putative functional mutations may arise within a host, we do not

see evidence for most iSNVs as selectively beneficial, in agreement with patterns observed in

other viral pathogens [35].

Shared iSNVs are insufficient for resolving transmission linkage

Household studies provide the opportunity to investigate transmission dynamics in a setting

of known epidemiologic linkage. We analyzed 44 samples collected from 19 households from

which multiple individuals were infected with SARS-CoV-2 (more information on household

structure, accession numbers, and days post symptom onset can be found in S4 Table). Only a

single timepoint from each individual, with collection times relative to their symptomatic date

ranging from asymptomatic or never symptomatic to 15 days after symptom onset, were col-

lected and analyzed for this study. To define putative transmission pairs from our household

dataset, we modeled the expected number of mutations that should differ between consensus

genomes given one serial interval as previously described [36,37](see Materials and Methods

for details and rationale). We estimate that members of a transmission pair should generally

differ by 0 to 2 consensus mutations (Fig 4A), and classify all such pairs within a household as

putative transmission pairs. While most samples derived from a single household had near-

identical consensus genomes, we observed a few instances in which consensus genomes dif-

fered substantially. In particular, USA/WI-UW-476/2020 differed from both other genomes

from the same household by 11 mutations, strongly suggesting that this individual was inde-

pendently infected.

To determine whether putative household transmission pairs shared more within-host vari-

ation than randomly sampled pairs of individuals, we performed a permutation test. We ran-

domly sampled individuals with replacement and computed the proportion of iSNVs shared

among random pairs to generate a null distribution (Fig 4B, grey bars). We then computed

the proportion of variants shared among each putative household transmission pair. Finally,

we compared the distribution of shared variants among household pairs and random pairs

(Fig 4B). 90% of random pairs do not share any iSNVs. Although household pairs share more

iSNVs than random pairs on average, half (14/28) of all household pairs share no iSNVs at all.

Only 7 out of 28 of household pairs share more iSNVs than expected by chance (p< 0.05).

While we hypothesized that putative transmission linkage would be the best predictor of

sharing iSNVs, other processes could also result in shared iSNVs. For example, if transmission

bottlenecks are wide and iSNVs are efficiently transmitted along transmission chains, then

iSNVs may be propagated during community transmission. If so, then iSNVs should be shared

among samples that are phylogenetically close together. If transmission chains circulate within

local geographic areas, then iSNVs may be commonly shared by samples from the same geo-

graphic location. Finally, if iSNVs are strongly constrained by genetic backbone, then variants

may be more likely to be shared across samples from the same clade.

To measure the contribution of these factors, we computed the proportion of iSNVs shared

by each pair of samples in our dataset (including household and non-household samples), and

model the proportion of shared iSNVs as the combined effect of phylogenetic divergence

between the tips (i.e., the branch length in mutations between tips), clade membership, geo-

graphic distance between sampling locations, and household membership. Phylogenetic diver-

gence and geographic distance between sampling locations have minimal predicted impact on
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iSNV sharing (Figs 4C and S9). The strongest predictor of sharing iSNVs is being sampled

from the same household, which increased the predicted proportion of shared iSNVs by 0.22

(0.16–0.27, 95% HPDI). Belonging to the same clade increases the predicted proportion of

Fig 4. A quarter of household pairs share more iSNVs than random expected by chance. a. We modeled the probability that 2 consensus genomes will share x

mutations as Poisson-distributed with lambda equal to the number of mutations expected to accumulate in the SARS-CoV-2 genome over 5.8 days [37] given a

substitution rate of 1.10 x 10−3 substitutions per site per year [1]. Exploration of how these probabilities change using a range of plausible serial intervals and

substitution rates is shown in S8 Fig. The vast majority of genomes that are separated by one serial interval are expected to differ by�2 consensus mutations. b. The

proportion of random pairs (grey) and putative household transmission pairs (purple) is shown on the y-axis vs. the proportion of iSNVs shared. The dotted line

indicates the 95th percentile among the random pairs. Household pairs that share a greater proportion of iSNVs than 95% of random pairs (i.e., are plotted to the right

of the dotted line) are considered statistically significant at p = 0.05. iSNVs had to be present at a frequency of�3% to be considered in this analysis. c. We assessed the

impact of household membership, clade membership, phylogenetic divergence, and geographic distance on the proportion of iSNVs shared between each pair of

samples in our dataset. The mean of each estimated coefficient in the combined linear regression model including all predictors is shown on the x-axis, with lines of

spread indicating the range of the estimated 95% highest posterior density interval (HPDI).

https://doi.org/10.1371/journal.ppat.1009849.g004
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shared iSNVs by 0.043 (0.033–0.053, 95% HPDI), likely because sharing a within-host variant

is contingent on sharing the same consensus base. Taken together, being sampled from the

same household is the strongest predictor of sharing iSNVs, and 25% of household pairs share

more variation than expected by chance. However, the presence of shared iSNVs alone is

insufficient for inferring transmission linkage independent of additional epidemiologic data.

Transmission bottlenecks are narrow, and sensitive to variant calling

threshold

The number of viral particles that found infection is a crucial determinant of the pace at which

novel, beneficial variants can emerge. Narrow transmission bottlenecks can induce a founder

effect that purges low-frequency iSNVs, regardless of their fitness. Conversely, wide transmis-

sion bottlenecks result in many viral particles founding infection, reducing the chance that

beneficial variants are lost. Understanding the size of the transmission bottleneck is therefore

important for evaluating the probability that novel SARS-CoV-2 variants arising during acute

infection will be transmitted onward. While the above permutation test compares the presence

and absence of iSNVs between individuals, it does not assume transmission directionality or

make use of variant frequencies. It is therefore a crude metric of whether samples share iSNVs,

rather than a quantitative measure of transmission stringency. We therefore next inferred

transmission bottleneck sizes using the beta-binomial inference method [38]. We inferred

transmission directionality using the date of symptom onset or date of sample collection (see

Materials and Methods for details). If this information was not informative, we calculated a

bottleneck size bi-directionally evaluating each individual as the possible donor. In this

method, the unit of the transmission bottleneck is the number of viruses that found infection

in a recipient host following transmission. In total, we performed 40 transmission bottleneck

size estimates in 28 putative household pairs.

iSNV frequencies in donor and recipient pairs are plotted in Fig 5A. Most iSNVs detected

in the donor are either lost or fixed following transmission in the recipient. However, there are

a few low-frequency and near-fixed iSNVs which are shared in donor-recipient pairs. The

combined maximum likelihood estimate for mean transmission bottleneck size at our defined

3% frequency threshold is 15 (95% CI: 11–21), although results vary across pairs (Fig 5B).

Prior transmission bottleneck estimates have changed based on the variant-calling threshold

employed [28,30]. To determine whether our estimates were sensitive to our choice of a 3%

variant threshold, we evaluated bottleneck sizes using variant thresholds ranging from 1% to

20%. We estimate the highest mean transmission bottleneck size when we employ a 1% fre-

quency threshold (38, 95% CI: 33–43), and lowest when we use a�7% frequency threshold (2,

95% CI: 1–4) (Figs 5C and S10). The finding of larger bottleneck sizes at a 1% threshold may

be due to increased false-positive iSNVs at lower thresholds, in agreement with our findings

that a majority (56%) 57/102 iSNVs detected in the clonal RNA control occurred at frequen-

cies <3% in a single replicate. Importantly though, while the variant threshold clearly impacts

estimated bottleneck size, bottleneck size estimates range from 2–43 and never exceed 50

across a wide range of frequency thresholds.

The beta-binomial inference method assumes that shared variation in donor-recipient pairs

is due to transmission. However, it is possible that shared low-frequency iSNVs are recurring

mutations (i.e. homoplasies) that should be excluded from the beta-binomial analysis. One site

in particular, a synonymous change at nucleotide 15,168 in ORF1ab, was commonly found at

low frequencies in donor-recipient pairs. To account for the possibility that this variant is a

homoplasy rather than shared via transmission, we dropped this site from our dataset and re-

calculated bottleneck sizes. While bottleneck size estimates decrease in individual pairs where
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this variant is found (S10C Fig), the average bottleneck size across all transmission pairs

remains low (mean = 9, 95% CI: 6–14).

It is possible that some of the pairs evaluated were not direct transmission pairs. Instead

individuals may be part of the same transmission chain or share a common source of infection.

We reasoned if two individuals were infected from a common source, then they may have

developed symptoms around the same time. In contrast, if one individual infected the other,

then their symptom onset dates should be staggered. To assess this, we compared bottleneck

sizes to the time between symptom onset in donor-recipient pairs for which symptom onset

dates were available (n = 17) (S11 Fig). We observed no clear trend between bottleneck size

and symptom onset intervals. Finally, all bottleneck estimates are inherently limited by access

to a single time point from each donor and recipient. Because it is impossible to know the

exact date of infection and transmission, the donor iSNV frequencies may not reflect the true

diversity present at the time of transmission. Taken together, we find that even among house-

hold pairs, the number of transmitted viruses is small. Although bottleneck size estimates vary

by variant calling threshold, we find consistent support for fewer than 50 viruses founding

infection, suggesting that the majority of transmission events are founded by very few viruses.

Our data suggest that iSNVs generated within-host are generally lost during the transmission

event, and are not efficiently propagated among epidemiologically linked individuals.

Discussion

The emergence of divergent SARS-CoV-2 lineages has called into question the role of within-

host selection in propagating novel variants. Our results suggest that very limited variation is

generated and transmitted during acute SARS-CoV-2 infection. Most infections in our dataset

are characterized by fewer than 5 total intersection iSNVs, the majority of which are low-fre-

quency. Less than half of iSNVs are not detected in global consensus genomes, and are rarely

detected in downstream branches on the phylogenetic tree. We show that even among putative

household transmission pairs, iSNVs are shared infrequently, and we estimate that a small

number of viruses found infection after transmission. The combination of low within-host

diversity, tight transmission bottlenecks, and infrequent propagation along transmission

chains may slow the rate of novel variant emergence among acutely infected individuals.

Relatively few studies have reported on SARS-CoV-2 within-host diversity, and their results

have varied. SARS-CoV-2 within-host sequence data appear to be particularly vulnerable to

method error, including sensitivity to cycle threshold [20,21], putative false positive iSNV calls

in control runs [20], an uncertain degree of recurrent mutations shared across unrelated sam-

ples [21,28,29,39], and variation between technical replicates. Each lab employs its own sample

preparation and variant calling pipelines, making comparison across datasets challenging, and

concern has been raised regarding recurrent errors that are platform- and lab-specific [40].

Our study is unique in that we designed our protocols with the specific intent of mitigating

sources of bioinformatic and laboratory error. To this end, we have attempted to employ mul-

tiple, overlapping controls to mitigate errors that could arise from sample preparation, bioin-

formatic processing, and improper variant thresholds. Our results emphasize the importance

Fig 5. SARS-CoV-2 transmission bottlenecks in household transmission pairs. a. “TV plots” showing intersection iSNV frequencies in all 44 donor-recipient pairs

using a 3% frequency threshold. The yellow box highlights low-frequency iSNVs (3–10%) and the mauve box highlights high-frequency iSNVs (90–100%). b.

Maximum likelihood estimates for mean transmission bottleneck size in individual donor-recipient pairs. Bottleneck sizes could not be estimated for a few pairs (e.g.

pairs 5, 10a, 11a, etc) because there were no polymorphic sites detected in the donor. c. Bidirectional comparisons are denoted with an “a” and “b” following the pair

number. Combined maximum likelihood estimates across all 44 donor-recipient pairs plotted against variant calling thresholds ranging from 1–20%. The purple line

shows combined estimates at each variant calling threshold shown and the mauve band displays the 95% confidence interval for this estimate. The dashed grey line

indicates a bottleneck size equal to 1. The vertical yellow band highlights the combined transmission bottleneck size using a 3% variant calling threshold.

https://doi.org/10.1371/journal.ppat.1009849.g005
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of duplicate sequencing for any studies relying on low-frequency iSNVs to infer biological pro-

cesses. Like Valesano et al. [20], we observe that SARS-CoV-2 variant calls are sensitive to Ct

and variant-calling criteria. We echo their expressed caution in interpreting SARS-CoV-2

within-host data in the absence of pipeline-specific controls.

We find that most samples harbor very few iSNVs and that most variants are low-fre-

quency, in agreement with work from others [20,21,39]. Although we employ distinct meth-

ods, we corroborate findings by Lythgoe & Hall et al. [21] that iSNVs do not cluster

geographically or phylogenetically, suggesting that they are not transmitted efficiently within

communities. We detect a higher number of shared/recurrent iSNVs in our dataset than

reported by Lythgoe & Hall et al. [21], Valesano et al. [20], and Shen et al. [39], but fewer than

Popa & Genger et al. [28] and James et al. [29]. While some degree of shared iSNVs is reported

across most SARS-CoV-2 datasets [20,21,28,29,39] the exact frequency of shared sites is vari-

able, which could be influenced by variant reporting methods and the number of transmission

pairs in the dataset. Future work will be necessary to determine the precise degree to which

iSNVs recur across unrelated individuals, and the extent to which factors like viral copy num-

ber, time of infection, host factors including pre-existing immunity, and sequencing pipeline

influence these estimates.

Four other groups have previously estimated the size of the SARS-CoV-2 transmission bot-

tleneck, although the total number of transmission events evaluated to date across studies

remains small (~66). Lythgoe & Hall et al. (n = 14 pairs) [41], James & Ngcapu et al. (n = 11

pairs) [29], and Wang et al. (n = 2 pairs) [42] report narrow bottlenecks, in which infection is

initiated by fewer than 10 viruses. Popa & Genger et al. (n = 39 pairs) [28] report bottleneck

sizes ranging from 10 to 5000, although a reanalysis using a more conservative variant thresh-

old reported a bottleneck estimate of 1–3 virus particles [30]. While current evidence is con-

verging to support a narrow transmission bottleneck for SARS-CoV-2, similar to influenza

virus [18,43,44], more data is needed. Our analysis relied on anecdotal evidence of transmis-

sion, without epidemiological data to investigate alternative infection histories beyond house-

hold membership. It is therefore plausible that some of our transmission pairs were infected

independently or from a common source. Future studies examining a larger number of trans-

mission events will be necessary to further refine bottleneck estimates, and to determine

whether factors like route of transmission [45] impact transmission bottleneck size.

Our results lead to two main findings. The first is that in individual, acute infections,

within-host diversity is limited. The second is that most iSNVs that are present within hosts

are lost during transmission. Our results imply that the de novo generation, within-host selec-

tion, and subsequent transmission of mutations during the confines of an acute infection is

rare. Of course, our dataset represents only a small fraction of the SARS-CoV-2 infections in

Wisconsin, and even the combination of every existing within-host dataset represents only a

marginal fraction of the SARS-CoV-2 transmission events that have occurred. Indeed, with 17

transmission pairs, our study is currently the second-largest to investigate SARS-CoV-2 evolu-

tion within and between hosts. Therefore, while our findings and those from others suggest

that evolution is minimal during acute infection, even rare events can occur given sufficient

opportunity. No individual study to date, including our own, is sufficiently powered to define

how rare these events may be. High rates of SARS-CoV-2 transmission increase the likelihood

of rare transmission events in which low-frequency variants are transmitted. Decreasing the

number of infections globally through vaccination and non-pharmaceutical interventions are

critical for reducing the opportunities for rare evolutionary events to occur. Ongoing assess-

ment of SARS-CoV-2 evolution within and between individuals, especially in the face of grow-

ing immunity, will inform our understanding of how novel variants arise and sweep to

fixation in the community and beyond.

PLOS PATHOGENS SARS-CoV-2 genetic diversity within and between hosts

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009849 August 23, 2021 14 / 26

https://doi.org/10.1371/journal.ppat.1009849


Our findings are also consistent with, though do not prove, a regime in which most acute

infections play a limited role in the generation and spread of new SARS-CoV-2 variants. Pro-

longed infections permit additional cycles of viral replication, lead to greater accumulation of

intrahost mutations [4–8], and allow more time for within-host selection. Even a modest

increase in frequency enhances the likelihood of a beneficial variant being transmitted onward,

and selection during transmission may further propagate beneficial variants between hosts

[25]. It is therefore possible that the rare instances of prolonged infections play an outsize role

in novel variant emergence. Future studies that characterize how variants arise, evolve, and

transmit during persistent infections will be important for teasing apart the degree with which

acute and prolonged infections contribute to global SARS-CoV-2 evolution.

An important limitation of our study is that all of our samples were collected between

March and June of 2020. Our analysis therefore represents a snapshot in time prior to the

emergence of variants of concern, and before a significant fraction of the population was

immune. Dissecting how the fixation of variant of concern mutations and lineages may have

impacted the evolutionary patterns of SARS-CoV-2 will be important future work. It is also

important to note that patterns of within-host evolution may differ in individuals with vaccine

or infection-induced immunity. Whether antigenic escape mutations arise and are selected

within individuals with prior immune exposure remains an open question. Understanding the

degree to which within-host evolution is shaped by vaccine and infection-induced immunity,

both within-host and globally, will be critical for evaluating the pace of SARS-CoV-2 evolution

in the future. Finally, while we did not have access to longitudinal samples in this study, char-

acterization of viral populations over time in individual infections will provide superior resolu-

tion regarding the dynamicity of iSNVs and their frequencies throughout the course of

infection.

Our data, combined with findings from others, suggest that rapid accumulation of novel

mutations within-host is not the norm during acute infection. Like influenza viruses, a signifi-

cant portion of variation generated within one infected host is likely lost during transmission.

The combination of within-host limited diversity and tight transmission bottlenecks should

slow the pace at which novel, beneficial variants could emerge during transmission among

acutely infected individuals. Future studies that compare within-host diversity in individuals

with and without SARS-CoV-2 immunity will be necessary to evaluate whether immunity

imposes signatures of within-host selection. Finally, given the increasing appreciation for the

potential role of long infections to promote variant emergence, within-host data may provide

its maximum benefit for dissecting the process of variant evolution during prolonged

infections.

Materials and methods

Ethics statement

We obtained a waiver of HIPAA Authorization and were approved to obtain all clinical sam-

ples used for this study, along with a Limited Data Set by the Western Institutional Review

Board (WIRB #1-1290953-1) and the FUE IRB 2016–0605. This limited dataset contains sam-

ple collection data and county of collection. Additional sample metadata, e.g. race/ethnicity,

were not shared. The limited metadata were classified as non-identifiable, so consent was not

obtained due to sample anonymity.

Sample approvals and sample selection criteria

Samples selected for iSNV characterization were derived from 150 nasopharyngeal (NP) swab

samples collected from March 2020 though July 2020, originating from the University of
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Wisconsin Hospital and Clinics and the Milwaukee Health Department Laboratories. Submit-

ting institutions provided a cycle threshold (Ct) or relative light unit (RLU) for all samples.

Sample metadata, including GISAID and SRA accession identifiers, are available in S2 Table.

Diagnostic assays for the samples included in this study were performed at the University

of Wisconsin Hospital and Clinical diagnostic laboratory using CDC’s diagnostic RT-PCR

[46], the Hologic Panther SARS-CoV-2 assay [47], or the Aptima SARS-CoV-2 assay [48].

Nucleic acid extraction

Viral RNA (vRNA) was extracted from 100 μl of VTM using the Viral Total Nucleic Acid Puri-

fication kit (Promega, Madison, WI, USA) on a Maxwell RSC 48 instrument and eluted in

50 μL of nuclease-free H2O.

Complementary DNA (cDNA) generation and PCR

Complementary DNA (cDNA) was synthesized according to a modified ARTIC Network

approach [49,50]. RNA was reverse transcribed with SuperScript IV VILO (Invitrogen, Carls-

bad, CA, USA) according to manufacturer guidelines [49,50]. A SARS-CoV-2-specific multi-

plex PCR for Nanopore sequencing was performed using the ARTIC v3 primers (S3 Table).

cDNA (2.5 μL) was amplified in two multiplexed PCR reactions using Q5 Hot-Start DNA

High-fidelity Polymerase (New England Biolabs, Ipswich, MA, USA).

TruSeq Illumina library prep and sequencing for minor variants

All Wisconsin surveillance samples were prepped and sequenced by Oxford Nanopore Tech-

nologies (details below) and a subset described in this paper were additionally prepped for

sequencing on an Illumina MiSeq. These SARS-CoV-2 samples (n = 150) consisted of house-

hold pairs as well as a random sampling of the surveillance cohort selective for enhanced iSNV

characterization. Amplified cDNA was purified and made compatible for sequencing on an

Illumina MiSeq according to the TruSeq Nano DNA manufacturer instructions (Illumina,

USA). The average DNA fragment length and purity was determined using the Agilent High

Sensitivity DNA kit and the Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA). Samples

were pooled at equimolar concentrations to a final concentration of 4 nM. All libraries were

run on a 500-cycle v2 flow cell. The samples included in this study were sequenced across

seven distinct MiSeq runs. Each sample was library prepped and sequenced in technical repli-

cate. Replicates were true replicates in that we started from two aliquots taken from the origi-

nal samples.

Oxford nanopore library preparation and sequencing for consensus

sequences

All consensus-level surveillance sequencing of SARS-CoV-2 was performed using Oxford

Nanopore sequencing (n = 3,351) as described previously [51].

Processing raw ONT data

Sequencing data was processed using the ARTIC bioinformatics pipeline scaled up using on

campus computing cores (https://github.com/artic-network/artic-ncov2019). The entire ONT

analysis pipeline is available at https://github.com/gagekmoreno/SARS-CoV-2-in-Southern-

Wisconsin.
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Processing raw Illumina data

Raw FASTQ files were analyzed using the workflow available in the following GitHub reposi-

tory– https://github.com/gagekmoreno/SARS_CoV-2_Zequencer. Reads were paired and

merged using BBMerge (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/

bbmerge-guide/) and mapped to the Wuhan-Hu-1/2019 reference (Genbank accession

MN908947.3) using BBMap (https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/

bbmap-guide/). Mapped reads were imported into Geneious (https://www.geneious.com/) for

visual inspection. Variants were called using callvariants.sh (contained within BBMap) and

annotated using SnpEff (https://pcingola.github.io/SnpEff/). Variants were called at�0.01% in

high-quality reads (phred score>30) that were�100 base pairs in length and supported by a

minimum of 10 reads. The total minimum read support was set to 10 to generate initial VCF

files with complete consensus genomes for the few samples where coverage fell below 100 reads

in a few areas. Substantial downstream variant cleaning was performed as outlined below.

iSNV quality control

BBMap’s output VCF files were cleaned using custom Python scripts, which can be found in

the GitHub accompanying this manuscript (https://github.com/lmoncla/ncov-WI-within-

host). First, any samples without technical replicates were excluded. Next, we discarded all

iSNVs which occurred at primer-binding sites (S3 Table). These “recoded” VCFs can be

found in the GitHub repository in “data/vcfs-recode”. We then filtered these recoded VCF

files and for variants with (1) 100x coverage; (2) found at�3% frequency; (3) and found

between nucleotides 54 and 29,837 (based on the first and last ARTIC v3 amplicon). We

excluded all indels from our analysis, including those that occur in intergenic regions.

We inspected our filtered iSNV datasets across replicate pairs. We visually inspected each repli-

cate pair VCF and plotted replicate frequencies against each other (available in the GitHub reposi-

tory). This identified a few samples which were outliers for having very limited overlap in their

iSNV populations. This could be traced to low coverage or amplicon drop-out in each sample.

FASTQs for these samples are available in GenBank, but we have excluded them from down-

stream analyses presented here (n = 11; tube/filename identifier 65, 124, 125, 303, 316, 1061, 1388,

1103, 1104, 1147, and 1282) (iSNVs in technical replicates are shown for sample 1104 in S4B Fig).

We generated one cleaned VCF file by averaging the frequencies found for overlapping iSNVs

and discarding all iSNVs which were only found in one replicate. In addition to the SARS-CoV-2

diagnostic swabs, we sequenced a SARS-CoV-2 synthetic RNA control (Twist Bioscience, San Fran-

cisco, CA) representing the Wuhan-Hu-1 sequence (Genbank: MN908947.3) in technical replicate

at 1x106 template copies per reaction in order to identify spurious variants introducing during

library prep and sequencing. We then excluded variants detected in the synthetic RNA control (S4

Table) from all downstream analyses. Notably, this filter removed a single variant at nucleotide posi-

tion 6,669 from our analysis [20]. Finally, within-host variants called at�50% and<97% frequency

comprise consensus-level mutations relative to the Wuhan-Hu-1/2019 reference sequence. To

ensure that the corresponding minor variant was reported we report the opposite minor allele at a

frequency of 1—the consensus variant frequency. For example, a C to T variant detected at 75% fre-

quency relative to the Wuhan-1 reference was converted to a T to C variant at 25% frequency.

Processing of the raw sequence data, mapping, and variant calling with the

Washington pipeline

To assess the sensitivity of our iSNV calls to bioinformatic pipelines, we generated VCF files

using an independent bioinformatic pipeline. Raw reads were assembled against the
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SARS-CoV-2 reference genome Wuhan-Hu-1/2019 (Genbank accession MN908947.3; the

same reference used for the alternative basecalling method) to generate pileup files using the

bioinformatics pipeline available at https://github.com/seattleflu/assembly. Briefly, reads were

trimmed with Trimmomatic (http://www.usadellab.org/cms/?page=trimmomatic) [52] in

paired end mode, in sliding window of 5 base pairs, discarding all reads that were trimmed to

<50 base pairs. Trimmed reads were mapped using Bowtie 2 (http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml) [53], and pileups were generated using samtools mpileup (http://

www.htslib.org/doc/samtools-mpileup.html). Variants were then called from pileups using

varscan mpileup2cns v2.4.4 (http://varscan.sourceforge.net/using-varscan.html#v2.3_

mpileup2cns). Variants were called at�1% frequency, with a minimum coverage of 100, and

were supported by a minimum of 2 reads.

Phylogenetic analysis

All available full-length sequences from Wisconsin through February 16, 2021 were used for

phylogenetic analysis using the tools implemented in Nextstrain custom builds (https://github.

com/nextstrain/ncov) [54,55]. Phylogenetic trees were built using the standard Nextstrain

tools and scripts [54,55]. We used custom python scripts to filter and clean metadata. A cus-

tom “Wisconsin” profile was made to create a Wisconsin-centric subsampled build to include

representative sequences. The scripts and output are available at https://github.com/

gagekmoreno/Wisconsin-SARS-CoV-2.

Household pairs permutation test

For household groups, we performed all pairwise comparisons between members of the house-

hold, excluding pairs for which the consensus genomes differed by>2 nucleotide changes. We

determined this cutoff by modeling the probability that 2 consensus genomes separated by one

serial interval differ by n mutations. We model this process as Poisson-distributed with lambda

equal to the expected number of substitutions per serial interval, as described previously [36].

We chose to model this expectation using the serial interval rather than the generation interval

for the following reason. The sequence data we have represent cases that were sampled via pas-

sive surveillance, usually from individuals seeking testing after developing symptoms. Differ-

ences in the genome sequences from two individuals therefore represent the evolution that

occurred between the sampling times of those two cases. Although neither the serial interval

nor the generation interval perfectly matches this sampling process, we reasoned that the serial

interval, or the time between the symptom onsets of successive cases, may more accurately

capture how the data were sampled. We evaluated probabilities across a range of serial inter-

vals and clock rates. For serial interval, we use the values inferred by He et al, of a mean of 5.8

days with a 95% confidence interval of 4.8–6.8 days [37]. For substitution rate, we employ esti-

mates from Duchene et al, who estimate a mean substitution rate of 1.10 x 10−3 substitutions

per site per year, with a 95% credible interval of 7.03 x 10−4 and 1.15 x 10−3 [1]. To model the

expectation across this range of values, we evaluate the probabilities for serial intervals at the

mean (5.8), as well as for 4, 5, 6, 7, and 8 days, and substitution rates at the mean (1.10 x 10−3)

and at the bounds of the 95% credible interval. For each combination of serial interval and sub-

stitution rate, we calculate the expected substitutions in one serial interval as: (substitution rate

per site per year � genome length/365 days) �serial interval. The results using the mean serial

interval (5.8 days) and substitution rate (1.10 x 10−3) are shown in the main text, while the full

set of combinations is shown in the supplement. Under this model, the vast majority of con-

sensus genomes derived from cases separated by a single serial interval are expected to differ

by�2 mutations. The probability that two genomes that are separated by one serial interval
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differ by 3 mutations ranges from 0.0016–0.059. Only in the case of an 8 day serial interval

with the highest bound of the substitution rate do we infer a probability of 3 mutations that is

greater than 0.05. We therefore classified all pairs of individuals from each household that dif-

fered by�2 consensus mutations and who were tested within 14 days of each other as putative

transmission pairs.

To determine whether putative household transmission pairs shared more variants than

individuals without an epidemiologic link, we performed a permutation test. At each iteration,

we randomly selected a pair of samples (with replacement) and computed the proportion of

variants they share as: (2 x total number of shared variants) / (the total number of variants

detected among the two samples). For example, if sample A contained 5 iSNVs relative to the

reference (Wuhan-1, Genbank accession MN908947.3), sample B harbored 4 iSNVs, and 1

iSNV was shared, then the proportion of sample A and B’s variants that are shared would be 2/

9 = 0.22. We performed 10,000 iterations in which pairs were sampled randomly to generate a

null distribution. We then compared the proportion of variants shared by each putative house-

hold transmission pair to this null distribution. The proportion of variants shared by a house-

hold pair was determined to be statistically significant if it was greater than 95% of random

pairs.

Transmission bottleneck calculation

The beta-binomial method [38], was used to infer the transmission bottleneck size Nb. Nb

quantifies the number of virions donated from the index individual to the contact (recipient)

individual that successfully establish lineages in the recipient that are present at the sampling

time point. The unit of the transmission bottleneck, as described by Sobel-Leonard and Koelle

is the number of viruses that found infection in a recipient host following transmission. The

beta-binomial method assumes variant sites are independent, which may not be true given

that SARS-CoV-2 contains a continuous genome thought to undergo limited recombination

[56]. In addition, the beta-binomial method assumes that identical variants found in the index

and contact are shared as a result of transmission, though it is possible that identical variants

occurring in a donor and a recipient individual occurred independently of one another and

are not linked through transmission. We consider this possibility at one site in particular

which commonly appears at low frequencies in donor-recipient pairs. Code for estimating

transmission bottleneck sizes using the beta-binomial approach has been adapted from the

original scripts (https://github.com/koellelab/betabinomial_bottleneck) and is included in the

GitHub accompanying this manuscript (https://github.com/lmoncla/ncov-WI-within-host).

We calculated individual transmission bottleneck size estimates for each household trans-

mission pair as were identified in the household permutation test (n = 28). We used the date of

symptom onset and/or date of sample collection to assign donor and recipient within each

pair. Within each pair, if the date of symptom onset differed by�3 days, we assigned the indi-

vidual with the earlier date as the donor. If this information was unavailable or uninformative

(<3 days) for both individuals in a pair, we looked at the date of sample collection and if these

dates differed by�3 days, we assigned the individual with the earlier date as the donor. If this

information was also not available or was not informative (<3 days), we calculated the bottle-

neck size with each individual as a donor. These bidirectional comparisons are denoted with

an “a” or “b” appended to the filename (n = 16 pairs were analyzed bidirectionally). In total,

we analyzed 44 pairs (including bidirectional comparisons). Metadata and GISAID accession

numbers for each pair are described in S4 Table.

Combined transmission bottleneck size estimates (as seen in Fig 5C) were estimated as

described in the supplemental methods in Martin & Koelle [30]. Briefly, overall transmission
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bottleneck sizes were estimated based on the assumption that transmission bottleneck sizes are

distributed according to a zero-truncated Poisson-distribution and bidirectional bottleneck

estimates were each assigned 50% of the weight in this calculation compared to the unidirec-

tional pairs. Matlab code to replicate the combined bottleneck estimates can be found in the

GitHub accompanying this paper (https://github.com/lmoncla/ncov-WI-within-host).

Enumerating mutations along the phylogeny

We used the global Nextstrain [54] phylogenetic tree (nextstrain.org/ncov/global) accessed on

February 24, 2021 to query whether mutations detected within-host are detected on the global

tree. We accessed the tree in JSON format and traverse the tree using baltic [57]. To determine

the fraction of within-host variants detected on the phylogenetic tree, we traversed the tree

from root to tip, gathering each mutation that arose on the tree in the process. For each muta-

tion, we counted the number of times it arose on internal and terminal nodes. We then com-

pared the fraction of times each iSNV identified within-host was detected on an internal node

vs. a terminal node. To determine whether particular iSNVs were enriched at internal nodes,

we compared the frequency of that iSNV’s detection against the overall ratio of mutations aris-

ing on internal vs. terminal nodes in the phylogeny with a Fisher’s exact test.

To query whether iSNVs ever became dominant in tips sampled downstream, we used a

transmission metric developed previously [58]. Using the tree JSON output from the Nextstrain

pipeline [54], we traversed the tree from root to tip. We collapsed very small branches (those

with branch lengths less than 1 x 10−16) to obtain polytomies. For each tip for which we had

within-host data that lay on an internal node, i.e., had a branch length of nearly 0 (< 1 x 10−16),

we then determined whether any subsequent tips occurred in the downstream portion of the

tree, i.e., tips that fall along the same lineage but to the right of the parent tip. We then traversed

the tree and enumerated every mutation that arose from the parent tip to each downstream tip.

If any mutations along the path from the parent to downstream tip matched a mutation found

within-host in the parent, this was classified as a potential instance of variant tfransmission. A

diagram of how “downstream tips” and mutations were classified is shown in Fig 4A.

Linear regression model

To determine the relative contributions of phylogenetic divergence, geographic distance, clade

membership, and household membership to the probability of sharing within-host variants,

we fit linear regression models to the data in R. As our outcome variable, we performed pair-

wise comparisons for each pair of samples in the dataset (including household and non-house-

hold pairs) and compute the proportion of variants shared for each pair. We then model the

proportion of shared variants as the combined function of 4 predictor variables as follows: Pro-

portion of variants shared ~ β0 + β1x1 + β2x2 + β3x3 + β4x4, where x1 represents a 0 or 1 value

for household, where a 1 indicates the same household and a 0 indicates no household rela-

tionship. X2 denotes the divergence, i.e., the branch length in mutations between tip A and tip

B as a continuous variable, x3 indicates the great circle distance in kilometers between the loca-

tion of sample collection as a continuous variable, and x4 denotes a 0 or 1 for whether the two

tips belong to the same clade (same clade coded as a 1, different clade coded as a 0). We fit a

univariate model for each variable independently, a model with an intercept alone, and a com-

bined model using the Rethinking package in R (https://www.rdocumentation.org/packages/

rethinking/versions/1.59). We perform model comparison with the WAIC metric and select

the combined model as the one with the best fit. We compute mean coefficient estimates and

95% highest posterior density intervals (HPDI) by sampling and summarizing 10,000 values

from the posterior distribution.
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Supporting information

S1 Fig. Read depth. Read depth by genome location in 1,000-bp bins for MiSeq runs a. 627, b.

628, c. 643, and d. 644. Water controls and low-coverage samples are labeled. Samples

included in each run are labeled according to the color to the right of each plot.

(PDF)

S2 Fig. Read depth. Read depth by genome location in 1,000-bp bins for MiSeq runs a. 645, b.

667, and c. 671. Water controls and low-coverage samples are labeled within each plot. Sam-

ples included in each run are labeled according to the color to the right of each plot.

(PDF)

S3 Fig. Additional iSNV quality control information. Subplot a. shows variant frequencies

generated using the Wisconsin bioinformatic pipelines are shown on the x-axis and frequen-

cies generated using the Washington bioinformatic pipeline are shown on the y-axis. The yel-

low box highlights low-frequency variants (3–15%), which is expanded out to the right. b.

Proportion of intersection iSNVs relative to the total number of iSNVs increases as variant fre-

quency threshold increases. c. The total number of iSNVs detected across both Twist RNA

control replicates compared to the iSNV frequency threshold. 57/102 of iSNVs detected in

these clonal samples occur<3% frequency. Note that the iSNVs reported in S1 Table are inter-

section iSNVs only. The identities of all iSNVs detected�1% frequency in the Twist RNA con-

trol can be found in the GitHub accompanything this manuscript. d. The number of

intersection variants, both consensus and iSNVs, is compared to the Ct value for all samples

where a Ct value was available. Out of 133 total samples, Ct values were available for 94. e. The

number of intersection variants, both consensus and iSNVs, is compared to the RLU (relative

light unit) value for all samples where a RLU value was available.

(PDF)

S4 Fig. iSNVs in technical replicates across all samples. a. Variant frequencies in replicate 1

are shown on the x-axis and frequencies in replicate 2 are shown on y-axis. This plot includes

all variants found in both replicates and not just the intersection variants as shown Fig 1A and

1B. Example of one sample with very poor overlap between technical replicates; this sample

(sample 1104) was excluded from the experimental dataset.

(PDF)

S5 Fig. iSNVs do not cluster by sequencing run. iSNVs detected in at least 2 samples are

shown on the x-axis and are plotted against the number of times they are detected in our data-

set. Each iSNV bar is colored according to the number of times it was detected within each

sequencing batch.

(PDF)

S6 Fig. Wisconsin divergence phylogeny. A full-genome phylogenetic tree built showing

6306 Wisconsin consensus sequences with the Nextstrain pipeline is shown. The x-axis repre-

sents divergence expressed as the number of nucleotide mutations. Nextstrain clade labels are

shown on the corresponding branch. Yellow tips represent Wisconsin samples that were Illu-

mina sequenced in duplicate and analyzed in this manuscript. Purple tips represent samples

from households.

(PDF)

S7 Fig. Most iSNVs are not detected on the phylogeny. We queried every iSNV that was

detected within-host (in at least 1 sample) in the global SARS-CoV-2 phylogenetic tree and

quantified the number of times that iSNV was detected on an internal node (yellow bar
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heights) or on a terminal node/tip (blue bar heights). 42% of all iSNVs detected within-host

were found on the tree. Most iSNVs that were detected on the tree were rare, and occurred

predominantly on terminal nodes. Please note you will likely need to zoom into this figure to

clearly read the labels along the x-axis.

(PDF)

S8 Fig. Modeling the expected number of mutations distinguishing genomes separated by

one serial interval. To define whether infections sampled from the same household might be

true transmission pairs, we explored the expected number of consensus mutations that should

differ between genomes separated by one serial interval. We modeled the probability that 2

consensus genomes will share x mutations as Poisson distributed with lambda equal to the

number of mutations expected to accumulate in the SARS-CoV-2 genome over a single serial

interval, given a known substitution rate. He et al. estimate a serial interval for SARS-CoV-2 of

of 5.8 days, with a 95% confidence interval between 4.8–6.8 days [35]. We therefore evaluated

serial intervals of 4, 5, 6, 7, and 8 days. For the substitution rate, we use estimates from Duch-

ene et al [1], who estimate a mean substitution rate of 1.10 x 10−3 substitutions per site per

year, with a 95% credible interval of 7.03 x 10−4 and 1.15 x 10−3. We evaluated the probabilities

that two consensus genomes differ by 0, 1, 2, 3, and 4 mutations given serial intervals ranging

from 4–8, and clock rates at the mean, and upper and lower bounds of the 95% credible inter-

val. For each calculated probability, the serial interval is represented by color and the substitu-

tion rate is shown above each plot. The dotted line represents a probability of 0.05. Given these

combinations of values, the vast majority of consensus genomes are expected to differ by 0–2

mutations.

(PDF)

S9 Fig. Posterior density estimates for regression coefficients. For each regression coeffi-

cient evaluated in the combined regression model, the full posterior distribution is shown as a

density plot. The posterior distribution of the estimated variance and intercept are also shown.

(PDF)

S10 Fig. Sensitivity testing of transmission bottleneck estimates. Maximum likelihood esti-

mates for mean transmission bottleneck size in individual donor-recipient pairs using a. 1%

frequency threshold, b. 3% frequency threshold, c. excluding site 15,168 as a possible homo-

plasy with a 3% frequency threshold, and d. 7% frequency threshold. Data are not shown for

donor-recipient pairs where no bottleneck estimate could be generated due to lack of variant

data. Bidirectional comparisons are indicated with an “a” and “b” following the pair number.

(PDF)

S11 Fig. Variance in transmission bottleneck size cannot be explained by time between

symptom onset in donor:recipient pairs. We plotted transmission bottleneck size on the y-

axis against time (days) between symptom onset in 17 donor-recipient pairs on the x-axis for

which we had symptom metadata.

(PDF)

S12 Fig. Frequency of SNVs across the genome. The frequency of all SNVs are plotted across

the SARS-CoV-2 genome. Each variant is colored by mutation type.

(PDF)

S1 Table. iSNVs detected in replicate sequencing of the synthetic RNA control (Twist-Bio-

sciences). All iSNVs called in the synthetic RNA control from Twist Biosciences are shown.

(DOCX)
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S2 Table. Sample identifiers and accession numbers. This table includes strain name, tube/

filename, state of collection, county of collection, collection date, GISAID accession number,

Genbank accession number, as well as Ct values and RLU values where available for each sam-

ple included in this study.

(DOCX)

S3 Table. ARTIC v3 primer sequences used to amplify cDNA for library preparation.

(DOCX)

S4 Table. Household transmission pair metadata including accession numbers, difference

in days between symptom onset, difference in days between collection dates, and pair iden-

tifier.

(DOCX)

S5 Table. List of all iSNVs and their respective frequencies.

(PDF)
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