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SUPPLEMENTARY MATERIAL

1. Consensus sequence as a predictor for neutrally evolving populations

We consider the case of a neutrally evolving and structure-less population, such as the one in the Wright-Fisher
model of evolution (Sigwart, 2005). At an initial time t = 0, the population consists of N individuals with genomes
(σ1 . . .σN ) of length L (not necessarily distinct).
We make two hypotheses about this population. We first suppose that no mutations occur during the evolution of this
population. This may seem surprising and is of course not true in the case of influenza. This assumption is however in
line with the fact that the object of this work is to predict the outcome of already existing mutations in the influenza
population. The prediction of mutations that we have not yet seen is not in its scope. Thus, assuming that no new
mutations take place can be seen as a simple way to model the fact that we have no information about such events.
The second assumption is that the population evolves in a completely neutral way, meaning that the average number
of descendants of each genome σn is the same. Let us now consider the population after it has evolved for a long time
t � T where T is the typical coalescence time (for the Wright-Fisher model, T = 2N). At this point, all individuals in
the future population will descend from a unique individual n0 in the t = 0 population. Our two hypotheses now allow
us to make two statements. First, since no new mutations are allowed, the population at t � T will be clonal, with all
individuals having genome σn0 . Second, since the evolution is neutral and does not favor any genome in particular,
the probability that σn0 is equal to a given genome σ is 1/N . In other words, the probability that a genome at t = 0
ultimately becomes the ancestor of all the future population is equal to its frequency in the t = 0 population.

We now try to find the genome σ that best predicts the future population on the long run, that is for t � T . Here,
we take best to mean that the predictor minimizes H(σ,σn0) where H is the Hamming distance defined by

H(σa,σb) =
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i
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with σi being the character appearing at position i of genome σ and δ the Kronecker delta. Since we do not know n0,
we have to average over all its possible values. σ must thus minimize the following quantity:

�H(σ,σn0)�n0
=

N�

n=1

H(σ,σn)

=

L�

i=1

N�

n=1

(1− δσi,σn
i
)

(2)

by using the definition of the Hamming distance. We now assume that characters at each positions of the genomes can
be indexed by an integer a running from 1 to q. For instance, if these were amino acid sequences, we could index the
20 amino acids by a running from 1 to q = 20. We rewrite the Kronecker delta in the previous expression using this
indexation:
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i
=

q�

a=1

δσi,aδσn
i ,a.

We also introduce the profile frequencies pi(a) of the population at time t = 0:

pi(a) =

N�

n=1

δσn
i ,a. (3)

pi(a) represents the frequency at which character a appears at position i in genomes of the initial population.
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Equation 2 now becomes
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This means that the genome σ = (σ1 . . .σL) which best predicts the future population according to our definition is
the one that minimizes the quantity (1− pi(σi)) for all positions i. This obviously implies that each σi must be chosen
as to maximize pi(a), that is σi must be the character that appears the most frequently at position i. Thus, σ must be
the consensus sequence of the initial population.

2. Predictor based on the local LBI maxima

In figure S19, we use several sequences as a predictor of the future population. Distance between two sets of
sequences, i.e. the predictor sequences and the ones of the future population, is defined as the Earth Mover’s Distance
(EMD). Here, we show that for a population evolving under the same hypotheses as in section .1, the best multiple
sequence long term predictor is again the consensus sequence with weight 1.
Let the predictor be a set of weighted sequences {(sα, qα)}. We again use the fact that in the long term, a unique
sequence σn0 from the present will be the ancestor of the entire population. We want to compute the EMD from the
predictor to σn0 , that is the EMD between the sets X = {(sα, qα)} and Y = {σn0 , 1}. Applying the definition of the
Methods section, it follows that the weights w are in this case equal to the qαs. By averaging over all values of n0, we
now obtain

�EMD({(sα, qα)})�n0
=
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By the same calculation procedure as in the previous section, this expression simplifies to
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where the profile of the present population pi(a) has already been defined, and qi(a) stands for the profile of the
predictor, that is

qi(a) =
�

α

δsαi ,aqα.

To minimize this distance, we find a profile qi(a) that maximizes the quantity
�

α δsαi ,aqα for each position i. It is
clear that this is done by assigning a value qi(a) = 1 if a maximizes pi(a), and qi(a) = 0 otherwise. Thus, the profile of
the predictor must be that of the consensus sequence, which is only possible if the predictor becomes {σcons, 1}.

3. Correcting for nested trajectories

The analysis of the main text computes probabilities of fixation assuming that all trajectories are independent.
However, it is well-known that mutations are nested: they appear on backgrounds that already carry other mutations.
Since mutations appearing on the same genomes will jointly fix or disappear, many frequency trajectories are not
independent but correlated. In order to compensate for potential biases due to this effect, we attempted to cluster
trajectories based on similarity in their strain composition. Our aim is that two trajectories corresponding to mutations
appearing mostly on the same genomes will be grouped in the same cluster. We then conduct the same analysis as in
the main text on a set of effectively independent trajectories constructed by taking one trajectory from each cluster.
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In order to perform clustering, we define a distance between trajectories. A frequency trajectory of a mutation
X is characterized by a series of frequency values f(t) at time point t ∈ T . We define S(t) as the strains that carry
mutation X at date t. With this notation, f(t) is the ratio of the number of elements in S(t) to the total number of
strains at date t. Let us now consider two frequency trajectories X1 and X2.
We define the distance d(X1, X2) between these two trajectories based on the average similarity of the strains S1 and
S2 that compose them:

d(X1, X2) = 1− 1

|T1 ∩ T2|
�

t∈T1∩T2

|S1(t) ∩ S2(t)|
|S1(t) ∪ S2(t)|

,

where T1 ∩ T2 is the time interval where both trajectories are active, and | · | denotes the number of elements of a set.
The quantity summed corresponds to the Jaccard index between strains composing X1 and X2 at a given date. It is 1
if the two trajectories share exactly the same strains for this date, and 0 if they share no strain at all. This leads to
the two following properties of d:

• if d(X1, X2) = 0, then X1 and X2 represent the same frequency trajectory. The mutations x1 and x2 that they
correpond to always appear on the same strains and are totally linked.

• if d(X1, X2) = 1, then X1 and X2 can be considered completely independent. This can be the case if the two
trajectories do not occur at the same dates, *i.e.* |T1 ∩ T2| = 0, or if their respective mutations are never present
on the same genomes.

we attempt to reduce the potential statistical bias due to the nesting of trajectories by grouping them based on the
above defined distance. Given a set of trajectories {X}, we perform a decomposition of {X} into disjoint clusters
C1(d

�) ∪ . . . ∪ Cn(d
�) = {X} where d� is an arbitrary threshold distance. Clusters are built in such a way that given

two trajectories Xi and Xj

d(Xi, Xj) ≤ d� ⇒ ∃k : Xi, Xj ∈ Ck

and

Xi ∈ Ck ⇒ ∃j ∈ Ck : d(Xi, Xj) ≤ d�.

These condition imply that the clusters formed are the minimal ones that guarantee that any two trajectories closer
than the threshold distance d� belong to the same cluster. The number of clusters n depends on the chosen value for
d�.
We compute clusters for different values of d� for the case of the HA gene in A/H3N2. The top panel of figure S1

shows the number cluster n as a function of d�. In the d� = 0 case, only trajectories that are exactly identical in
terms of strain composition are clustered together. In this case, our clustering amounts to counting mutations that
appear on exactly the same strains as one, reducing the number of effective trajectories from 800 to slightly less than
700. For higher values of d�, the number of clusters steadily goes down until it reaches 1 for d� = 1, which is the
maximum value of the distance d(X1, X2). The sharp drop in n for d� = 0.5 is explained by the high number of very
short (typically one time point) and low frequency trajectories that share one out of two strains.

Since the choice of d� is arbitrary and since no particular value can be chosen based on the number of clusters n(d�),
we decide to test our clustering strategy for five values, namely d� ∈ {0, 0.05, 0.1, 0.2, 0.49}. The bottom panel of
figure S1 shows examples of a cluster for the four non-zero values of d�. The cluster displayed in each case is the one
containing the mutation HA1:33R. As d� increases, more and more unlike trajectories are grouped together. In the
case d� = 0.49, the cluster consists of 13 trajectories, 5 of which end up dying while the rest fix. Since such a high
value of d� results in grouping trajectories that do not have the same fate (fixation or death), we decide to exclude it
from the rest of the analysis, resulting in four remaining values d� ∈ {0, 0.05, 0.1, 0.2}.

Once clustering is performed, we re-conduct the analysis of the main text on a set of effective trajectories. This
set is constructed by taking one trajectory at random from each cluster. Effective trajectories are then considered
independent from each other. The left panel of figure S2 shows the fixation probability of trajectories as a function of
their frequency for different values of d�, for the HA gene of A/H3N2. The result obtained in panel A of figure 2 of the
main text is also showed as a reference. For the three lower values of d�, results do not differ from the one obtained in
the main text, even though the number of trajectories in each frequency bin has dropped as can be seen in the right
panel of figure S2. This indicates that grouping together trajectories that share most of their strains, and are thus
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Figure S 1 Top: Left-axis: number n of clusters as a function of the threshold distance d�. The total number of trajectories is
shown as a flat orange line. Right-axis: average size of clusters as a function of d�. Bottom: Examples of clusters for four
values of d�. The four clusters displayed are the ones to which the trajectory of mutation HA1:33R belongs.

very correlated, does not modify the computed fixation probability in any way. For the higher value d� = 0.2, fixation
probability drops slightly across all frequency bins, suggesting that fixating trajectories tend to be grouped together
more frequently. However, this drop remains of limited amplitude.

Overall, this analysis leads us to think that even though mutations in influenza may be nested, considering trajectories
as independent does not result in strong statistical biases. Indeed, clustering similar trajectories together does not
significantly modify results presented in the main text.

4. Ability of fitness models to predict fixation

Huddleston et al. (2020) developed several models to predict the future HA population for A/H3N2 influenza. The
premise of these models is to assign a fitness score to the HA gene of each A/H3N2 strain in a given year, and to then
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Figure S 2 Left: Fixation probability of trajectories as a function of probability for four values of d�. The reference curve is the
same as in panel A of figure 2 for the HA gene. For readability, error bars are only displayed for the reference curve. Bottom:
Number of trajectories in each frequency bin corresponding to the left panel.

apply deterministic evolutionary equations to obtain the future strain composition. The fitness values are computed
using several quantities that have been shown to be connected with viral fitness. Fitness depends either on a single or
on two quantities, and coefficient(s) of each fitness model are trained by minimizing the earth movers distance between
the observed strain population one year in the future and the estimated population produced by the model. The
training is performed using HA sequences from 1990 to 2015, and we consider here the models obtained by taking the
average value of coefficients obtained for every year.

We first assess the ability of the four most performing fitness models based on individual scores in (Huddleston
et al., 2020) to predict fixation: mutational load (�Luksza and Lässig, 2014), hemagglutination inhibition (HI) antigenic
novelty (Neher et al., 2016), a “delta frequency”score based on the recent increase in frequency of clades, and the
previously mentioned Local Branching Index (LBI) (Neher et al., 2014). Figure S3 shows fixation probability for HA
mutations with fitness scores in the top or bottom half of the fitness distribution for the four fitness measures.

The best performing individual score (and second overall) in (Huddleston et al., 2020), LBI, does not provide any
information about fixation (figure S3A). This is consistent with the result found in figure 3 of the main text. In panels
B and D, we observe the same inability to predict fixation for the fitness models based on HI titer and delta frequency,
which were respectively the second and third best individual scores (fifth and sixth overall) in (Huddleston et al.,
2020). However, the score based on mutational load (panel C) does show a more significant predicting power, with
higher fitness mutations having a ∼ 25% higher chance of fixing than lower fitness ones for three frequency bins in
a row. However, this effect vanishes for higher frequencies, with both fitter and less fit mutations having the same
chance to fix. This is consistent with the idea that mutations that rose to very high frequency likely have a minor
fitness costs even if classified as deleterious mutation.

Next, we use two fitness models based on linear combinations of the following quantities: mutational load + LBI
and mutational load + HI antigenic novelty. These composite models were the first and third best performing ones in
(Huddleston et al., 2020). Figure S4 again shows fixation probability for HA mutations with fitness scores above or
below the median fitness value.

Both models provide some information about fixation, with the mutational load + HI model having more success for
frequencies around 0.5. This observation could be explained by the fact that fitness based on HI titers alone showed
some power in this same frequency range. However, both models do not seem to perform significantly better than the
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Figure S 3 Ability of fitness scores based on A LBI, B HI titer, C mutational load and D delta frequency, to predict fixation of
mutation frequency trajectories in the HA gene of A/H3N2. Similar to figure 3 of the main text.

one based on mutational load alone. This is not surprising, as LBI and HI titer did not perform well as individual
models.
Combining models in (Huddleston et al., 2020) typically achieved a greater performance than using single models.

This was the case for the mutational load + LBI model, combining the second and 7th best predictors overall to obtain
the best one, and for the mutational load + HI titer model that combined the 4th and 7th best predictors to obtain
the third best one. However, our results indicate that the gain in capability of predicting the future strain composition
obtained by combining models is not immediately transferable to the exercise of predicting fixation.
It is important to note that the prediction targets in (Huddleston et al., 2020) and in the present article are not

identical. It is shown in figure 4 of the main text that even though LBI performs well when predicting the future
strain composition, it may not be because it is indicative of fitness.

5. Biases in frequency estimations

The frequency of mutations in a given time-bin is simply performed by computing their frequency in sequences
sampled in that time bin. This leads to potential biases in estimating frequencies, that arise for two reasons:

(i) A mutation present at frequency p in the population might be observed at another frequency f �= p if f is
estimated using a sub-sample of the population.

(ii) For a neutrally evolving population, the distribution of frequencies of alleles is of the form P (p) ∝ 1/p. This
means that the amount of alleles at frequency p is lower when p is higher.

To illustrate (i), let us compute the probability that a mutation present at “real” frequency p in the population is
found to be in a given frequency bin [f1, f2] when p is estimated from a sample of size n. The sample consists of n
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Figure S 4 Ability of fitness scores based on two combinations of the four fitness scores mentioned above: A mutational load +
LBI; B mutational load + HI titer.

observations {xi} with 1 ≤ i ≤ n, with xi = 1 if sequence sequence i of the sample bears the mutation, and xi = 0 if
not. If n is small with regard to the total population size, we can consider the xi as random variables with a binomial
distribution, meaning that P (xi = 1) = p and P (xi = 0) = 1 − p. The empirical frequency f is then estimated by
taking the average of the xi variables, that is f = (x1 + . . .+ xn)/n. If those are independently sampled and n is large
enough, the probability of measuring value f is given by the Central Limit Theorem:

Pn,p(f) ∝ e(f−p)2/2σ2

, where σ2 =
p(1− p)

n
. (5)

To compute the probability that this mutation is found in a given frequency bin [f1, f2], we integrate this distribution:

Pf1,f2(p, n) =

� f2

f1

dxPn,p(x). (6)

Function Pf1,f2(p, n) is shown as a function of p for a fixed interval and for different values of n in the first panel of
figure S5. Note the asymmetry of it: the variance of a binomial distribution of parameter p is small when p is close to
0 or 1, and goes through a maximum at p = 0.5. For this reason, mutations present at frequency p close to 0.5 have a
higher probability of being observed in other frequency bins. On the contrary, this is unlikely for very rare or very
frequent mutations.
We now try to estimate biases in frequency estimation due this phenomenon. Given a set of mutations that have
been measured in frequency bin [f1, f2], what is the average real frequency of these mutations? To compute this, we
need to sum Pf1,f2(p, n) over all possible real frequencies p, giving us the amount of mutations that are observed in
interval [f1, f2], and weigh this sum by the frequency value p as well as by the background distribution of frequencies
Pb(p) ∝ 1/p. This last quantity represents the expected amount of mutations that are present at frequency p in the
population. Note that there is no divergence problem as the smallest non zero frequency is 1/N , where N is the
population size. This leads us to the following expression for the average of “real” frequencies:

�p�(f1, f2, n) =
� 1−1/N

1/N

dpPf1,f2(p, n)Pb(p) p

=

� 1−1/N

1/N

dpPf1,f2(p, n).

(7)

We have not made normalization explicit in these equations. It is simply achieved by dividing the above expression by�
dpPf1,f2(p, n)Pb(p).

In the second panel of figure S5, �p�(f1, f2, n) is plotted as a function of the centre of the interval [f1, f2] and for
different values of n. For sample sizes n > 100, the biases due to this effect are almost non existent. For smaller
samples, for instance n = 10, they are small but non negligible. However, we argue that this is not a significant
problem with respect to the main results presented in this article. First, figure S10 shows that sample sizes of the order
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Figure S 5 Left: For a mutation present at frequency p in the population, probability of being observed in the frequency bin
[0.1, 0.2] as a function of p and for different sample sizes n. The dashed black line sketches the (non-normalized) background
distribution Pb(p). Right: Expected “real” average frequency of mutations found in frequency bin [f1, f2] as a function of the
centre of the bin (f1 + f2)/2, for different sample sizes.

of n = 10 are only the case for a few months in the period going from year 2000 to 2018. From 2010 and onwards,
more than a hundred sequences are available per month for most months. Secondly, even if most samples were in the
n = 10 case, deviations shown in figure S5 are small enough that results shown in figures 2 and 3 would be qualitatively
unchanged.
Note that using the centre of the interval as a reference in figure S5, i.e. (f1 + f2)/2, would be correct in the case of
a very large n and a flat background distribution Pb(p). For figures 2 and 3 of the main text however, the average
frequency of mutations found in an interval [f1, f2] is computed by taking the average of the observed frequencies, and
not the centre of the interval. This partially takes into account biases considered here, as the background distribution
Pb(p) is then accounted for, even though it is equivalent to assuming infinite sample sizes.
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6. Cutting off the HA1 159S branch

Figure S 6 Tree used for this study, based on a random selection of 100 strains per month from year 2002 to 2018. Nodes and
branches are colored according to the amino acid found at position HA1:159. The HA1 159S mutation is visible as a thin but
long light-greened color branch, coalescing with the “trunk” around year 2013.

The analysis of the main text is in a large part based on the probability of fixation of mutations. The motivation
underlying this choice is the relatively short coalescence time of the A/H3N2 influenza population, typically around
three years. This can be seen in figure 2 of the main text, which shows the typical lifetime of frequency trajectories,
ending in fixation or loss after at most 3 years in most cases. The tree in figure S6 is another illustration of this: for
the most part of it, a “trunk” is clearly identifiable, and lineages that depart from it have a relatively short lifetime.
This is no longer the case since the year ∼ 2013: two clades have been competing since then, with no definite way to
identify a trunk in the tree. The clade defined by the HA1 159S mutation, colored in light green on figure S6, is one of
these two competing lineages. Because of this particular situation, the number of mutations fixating in the population
is strongly reduced, as a mutation must appear in both clades to reach a frequency of 1. This is a potential flaw in our
analysis, which concentrates on mutations fixating.
For this reason, we decided to re-run our analysis after having cut off the HA1 159S clade. In other words, we remove
from the set of sequences those that carry the HA1 159S mutation. Results are shown in figures , equivalent to figures 2
and 3 of the main text. It is clear that qualitative results are left unchanged when this competing clade is removed.
This can be surprising, as almost no complete fixation of an amino acid mutation has occurred since 2013. Cutting off
the HA1 159S branch should thus result in many new fixations, changing the analysis. The reason for the similarity
of results can be explained: fixation (resp. loss) of a mutation are defined here as the frequency of this mutation
being measured above 95% (resp. 5%) frequency for two months in a row. As the HA1 159S clade is rather sparsely
populated, it reaches frequencies lower than 5% two times (in 2015 and 2017), allowing mutations in the competing
clade to “fix” as defined here. Thus, removing strains carrying HA1 159S does not introduce a significant amount of
“new” fixation events.
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Figure S 7 Equivalent to figure 2 of the main text, but with strains carrying the HA1 159S mutation removed.

Figure S 8 Equivalent to figure 3 of the main text, but with strains carrying the HA1 159S mutation removed.
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7. Probability of fixation in single locus model of evolution

In (Kimura, 1964), Kimura investigates a simple model of evolution with a single locus and a population of size
N . In this framework, a mutation at this locus with fitness effect s and observed at frequency f has the following
probability of fixation:

Pfix(f |s,N) =
1− e−sNf

1− e−sN
. (8)

Expanding this formula for sN � 1, that is in the weak selection regime, yields at the first order

Pfix(f |s,N) = f + f(1− f)
sN

2
. (9)

Equation 9 tells us two things. First, when the mutation is neutral, that is s = 0, we have Pfix(f) = f . This naturally
confirms the result obtained for a neutral model of evolution. Seconds, when sN �= 0, we can expect deviations from
the diagonal in a Pfix against f plot. The sign of these deviations is determined by the sign of s, with beneficial
mutations being found above diagonal while deleterious one are found below. The amplitude of these deviations
depends on the strength of selection sN , as well as on the frequency through the f(1− f) term, making them larger
for f ∼ 0.5.
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8. Mutation tables

Gene Position AA Start date End date Shih Luksza Koel Tree counts

HA1 144 D 2001-06-09 2002-02-04 true true false 0

HA1 189 N 2003-07-29 2004-05-24 false true true 2

HA1 159 F 2003-08-28 2004-05-24 false true true 2

HA1 226 I 2003-09-27 2004-09-21 true true false 3

HA1 145 N 2003-12-26 2004-11-20 false true true 2

HA1 227 P 2003-05-30 2005-04-19 false true false 2

HA2 32 I 2004-06-23 2005-07-18 false false false 1

HA1 193 F 2004-12-20 2006-03-15 false true true 1

HA2 46 D 2006-06-13 2007-05-09 false false false 2

HA2 121 K 2006-06-13 2007-06-08 false false false 1

HA1 50 E 2006-09-11 2007-06-08 false true false 2

HA1 140 I 2006-11-10 2007-11-05 true false false 1

HA1 173 Q 2007-07-08 2009-01-28 true true false 2

HA2 32 R 2007-07-08 2009-01-28 false false false 1

HA1 158 N 2009-01-28 2009-07-27 true true true 2

HA1 189 K 2009-01-28 2009-07-27 false true true 2

HA1 212 A 2009-03-29 2011-01-18 false false false 2

HA1 45 N 2010-03-24 2013-02-06 false false false 3

HA1 223 I 2010-12-19 2013-02-06 false false false 2

HA1 48 I 2011-03-19 2013-02-06 false false false 1

HA1 198 S 2011-03-19 2013-02-06 false false false 1

HA1 312 S 2009-08-26 2013-03-08 false false false 3

HA1 278 K 2011-06-17 2013-03-08 false true false 1

HA1 145 S 2011-04-18 2013-04-07 false true true 4

HA1 33 R 2011-06-17 2013-06-06 false false false 2

HA2 160 N 2012-07-11 2015-09-24 false false false 3

HA1 225 D 2013-08-05 2015-09-24 false false false 3

HA1 3 I 2013-08-05 2016-11-17 false false false 2

HA1 159 Y 2014-02-01 2016-11-17 false true true 2

HA1 160 T 2014-01-02 2017-07-15 false true false 2

Table S I The 30 trajectories that took place between year 2000 and year 2018 and resulted in fixation. Columns Shih, Luksza
and Koel respectively indicate whether the position is found in the epitopes lists in (respectively) (Shih et al., 2007), (�Luksza
and Lässig, 2014) and (Koel et al., 2013). The Tree counts column indicates the number of times the mutation corresponding
to the trajectory can be found in the phylogenetic tree. Note that a trajectory is only shown in the table if the sequenced
population counts more than 10 strains at its time of fixation. This explains that only 30 trajectories are displayed, whereas
more mutations did fix in this period of time.
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Gene Position AA Start date End date Fixation Max. freq.

HA1 106 A 2001-02-09 2002-02-04 lost 1.0

HA1 144 D 2001-06-09 2002-02-04 fixed 1.0

HA1 105 H 2003-04-30 2003-10-27 lost 1.0

HA1 126 D 2003-04-30 2004-05-24 lost 1.0

HA1 140 Q 2004-01-25 2004-06-23 lost 0.31

HA1 226 I 2003-09-27 2004-09-21 fixed 1.0

HA1 173 E 2004-12-20 2006-03-15 lost 0.63

HA1 142 G 2006-06-13 2007-05-09 lost 0.71

HA1 144 D 2006-07-13 2007-05-09 lost 0.67

HA1 128 A 2006-09-11 2007-05-09 lost 0.25

HA1 157 S 2006-09-11 2007-05-09 lost 0.59

HA1 140 I 2006-11-10 2007-11-05 fixed 1.0

HA1 173 N 2007-12-05 2008-07-02 lost 0.3

HA1 157 S 2007-12-05 2008-09-30 lost 0.31

HA1 173 E 2006-06-13 2008-12-29 lost 0.67

HA1 173 Q 2007-07-08 2009-01-28 fixed 0.96

HA1 158 N 2009-01-28 2009-07-27 fixed 0.96

HA1 62 K 2009-01-28 2011-05-18 lost 0.73

HA1 144 K 2009-01-28 2011-05-18 lost 0.75

HA1 62 V 2011-04-18 2011-09-15 lost 0.34

HA1 157 S 2013-05-07 2015-09-24 lost 0.35

HA1 128 A 2012-08-10 2016-11-17 lost 0.81

HA1 197 K 2015-11-23 2016-11-17 lost 0.27

HA1 142 R 2018-05-11 2018-10-08 lost 0.38

HA1 142 G 2012-03-13 poly 0.86

HA1 144 S 2013-12-03 poly 0.96

HA1 121 K 2015-12-23 poly 0.82

HA1 142 K 2016-05-21 poly 0.77

HA1 62 G 2017-03-17 poly 0.75

HA1 128 A 2018-01-11 poly 0.56

Table S II Trajectories of mutations at epitope positions in (Shih et al., 2007) (Shih et. al.) that have been observed at least
once above frequency 0.25. The Fixation column indicates whether the mutation has fixed, disappeared, or is still polymorphic
as of October 2018. The Max.freq. column indicates the maximum frequency reached by the trajectory. A maximum frequency
of 1 for mutations that finally disappear is explained by trajectories reaching frequency 1 for one time bin and going back to
lower values for following ones (a frequency above 0.95 for two time bins in a row defines fixation).
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Gene Position AA Start date End date Fixation Max. freq.

HA1 50 G 2001-02-09 2002-02-04 lost 1.0

HA1 144 D 2001-06-09 2002-02-04 fixed 1.0

HA1 126 D 2003-04-30 2004-05-24 lost 1.0

HA1 189 N 2003-07-29 2004-05-24 fixed 1.0

HA1 159 F 2003-08-28 2004-05-24 fixed 1.0

HA1 226 I 2003-09-27 2004-09-21 fixed 1.0

HA1 145 N 2003-12-26 2004-11-20 fixed 1.0

HA1 188 N 2004-07-23 2005-02-18 lost 0.36

HA1 227 P 2003-05-30 2005-04-19 fixed 1.0

HA1 173 E 2004-12-20 2006-03-15 lost 0.63

HA1 193 F 2004-12-20 2006-03-15 fixed 0.97

HA1 142 G 2006-06-13 2007-05-09 lost 0.71

HA1 144 D 2006-07-13 2007-05-09 lost 0.67

HA1 157 S 2006-09-11 2007-05-09 lost 0.59

HA1 50 E 2006-09-11 2007-06-08 fixed 0.95

HA1 173 N 2007-12-05 2008-07-02 lost 0.3

HA1 157 S 2007-12-05 2008-09-30 lost 0.31

HA1 173 E 2006-06-13 2008-12-29 lost 0.67

HA1 173 Q 2007-07-08 2009-01-28 fixed 0.96

HA1 158 N 2009-01-28 2009-07-27 fixed 0.96

HA1 189 K 2009-01-28 2009-07-27 fixed 0.96

HA1 213 A 2009-01-28 2010-02-22 lost 0.68

HA1 144 K 2009-01-28 2011-05-18 lost 0.75

HA1 53 N 2009-11-24 2013-02-06 lost 0.72

HA1 278 K 2011-06-17 2013-03-08 fixed 0.98

HA1 145 S 2011-04-18 2013-04-07 fixed 0.99

HA1 159 S 2013-11-03 2015-08-25 lost 0.46

HA1 157 S 2013-05-07 2015-09-24 lost 0.35

HA1 159 Y 2014-02-01 2016-11-17 fixed 0.97

HA1 159 S 2015-10-24 2016-11-17 lost 0.4

HA1 197 K 2015-11-23 2016-11-17 lost 0.27

HA1 160 T 2014-01-02 2017-07-15 fixed 0.96

HA1 142 R 2018-05-11 2018-10-08 lost 0.38

HA1 135 N 2018-06-10 2018-10-08 lost 0.38

HA1 142 G 2012-03-13 poly 0.86

HA1 144 S 2013-12-03 poly 0.96

HA1 121 K 2015-12-23 poly 0.82

HA1 142 K 2016-05-21 poly 0.77

HA1 131 K 2016-09-18 poly 0.77

HA1 135 K 2016-11-17 poly 0.47

Table S III Same as table SII, for (�Luksza and Lässig, 2014) (Luksza et. al.).
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Gene Position AA Start date End date Fixation Max. freq.

HA1 189 N 2003-07-29 2004-05-24 fixed 1.0

HA1 159 F 2003-08-28 2004-05-24 fixed 1.0

HA1 145 N 2003-12-26 2004-11-20 fixed 1.0

HA1 193 F 2004-12-20 2006-03-15 fixed 0.97

HA1 158 N 2009-01-28 2009-07-27 fixed 0.96

HA1 189 K 2009-01-28 2009-07-27 fixed 0.96

HA1 145 S 2011-04-18 2013-04-07 fixed 0.99

HA1 159 S 2013-11-03 2015-08-25 lost 0.46

HA1 159 Y 2014-02-01 2016-11-17 fixed 0.97

HA1 159 S 2015-10-24 2016-11-17 lost 0.4

Table S IV Same as table SII, for (Koel et al., 2013) (Koel et. al.).
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9. Supplementary figures

Figure S 9 Number of A/H3N2 HA sequences per year from year 1990.
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Figure S 10 Number of H3N2 HA and NA sequences per month from year 2000.
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Figure S 11 Frequency trajectories for the 9 most entropic positions in the A/H3N2 HA protein.

Figure S 12 Equivalent to panel B of figure 1 of the main text for A/H3N2, with f0 equal 0.5 in A (76 trajectories), and 0.7 in
B (63 trajectories).
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Figure S 13 Equivalent to panels B and C of figure 1 of the main text for A/H1N1pdm influenza. 89 trajectories are shown and
participate to the mean (thick black line).
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Figure S 14 Equivalent to panel B of figure 1 of the main text for A/H1N1pdm, with f0 equal 0.5 in A (50 trajectories), and
0.7 in B (41 trajectories).
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Figure S 15 Equivalent of figure 3 of the main text for the HA gene of A/H1N1pdm influenza. Fixation probability Pfix(f) as a
function of frequency. A: Mutation with higher or lower LBI values, based on their position with respect to the median LBI
value. B: Different lists of epitope positions in the HA protein. The authors and the number of positions is indicated in the
legend. C: Mutations for binary positions, i.e. positions for which we never see more than two amino acids in the same time bin.
D: Mutations that appear once or more than once in the tree for a given time bin.
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Figure S 16 Based on A/H3N2 HA and NA. A: Mutations with a higher or lower geographical spread, based on the median
value of the score used (see Methods). Note: the words local and global only reflect the position of the geographic spread of the
mutation relative to the median value computed for all mutations found at this frequency. As this median value may change
with the considered frequency bin, so does the definition of local and global mutations. B: Mutations whose trajectories are
older or more recent, based on the median age of trajectories when reaching the considered frequency f .

Figure S 17 Based on A/H1N1pdm HA and NA. A: Mutations with a higher or lower geographical spread, based on the median
value of the score used (see Methods). Note: the words local and global only reflect the position of the geographic spread of the
mutation relative to the median value computed for all mutations found at this frequency. As this median value may change
with the considered frequency bin, so does the definition of local and global mutations. B: Mutations whose trajectories are
older or more recent, based on the median age of trajectories when reaching the considered frequency f .
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Figure S 18 Geographic spread of mutations as a function of the time for which they have been present in the population above
a frequency of 5%. Points represent individual mutations and for a population in a given time bin. The line is the average of
dots for a given value on the x-axis. Based on data for A/H3N2 HA.
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Figure S 19 Earth mover’s distance to the future population for different predictors. A present population consists of all A/H3N2
HA sequences sampled in a 4 months time window. Quantities are averaged over all possible “present” populations from the
year 2002. Predictors are: Global consensus: Consensus sequence of the present population. Best long-term predictor for
a structure-less neutrally evolving population. All present population: All sequences in the present population. Perfect
predictor if the population does not change at all through time. Cluster-wise consensus: Consensus sequence for each cluster
in the present population. Clusters are based on local maxima of the LBI. Sequences are assigned to a given cluster based on
their tree branch-length distance to the corresponding local maximum.
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Figure S 20 Fixation probability as a function of frequency for the simulations discussed in the main text. Left: Simulation
without antibodies. The three colored curves reflect different rate of change for the fitness landscape. Visual inspection of the
frequency trajectories indicates a typical sweep time of ∼ 400 generations. Right: Simulation with antibodies. The different
colored curves indicate the rate at which antibodies are introduced.

Figure S 21 Fixation probability as a function of frequency for the simulations discussed in the main text, with trajectories
stratified according to real fitness values. “High” and “low” fitness classes are defined with respect to the median value. Left:
Simulation with a purely additive landscape that changes every Δt = 10 generations. Right: Simulation with antibodies, with
a new antibody every Δt = 10 generations.


