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ABSTRACT

Although protein evolution can be approximated as a ‘‘molecular evolutionary clock,’’ it is well known
that sequence change departs from a clock-like Poisson expectation. Through studying the deviations from
a molecular clock, insight can be gained into the forces shaping evolution at the level of proteins. Generally,
substitution patterns that show greater variance than the Poisson expectation are said to be ‘‘overdispersed.’’
Overdispersion of sequence change may result from temporal variation in the rate at which amino acid
substitutions occur on a phylogeny. By comparing the genomes of four species of yeast, five species of
Drosophila, and five species of mammals, we show that the extent of overdispersion shows a strong negative
correlation with the effective population size of these organisms. Yeast proteins show very little over-
dispersion, while mammalian proteins show substantial overdispersion. Additionally, X-linked genes, which
have reduced effective population size, have gene products that show increased overdispersion in both
Drosophila and mammals. Our research suggests that mutational robustness is more pervasive in organisms
with large population sizes and that robustness acts to stabilize the molecular evolutionary clock of sequence
change.

PROTEIN sequence divergence is often approx-
imated as a ‘‘molecular evolutionary clock’’

(Zuckerkandl and Pauling 1965), where the accumu-
lation of amino acid substitutions is proportional to the
time separating the sequences. In the absence of tem-
poral variation, the distribution of substitution counts
across a protein’s phylogeny is expected to follow a
Poisson distribution, where both the mean and the
variance of substitution counts are equal to the rate
(intensity) parameter l (Ohta and Kimura 1971). As
the mean and variance of the Poisson distribution are
both equal to l, substitution counts should show a ratio
of the variance to the mean, known as the index of dis-
persion ½R(t)�, of 1. However, temporal variation in the
rate of substitution influences the statistical character
of substitution counts occurring over time. If substi-
tution rate varies over time, then substitution counts of
evolving proteins are expected to be ‘‘overdispersed’’
with R(t) . 1 (Cutler 2000). It is now abundantly clear
that the accumulation of amino acid sequence change
in both mammals (Gillespie 1989; Smith and Eyre-
Walker 2003) and Drosophila (Zeng et al. 1998; Kern

et al. 2004; Bedford and Hartl 2008) is overdispersed.
Additionally, the index of dispersion shows a linear

correlation with the mean per-branch substitution
count (M) in Drosophila, suggesting that substitution
counts are better described by a negative binomial dis-
tribution rather than a Poisson distribution (Bedford

and Hartl 2008). Such a negative binomial distribu-
tion is consistent with rate variation occurring over time
across individual protein phylogenies.

Although, historically, the index of dispersion has
been used as a test of the neutral theory (Ohta and
Kimura 1971; Gillespie 1989), findings of R(t) . 1 do
not necessarily imply evidence of selection. Simple mod-
els of adaptive evolution suggest that substitutions fixed
through positive selection may themselves be Poisson
distributed. Additionally, more complex models of neu-
tral evolution incorporating epistasis suggest that purely
neutral substitutions may show significant overdisper-
sion. Thus, the index of dispersion represents a test of the
extent of heterogeneity of sequence evolution rather
than a test of the selective forces at work.

There have been multiple studies of the index of
dispersion of sequence evolution using lattice protein
simulations (Bastolla et al. 2000; Wilke 2004; Bloom

et al. 2007a). Although lattice protein models are heavily
abstracted from the real proteins they seek to emulate,
they do incorporate some important details of protein
evolution. For instance, such lattice models give rise to a
many-to-one mapping of genotypes to phenotypes, in
which multiple sequences result in the same structure.
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Results from such lattice protein simulations show that
evolution under purifying selection for a specific pro-
tein structure results in overdispersion of the substitu-
tion process (Bastolla et al. 2000). Interestingly, these
simulations also show that the effective population size
at which lattice proteins evolve significantly affects the
resulting indexes of dispersion. Populations of lattice
proteins evolving under small population sizes show
high levels of overdispersion, whereas those proteins
evolving under large population sizes show low levels of
overdispersion (Wilke 2004; Bloom et al. 2007a). At
present, it is unknown whether real proteins show a
similar pattern. By analyzing substitution counts occur-
ring among orthologous proteins in four species of
yeast, five species of Drosophila, and five species of
mammals (Figure 1), we find that effective population
size strongly dictates the degree of randomness in the
molecular clock, with large effective population sizes
buffering stochastic variation in evolutionary rate. This
result is consistent with the evolution of increased
mutational robustness in proteins evolving under large
population sizes.

METHODS

Ortholog prediction and alignment: Annotated Sac-
charomyces cerevisiae, S. paradoxus, S. mikatae, and S. bayanus
protein sequences were obtained from the Saccharomy-
ces Genome Database (accessed January 2008; http://
www.yeastgenome.org/) (Goffeau et al. 1996; Kellis

et al. 2003). Protein sequences from Drosophila species
(Drosophila ananassae, D. melanogaster, D. pseudoobscura, D.
virilis, and D. willistoni) were obtained from the AAAWiki
(accessed January 2008; http://rana.lbl.gov/drosophila/
wiki/index.php/) (Adams et al. 2000; Drosophila

12 Genomes Consortium 2007). Mammalian protein
sequences from dogs, humans, macaques, mice, and rats
were procured from Ensembl (accessed January 2008;
http://www.ensembl.org/) (MouseGenome Sequencing

Consortium 2002; International Human Genome Se-

quencing Consortium 2004; Rat Genome Sequencing

Project Consortium 2004; Lindblad-Toh et al. 2005;

Rhesus Macaque Genome Sequencing and Analysis

Consortium 2007).
Orthology assignments within yeast, Drosophila, and

mammals were obtained using the SYNERGY algorithm
(Wapinski et al. 2007). Briefly, SYNERGY performs a
bottom-up traversal of a species tree, identifying ortho-
logs between the species below each ancestral species in
the tree. SYNERGY uses sequence similarity and gene
order to generate putative orthology assignments and
employs a modified neighbor-joining procedure to
reconstruct gene tree topologies at each intermediate
stage of the algorithm. It refines orthology assignments
according to the resulting tree structure. This method
generates a genomewide catalog of orthology assign-
ments and their corresponding gene trees. To avoid
complications caused by gene duplication and gene
loss, only those genes that maintain a 1:1 orthologous
relationship among all species were analyzed. This
pruning left 3788 yeast, 10,032 Drosophila, and 11,136
mammalian proteins.

Orthologous protein sequences were aligned using
MUSCLE v3.6 (Edgar 2004). To control for sequence
annotation errors, alignment errors, and spurious or-
tholog predictions, we eliminated all alignments in
which gaps accounted for .25% of total alignment
length, leaving 3081 yeast, 7174 Drosophila, and 8065
mammalian proteins.

Estimation of substitution counts: Substitution counts
were estimated under maximum likelihood using the
AAML package of PAML v3.14 (Yang 1997). Substitution
rate was kept constant across sites within sequences (a ¼
0), but was allowed to vary freely across branches of the
phylogeny. Amino acid substitution rate was constrained
to be proportional to the frequency of the target amino
acid, with frequencies based upon genomic averages.
Analyses using substitution matrices based upon empir-
ical substitution rates observed among our orthologous
proteins, as well as those using PAM matrices (Dayhoff

et al. 1978), show similar, but slightly larger, values of R(t)
(data not shown). Additionally, estimating a as a free
parameter for each gene results in similar, though slightly
larger, values of R(t) (data not shown). Generally, more
detailed likelihood models result in larger values of R(t),

Figure 1.—Unrooted phylo-
genies of yeast, Drosophila,
and mammalian species. Branch
lengths shown are proportional
to evolutionary distance, as deter-
mined by analysis of concatenated
protein data sets. These distances
were used to correct for lineage
effects influencing substitution
counts in individual proteins
(see methods).
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so that our relatively simple models provide conservative
estimates.

Estimation of index of dispersion: Indexes of dispersion
were calculated following Gillespie (1989) and Bedford

and Hartl (2008). This approach uses standard statistical
techniques for calculating the mean and variance of
weighted samples. The branch weights for a given n-
branched species tree are obtained via a concatenated
set of all available protein sequences (Figure 1), where
the length of branch i on the concatenated tree is Ti.
The weight of branch i is then

Wi ¼
n 3 TiP

n
j¼1 Tj

:

Such a weighting scheme eliminates lineage effects that
are present throughout a genome, so that variance in
substitution counts must be specific to a particular gene
and not due to effects of branch length differences
present in the species tree. The sample mean (M) and
sample variance (S2) of substitution counts occurring on
a particular protein tree are calculated as
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where xi represents the number of substitutions occur-
ring on branch i of the protein tree. R(t) is estimated as
the ratio of the sample variance to the sample mean.

Statistical analysis by maximum likelihood: The likeli-
hood of the observed substitution counts was compared
between Poisson and negative binomial models. The
probability of observing k substitutions drawn from a
Poisson distribution with rate parameter l is given by

f ðk j lÞ ¼ e�llk

k!
:

The probability of observing k substitutions drawn from
a negative binomial distribution with rate parameter l

and dispersion parameter v is

g ðk j l;vÞ ¼ lk

k!
3

Gðv 1 kÞ
GðvÞ3 ðl 1 vÞk 3

1

ð1 1 l=vÞv:

The Poisson model is nested within the negative bino-
mial model, such that as v approaches infinity the
negative binomial density reduces to the Poisson den-
sity; i.e., g(k, l, ‘) reduces to f(k, l). In both models, the
rate parameter l was estimated via maximum likelihood
separately for each protein, taking into account the
relative weightings of each branch (see above and Figure
1). A single dispersion parameter v was estimated across
proteins. The log likelihood for the Poisson model, with k
substitutions on branch i of protein j, is

X
j

X
i

logff ðkji j ljWiÞg:

The log likelihood for the negative binomial model,
with k substitutions on branch i of protein j, isX

j

X
i

logfg ðkji j ljWi ;vÞg:

Additionally, estimates of l and v were made for each
protein individually using a similar approach.

RESULTS

On average, proteins from yeast, Drosophila, and
mammals all show greater variance in substitution
counts than would be expected if sequence evolution
were a simple Poisson process ½Table 1; in all three cases
R(t) . 1, P , 10�15, Wilcoxon’s signed-rank test�.
Differences in average per-branch substitution count
M may result from variation in evolutionary time, var-
iation in evolutionary rate, or a combination of the two.
Variation in protein evolutionary rate is evident in
comparisons of M between proteins sharing the same
species phylogeny. Such variation arises due to differ-
ences in the per-site rate of evolution and to differences
in protein length. It is easy to see that longer proteins or
faster evolving proteins will have more substitution
events than shorter proteins or more slowly evolving
proteins. Variation in M between yeast, Drosophila, and
mammals is due to variation in the rate of protein
evolution and also to differing amounts of evolutionary
time separating species.

Unexpectedly, we find that proteins from yeast,
Drosophila, and mammals all show a positive correla-
tion between M and the index of dispersion R(t) (Figure
2). Regression analysis shows that, in all three cases, the
intercept lies close to 1, and for both Drosophila and
mammalian proteins there is a highly significant linear
term (Table 2). In yeast and Drosophila, adding a
quadratic term to the regression does not significantly
improve the regression fit, while mammalian proteins
show a relatively weak but significant quadratic term.
This indicates that the relationship between M and R(t)
can be adequately explained as nearly linear. A linear
relationship between M and R(t) is expected if sub-

TABLE 1

Mean per-branch substitution count (M) and mean index
of dispersion ½R(t)� of amino acid sequences in closely

related species of yeast, Drosophila, and mammals

n mean M mean R(t)

Yeast 3081 30.0133 2.0993
Drosophila 7174 40.7729 4.1892
Mammals 8065 20.6350 6.4790

Robustness and Overdispersion 979



stitution counts follow a negative binomial distribution
(Bedford and Hartl 2008). Often used in cases of
overdispersion, a negative binomial distribution pre-
dicts that R(t) ¼ 1 1 l/v, where l represents the rate
parameter and v represents the dispersion parameter of
the negative binomial distribution. It is the v-parameter
rather than R(t) that gives the degree of departure from
Poisson. When v ¼ ‘, the negative binomial density
reduces to the Poisson density. Proteins with values of v

close to 0 have less ‘‘stable’’ molecular clocks than
proteins with large values of v.

Values of l and v can be estimated through numerical
optimization of the likelihood function (see methods).
By holding v constant across proteins, but allowing l to
vary, we estimate a global v for yeast, Drosophila, and

mammals (Table 3). In all three cases, we find that a
negative binomial distribution gives a substantially
better fit than a Poisson distribution (P , 10�15 in each
case, LRT with d.f. ¼ 1). Maximum likelihood allows
levels of overdispersion to be rigorously compared
between species. We find that estimated values of v

are significantly smaller in mammals compared to yeast
and Drosophila, and that values of v are significantly
smaller in Drosophila than in yeast (Table 3).

In accordance with results from lattice protein simu-
lations, there appears to be a strong effect of population
size on the extent to which sequence evolution departs
from its Poisson expectation. Standard estimates of
effective populations sizes are �104–105 for mammals,
106 for Drosophila, and 107–108 for microorganisms.
Yeast, with a large effective population size, shows a large
value of v; mammals, with a relatively small effective
population size, show a small value of v; whereas
Drosophila is intermediate for both effective popula-
tion size and v. Thus, it appears that population size
and the dispersion of the molecular clock are tightly
coupled. Evolution under large population sizes results
in relatively little overdispersion, whereas evolution
under small population sizes results in a great deal of
overdispersion.

The apparent negative correlation observed between
population size and index of dispersion across different
organisms is borne out in comparisons between X-
linked and autosomal protein-coding genes within
Drosophila and within mammals. In a species with an
equal sex ratio, there will be a 0.75:1.00 ratio of X
chromosomes to autosomes within the population, so
that proteins encoded on the X are expected to evolve
with a smaller effective population size than proteins on
the autosomes. Accordingly, we observe that estimates

Figure 2.—Relationship between per-branch substitution
count (M) and index of dispersion ½R(t)� among yeast, Dro-
sophila, and mammalian proteins. Variation in M is due to dif-
ferences in per-site rate of evolution, differences in sequence
length, and differences in evolutionary time. Values of R(t) .
1 indicate departure from a Poisson molecular clock. Solid
lines represent a sliding-window analysis of mean R(t) values
(window size 61.5M). Dashed lines represent regressions of
R(t)� aM 2 1 bM 1 c. Best-fit parameters for these regressions
are shown in Table 2.

TABLE 2

Linear regression of mean substitution count (M) vs.
index of dispersion ½R(t)� for yeast, Drosophila,

and mammalian proteins

Coefficient 95% C.I. t-value Pr(.jtj)

Yeast
Intercept 1.1891 0.7662, 1.6119 5.5142 3.9e-8

M 0.0353 �0.0085, 0.0791 1.5811 0.1140
M2 �0.0000 �0.0009, 0.0009 �0.0225 0.9820

Drosophila
Intercept 1.6117 1.3468, 1.8766 11.9272 ,1.0e-15

M 0.0858 0.0600, 0.1117 6.5076 8.4e-11
M2 �0.0005 �0.0010, 0.0000 �1.7941 0.0729

Mammalian
Intercept 1.1059 0.6151, 1.5966 4.4169 ,1.0e-15

M 0.4453 0.3852, 0.5054 14.5237 ,1.0e-15
M2 �0.0049 �0.0063,�0.0035 �6.8337 8.9e-12

TABLE 3

Maximum-likelihood estimation of protein-specific rate (l)
and genomewide dispersion (v) parameters using Poisson

and negative binomial models of substitution counts in
yeast, Drosophila, and mammalian proteins

d.f. l.l. Estimated v 95% C.I.

Yeast
Poisson (l) 3081 �49,712.9 — —
Negative

binomial (l, v)
3082 �47,140.9 37.037 35.088,

39.216

Drosophila
Poisson (l) 7174 �214,166.5 — —
Negative

binomial (l, v)
7175 �178,263.0 13.699 13.423,

13.986

Mammals
Poisson (l) 8065 �256,628.0 — —
Negative

binomial (l, v)
8066 �179,484.9 3.494 3.435,

3.554

l.l., log likelihood.
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of the dispersion parameter v are significantly smaller
in proteins encoded on the X than on the autosomes in
both Drosophila and mammals (Table 4). X-linked
protein-coding genes were taken as those currently on
the X chromosome of D. melanogaster and humans.
Although there is expected to be some limited evolu-
tionary variation in which genes are X-linked, this
variation will add noise without biasing our results.
Interestingly, Drosophila shows a 28% decrease in the
estimated v of X-linked protein-coding genes, while
mammals show a very similar 27% decrease in the
estimated v of X-linked protein-coding genes.

Additionally, we find that per-protein estimates of rate
parameter l and dispersion parameter v show a weak
positive correlation across proteins in yeast, Drosophila,
and mammals (Figure 3; corY ¼ 0.133, corD ¼ 0.183,
corM ¼ 0.133, P , 10�15 in all three cases, Spearman’s
rank correlation). This is perhaps surprising, as the
naı̈ve expectation might be that fast-evolving proteins
show a greater deviation from Poisson evolution than
slow-evolving proteins. We observe the opposite: pro-
teins that accumulate substitutions quickly do so with a
more regular clock than proteins that accumulate
substitutions slowly. This may seem at first paradoxical,
as the index of dispersion R(t) shows a strong positive
correlation with the mean per-branch substitution
count M (Figure 2). However, under a negative binomial
distribution, R(t) is expected to show a strong positive
correlation with l, simply due to the summary statistics
inherent to the negative binomial. Thus, even if l and v

share a weak negative correlation, l and R(t) will still
show a positive correlation. To confirm this scenario, we
sampled substitution counts from a negative binomial
distribution using as parameters the per-protein esti-
mates of l and v. We find that the randomly sampled
substitution counts show a statistically similar relation-
ship between M and R(t) to that of the biological data
(supplemental Table 1).

DISCUSSION

We find that the mean index of dispersion ½R(t)� is
significantly .1 for yeast, Drosophila, and mammalian
proteins (Table 1; P , 10�15 in all three cases, Wilcoxon’s
signed-rank test). These results are consistent with
previous findings regarding overdispersion in both
Drosophila (Zeng et al. 1998; Kern et al. 2004; Bedford

and Hartl 2008) and mammals (Gillespie 1989;
Smith and Eyre-Walker 2003; Kim and Yi 2008). This
study is the first to report on overdispersion in yeast. We
emphasize here that, although our interpretations may
be different, the findings of the present study are highly
compatible with the findings of Kim and Yi (2008). Kim
and Yi find, through similar methodology, that mam-
malian nonsynonymous substitutions show a mean R(t)
of 4.94. Poisson evolution predicts that mean R(t) ¼ 1.
Additionally, Kim and Yi report that, in 33% of mam-
malian proteins, Poisson evolution can be rejected at
the 5% level. We interpret these results as indicative of
non-Poisson evolution; although a Poisson model can
explain the R(t) values of a subset of the genome, such a
model fails to explain genomewide patterns of over-
dispersion. We also emphasize that the finding of over-
dispersion does not necessarily imply positive selection
or adaptive evolution; overdispersion is compatible with
nearly neutral evolution occurring in a heterogeneous
fashion. The specific mechanisms creating overdis-
persion remain unclear, as many different biological
scenarios may result in heterogeneous substitution rates
(for further discussion see Bedford and Hartl 2008).

We find significantly reduced indexes of dispersion
in proteins experiencing evolution under large effective
population sizes. The negative correlation between over-
dispersion and effective population size is seen across
both organisms (Figure 2; Tables 2 and 3) and chromo-
somes (Table 4). Correspondence between organismal
comparisons and chromosomal comparisons suggests
that the observed negative correlation is a general pop-
ulation genetic phenomenon and not due to the specifics
of X chromosomes or of multicellularity. Still, with only
three groups of organisms, it is possible, although un-
parsimonious, that the observed patterns of overdisper-
sion may result from other factors besides effective
population size. There exist many differences in the biol-
ogy of these organisms that could possibly contribute to
variation in the overdispersion of the molecular clock.
Similarly, there exist differences between X chromo-

TABLE 4

Maximum-likelihood estimation of protein-specific rate (l)
and genomewide dispersion (v) parameters using Poisson

and negative binomial models of substitution counts
in proteins encoded on the X vs. proteins

encoded on the autosomes

d.f. l.l. Estimated v 95% C.I.

Drosophila autosomal
Poisson (l) 6129 �180,292.6 — —
Negative

binomial (l, v)
6130 �151,850.1 14.265 13.928,

14.556

Drosophila X-linked
Poisson (l) 1015 �32,805.1 — —
Negative

binomial (l, v)
1016 �25,598.4 11.136 10.582,

11.723

Mammalian autosomal
Poisson (l) 7776 �247127.9 — —
Negative

binomial (l, v)
7777 �173,185.4 3.527 3.469,

3.589

Mammalian X-linked
Poisson (l) 259 �8383.0 — —
Negative

binomial (l, v)
260 �5584.6 2.775 2.525,

3.048

l.l., log likelihood.

Robustness and Overdispersion 981



somes and autosomes other than differences in effective
population size. As comparative genomic data become
increasingly extensive, the population size hypothesis can
tested further.

Theory predicts that evolution under large population
sizes should result in selection for increased robustness
to random mutation (van Nimwegen et al. 1999). This
would explain our findings, as well as computer simu-
lations of lattice proteins referred to in the Introduction.
Although it has previously been shown that proteins
possess significant robustness to random amino acid
change (Guo et al. 2004; Bloom et al. 2006), it has not
been clear whether such tolerance is due to selection for
increased robustness or whether such tolerance is an
innate characteristic of functional protein sequences.
Our results strongly suggest that selection for increased
mutational robustness has occurred in yeast and to a
lesser extent in Drosophila proteins relative to mamma-
lian proteins. Selection for mutational robustness has pre-
viously been demonstrated in an RNA virus (Montville

et al. 2005), as well as in large in vitro populations of
cytochrome P450 proteins (Bloom et al. 2007b). How-
ever, the present study is the first to show that selection
for increased mutational robustness may be active in the
proteins of higher organisms.

The argument favoring selection for mutational ro-
bustness requires very little in the way of assumptions
regarding protein evolution. The presence of nearly
neutral networks permeating sequence space has been
inferred from theoretical models of RNA and protein
folding (Fontana et al. 1993; Schuster et al. 1994;
Depristo et al. 2005) as well as from recent PCR muta-
genesis experiments (Guo et al. 2004; Bloom et al. 2006).
Such nearly neutral networks are expected to arise from
the many-to-one mapping of genotypes onto fitness
combined with the compactness (high dimensionality)
of genotype space. In such scenarios, a single-amino-acid
substitution in a protein sequence often has little or no

effect on fitness; however, this substitution may alter the
fitness effects of subsequent substitutions at other sites in
the protein. Thus, as sequences evolve they move across
nearly neutral networks, sometimes acquiring robust
conformations in which many mutations result in func-
tionally nearly equivalent sequences and sometimes
acquiring fragile conformations in which most mutations
result in reduced fitness.

Interestingly, when the product of the effective
population size and the nearly neutral mutation rate
(4Nm in diploid organisms) is significantly .1, then
proteins evolve to preferentially acquire robust confor-
mations even though these conformations have the
same immediate fitness as their more fragile neighbors
in sequence space (van Nimwegen et al. 1999). In-
creased mutational robustness arises from the presence
of multiple competing sequences existing within the
population simultaneously (extensive polymorphism);
equilibrating incoming and outgoing mutations results
in a preference for robust conformations. However,
when 4Nm > 1, then at any given point in time the
population is most likely to have converged on a single
sequence and its evolution across the nearly neutral
network follows a blind random walk, testing random
mutations and sometimes accepting mutations if they
lie on the nearly neutral network. In this case, the
population spends equal amounts of time employing
each sequence in the nearly neutral network, and no
additional mutational robustness is evolved.

Mutational robustness may also arise as a byproduct of
selection for phenotypic robustness (Meiklejohn and
Hartl 2002). In this case the same relationship be-
tween robustness and population size is expected to be
preserved, because the effective strength of selection
(2Ns in diploid organisms) is greater in large popula-
tions than in small populations. Indeed, theoretical
work has shown that selection for robustness against
errors in protein translation, a specific type of pheno-

Figure 3.—Relationship
between per-gene estimates
of rate parameter l and
dispersion parameter v
among yeast, Drosophila,
and mammalian proteins.
Proteins with small values
of v accumulate substitu-
tion in a less clock-like
fashion. Parameters were
estimated via maximum
likelihood by fitting substi-
tution counts to a negative
binomial distribution (see
methods). l and v show
a weak positive correlation
in all three species (corY ¼
0.133, corD ¼ 0.183,
corM ¼ 0.133, P , 10�15 in
all three cases, Spearman’s
rank correlation).
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typic robustness, is significantly more effective in large
populations than in small populations (Wilke and
Drummond 2006).

A protein’s substitution rate is expected to vary over
time as it moves between fragile and robust conforma-
tions. Substitution away from a robust sequence will be
faster than substitution away from a fragile sequence,
simply because a greater percentage of mutations in
robust sequences result in functionally nearly equiva-
lent proteins. Variation in substitution rate will result in
overdispersion of substitution counts across a phylog-
eny. However, selection for mutational robustness acts
to buffer rate variation, thereby reducing overdisper-
sion of substitution counts.

Theory predicts that the extent of mutational robust-
ness will increase with 4Nm, so that both the effective
population size of the species and the effective nearly
neutral mutation rate of the protein are important.
Thus, in addition to a negative correlation between non-
Poisson behavior and population size, we expect a
negative correlation between the extent of non-Poisson
behavior and the rate at which substitutions accumulate
in a protein. Fast-evolving proteins should possess, on
average, more polymorphism than slow-evolving pro-
teins. This polymorphism is what drives selection for
mutational robustness. We find exactly this: fast-evolving
proteins, although showing larger values of R(t), show
patterns of evolution closer to Poisson than do slow-
evolving proteins (Figure 3). This suggests that individ-
ual proteins vary in their extent of mutational robustness
and that fast-evolving proteins have, on average, greater
robustness than slow-evolving proteins.

Recent whole-genome sequencing efforts have found
per-site nonsynonymous nucleotide diversity (p) to be
0.0180 for autosomes in D. simulans (Begun et al. 2007).
Assuming polymorphisms segregate neutrally, p pro-
vides an estimate of 4Nm. Taking the average number of
nonsynonymous sites in a protein as 1000, we estimate
per-protein 4Nm to be 2.6 for Drosophila species. This
estimate is consistent with our findings regarding over-
dispersion, as theory predicts that some degree of muta-
tional robustness should evolve when 4Nm . 1 (van

Nimwegen et al. 1999). As expected, estimates of 4Nm

for X-linked protein-coding genes are significantly
lower, with 1.8 as the D. simulans average (Begun et al.
2007). Estimates of nucleotide diversity in S. cerevisiae
(Ruderfer et al. 2006) and S. paradoxus (Johnson et al.
2004) are significantly lower than estimates in Drosoph-
ila, despite the difference in effective population size.
However, because the yeast species studied here rarely
undergo sexual recombination in nature, background
selection and hitchhiking may significantly reduce
global levels of polymorphism (Ruderfer et al. 2006).
These effects make direct comparison of Drosophila
with yeast difficult. In contrast, population genetic
estimates from mammals should be more comparable
to those from Drosophila. Taking the average per-site

nonsynonymous diversity in humans (Cargill et al.
1999) and an average length of 1000 nonsynonymous
sites per protein, we arrive at an approximate average
per-protein estimate of 4Nm ¼ 0.3. Similar to Drosoph-
ila, human X-linked genes show reduced levels of
polymorphism (International SNP Map Working

Group 2001). Estimated values of 4Nm suggest that
there should exist substantially more robustness in
Drosophila proteins compared to mammalian proteins
and in X-linked proteins compared to autosomal pro-
teins. This prediction is consistent with our findings
regarding overdispersion of these sequences.

When 4Nm ? 1, the population dynamics of multiple
simultaneously segregating alleles within a protein are
expected to affect the index of the dispersion of sub-
stitution events. In this case, genetic variation cosegre-
gates within a protein, forcing substitutions to occur in
clusters of multiple fixations, although these grouped
fixation events may tend to occur at regularly spaced
intervals (Gillespie 1994). The net effect of such
clustered fixations is to increase the index of dispersion
of the substitution process. In this model, population
dynamics predict a positive correlation between R(t) and
population size, rather than the negative correlation we
observe between R(t) and population size. Additionally,
the effect of 4Nm ? 1 on the fixation process is expected
to be diminished by recombination. It has been shown
that regions of the Drosophila genome with reduced
recombination show very similar values of R(t) as those
regions with high recombination (Bedford and Hartl

2008), further suggesting that population dynamics plays
a minor role in accounting for our results.

Our findings suggest that mammalian proteins are
more susceptible to the effects of random mutation
than proteins in yeast and Drosophila. This hypothesis
leads to a strong prediction: that in vitro screens using
PCR mutagenesis will show that random amino acid
replacements are more likely to disrupt function in
mammalian orthologs of yeast or Drosophila proteins. It
has been shown that protein stability mediates tolerance
of protein folding to random sequence change, so that
extra stability beyond what is needed for function can
buffer the negative effects of random mutations. Thus,
we predict that the buffer provided by extra stability will
be smaller in mammalian proteins relative to yeast or
Drosophila orthologs.

It seems reasonable to expect that selection for muta-
tional robustness should also occur in response to muta-
tions other than amino acid changes. Each type of
mutation will have a particular rate of occurrence m, and
only those types of mutation where 4Nm is significant are
expected to show selection for mutational robustness.
For example, if whole-gene deletions occur with high
enough frequency, then robustness to such deletions
may be selected for. Genomic screens have shown that
83% of yeast proteins may be deleted while still main-
taining viability in rich medium (Winzeler et al. 1999),
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suggesting widespread robustness. If Drosophila or
mice have lower values of 4Nm for whole-gene deletion
events as seems reasonable, then we expect that screens
of deletion mutants in Drosophila or mice will show
significantly higher levels of essential genes. Through
contrasting orthologous proteins and genetic networks
in yeast and higher organisms, we may be able to elu-
cidate the mechanisms by which mutational robustness
evolves.
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