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Abstract

Genomic surveillance of pathogen evolution is essential for public health response, treat-

ment strategies, and vaccine development. In the context of SARS-COV-2, multiple models

have been developed including Multinomial Logistic Regression (MLR) describing variant

frequency growth as well as Fixed Growth Advantage (FGA), Growth Advantage Random

Walk (GARW) and Piantham parameterizations describing variant Rt. These models pro-

vide estimates of variant fitness and can be used to forecast changes in variant frequency.

We introduce a framework for evaluating real-time forecasts of variant frequencies, and

apply this framework to the evolution of SARS-CoV-2 during 2022 in which multiple new

viral variants emerged and rapidly spread through the population. We compare models

across representative countries with different intensities of genomic surveillance. Retro-

spective assessment of model accuracy highlights that most models of variant frequency

perform well and are able to produce reasonable forecasts. We find that the simple MLR

model provides*0.6% median absolute error and*6% mean absolute error when fore-

casting 30 days out for countries with robust genomic surveillance. We investigate impacts

of sequence quantity and quality across countries on forecast accuracy and conduct sys-

tematic downsampling to identify that 1000 sequences per week is fully sufficient for accu-

rate short-term forecasts. We conclude that fitness models represent a useful prognostic

tool for short-term evolutionary forecasting.

Author summary

Over the course of the COVID-19 pandemic, SARS-CoV-2 evolved into many different

genetic variants such as the well known Alpha, Beta, Gamma and Delta variants in early

2021 and the Omicron variant in late 2021. These genetic variants could more easily

spread from person to person and so outcompeted previous versions of the virus. Even if

they aren’t being given Greek letter names, new variants are still arising with recent waves

of COVID-19 caused by variants such as XBB and JN.1. Predicting which variants will

increase in frequency and which variants will decrease in frequency is important for
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public health, particularly in terms of updating the formulation of the annual COVID-19

vaccine. In this paper, we investigate statistical models that use observed frequencies of

different variants in the past weeks to estimate the frequency of different variants today

and to forecast the frequency of different variants in 30 days time. We find that in coun-

tries with sufficient amounts and timeliness of genetic sequence data, that models forecast

well and can be a useful tool for public health.

Introduction

The emergence of acute respiratory virus SARS-CoV-2 causing COVID-19 disease and its sub-

sequent circulating variants severely impacted global health and worldwide economies [1].

Due to its rapid evolution, original SARS-CoV-2 strains were replaced by derived, selectively

advantageous variant lineages during 2021 [2], with Omicron, a highly transmissible and

immune evasive variant becoming the dominant strain in early 2022 [3]. It has become increas-

ingly evident that monitoring the evolution and dissemination of these variants remains crucial

with SARS-CoV-2 continuing to evolve beyond Omicron [4]. Forecasting variant dynamics

allows us to make informed decisions about vaccines and to predict variant-driven epidemics.

Fitness models are a key framework for forecasting changes in variant frequency through

time. These models were first introduced for the study of seasonal influenza virus [5–7] and

there have relied on correlates of viral fitness such as mutations to epitope sites on influenza’s

surface proteins. In modeling emergence and spread of SARS-CoV-2 variant viruses, the use of

Multinomial Logistic Regression (MLR) has become commonplace [8–11]. Here, MLR is analo-

gous to a population genetics model of a haploid population in which different variants have a

fixed growth advantage and are undergoing Malthusian growth. As such, it presents a natural

model for describing evolution and spread of SARS-CoV-2 variants. Additionally, models

introduced by Figgins and Bedford [12] incorporate case counts and variant-specific Rt, but still

can be used to project variant frequencies while Piantham et al [13] does not incorporate them.

Here, we systematically assess the predictive accuracy of fitness models for nowcasts and

short-term forecasts of SARS-CoV-2 variant frequencies. We focus on variant dynamics dur-

ing 2022 in which multiple sub-lineages of Omicron including BA.2, BA.5 and BQ.1 spread

rapidly throughout the world. We compare across several countries including Australia, Brazil,

Japan, South Africa, Trinidad and Tobago, the United Kingdom, the United States, and Viet-

nam to assess genomic surveillance systems with different levels of throughput and timeliness.

To assess the performance of these models, we used mean and median absolute error (AE) as a

metric to compare the predicted frequencies to retrospective truth. This metric allowed us to

evaluate the accuracy and reliability of the models and to identify those that were most effective

in predicting SARS-CoV-2 variant frequency. We also examined aspects of country-level geno-

mic surveillance that contribute to errors in these models and explored the role of sequence

availability on nowcast and forecast errors through downsampling sequencing efforts.

Results

Reconstructing real-time forecasts

We focus on SARS-CoV-2 sequence data shared to the GISAID EpiCoV database [14]. Each

sequence is annotated with both a collection date, as well as a submission date. We seek to

reconstruct data sets that were actually available on particular ‘analysis dates’, and so we use

use submission date to filter to sequences that were available at a specific analysis date. We
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additionally filter to sequences with collection dates up to 90 days before the analysis date. We

categorize each sequence by Nextstrain clade (21K, 21L, etc. . .) as such clades are generally at a

reasonable level of granularity for understanding adaptive dynamics [15]; there are 7 clades

circulating during 2022 vs hundreds of Pango lineages. Resulting data sets for representative

countries Japan and the USA for analysis dates of Apr 1 2022, Jun 1 2022, Sep 1 2022 and Dec

1 2022 are shown in Fig 1A, while S1 Fig shows data sets for Australia, Brazil, South Africa,

Trinidad and Tobago, the UK, and Vietnam. We see consequential backfill in which genome

sequences are not immediately available and instead available after a delay due to the necessary

bottlenecks of sample acquisition, testing, sequencing, assembly and data deposition. Thus,

even estimating variant frequencies on the analysis date as a nowcast requires extrapolating

from past week’s data. Different countries with different genomic surveillance systems have

different levels of throughput as well as different amounts of delay between sample collection

and sequence submission [16].

We employ a sliding window approach in which we conduct an analysis twice each month

(on the 1st and the 15th) and estimate variant frequencies from −90 days to +30 days relative

to each analysis date. We illustrate our frequency predictions using the MLR model showing

resulting trajectories for Japan and the US in Fig 1B and showing trajectories for Australia,

Brazil, South Africa, Trinidad and Tobago, the UK, and Vietnam in S2–S7 Figs. Sometimes we

see initial over-shoot or under-shoot of variant growth and decline, but there is general consis-

tency across trajectories. Additionally, we retrospectively reconstructed the simple 7-day

smoothed frequency across variants and present these trajectories as solid black lines. We treat

this retrospective trajectory as ‘truth’ and thus deviations from model projections and retro-

spective truth can be assessed to determine nowcast and short-term forecast accuracy. Consis-

tent with less available data, we observe that the model predictions for Japan were more

frequently misestimated compared to the United States with particularly large differences for

clades 22B (lineage BA.5) and 22E (lineage BQ.1) (Fig 1B).

Model error comparison

We utilize five models for predicting the frequencies of SARS-CoV-2 variants. The simplest of

these models is Multinomial Logistic Regression (MLR) commonly used in SARS-CoV-2 anal-

yses [8–11], which uses only variant-specific sequence counts and has a fixed growth advantage

for each variant. More complex models include the Fixed Growth Advantage (FGA) and

Growth Advantage Random Walk (GARW) parameterizations of the variant Rt model intro-

duced by Figgins and Bedford [12], which uses case counts in addition to variant-specific

sequence counts. The Piantham et al. model [13] operates on a similar principle in estimating

relative fitness, but differs in model details and does not use case counts. We compare these

four models to a naive model to serve as a reference for comparison. The naive model is imple-

mented as a 7-day moving average on the retrospective raw frequencies using the most recent

seven days for which sequencing data is available. We compare forecasting accuracy across dif-

ferent time lags from −30 days back from date of analysis as hindcast, to +0 days from date of

analysis as nowcast, and +30 days forward from date of analysis as forecast.

We refer to the absolute error AEm;d
t for a given model m, data set d and time t as the differ-

ence between the retrospective 7-day smoothed frequency and the model predicted frequency

(see Methods). We calculate median absolute error and mean absolute error across datasets

and across time lags to assess the relative performance of the models for the eight countries

(Fig 2 and Table 1). As expected, we observe decreasing performance across models as lags

increase from −30 days to +30 days. For example, median absolute error increases for the MLR

model from 0.1–1.4% at −30 days, to 0.3–2.0% at 0 days and to 0.5–1.9% at +30 days. Similarly,

PLOS COMPUTATIONAL BIOLOGY Fitness models provide accurate short-term forecasts of SARS-CoV-2 variant frequency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012443 September 6, 2024 3 / 20

https://doi.org/10.1371/journal.pcbi.1012443


Fig 1. Reconstructing available data sets and corresponding predictions for Japan and USA. (A) Variant sequence counts categorized by Nextstrain

clade from Japan and United States at 4 different analysis dates. (B) +30 day frequency forecasts for variants in bimonthly intervals using the MLR

model. Each forecast trajectory is shown as a different colored line. Retrospective smoothed frequency is shown as a thick black line.

https://doi.org/10.1371/journal.pcbi.1012443.g001
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Fig 2. Absolute error across models, countries and forecast lags. (A) Median absolute error and (B) mean absolute

error across countries, models and forecast lags moving from −30 day hindcasts to +30 day forecasts. For each county /

model / lag combination, the median and the mean are summarized across analysis data sets. Panel A uses a log y axis

for legibility while panel B uses a natural y axis.

https://doi.org/10.1371/journal.pcbi.1012443.g002
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mean absolute error increases for the MLR model from 0.4–4.2% at −30 days, to 2.2–8.6% at 0

days and to 5.8–12.0% at +30 days. All four forecasting models perform better than the naive

model, with all four models exhibiting similar performance. We observe a larger decrease in

performance as lags increase in terms of mean absolute error compared to median absolute

error. Absolute error varies substantially across predictions for individual analysis dates and

variants with most predictions having very little error, while a subset of predictions have larger

error (Fig 3). This skewed distribution results in the large observed differences between

median and mean summary statistics. Thus, models predict frequencies well most of the time,

but are occasionally incorrect and the proportion of incorrect predictions increases through

time.

In addition to calculating median and mean absolute error, we estimate the coverage of

95% posterior latent frequencies (S8(A) Fig) and posterior predictive sample frequencies (S8

(B) Fig) across models. We generate the posterior predictive coverage by sampling random

counts for each variant using their posterior latent frequencies conditioning on the total

sequences being those observed retrospectively. We find that the posterior predictive coverage

is generally higher and a better fit for the models in question. Additionally, we find that the

coverage is lower in countries with the highest sequencing intensity like the US and UK,

Table 1. Median and mean absolute error across models, countries and forecast lags. Models with the lowest error for each country / lag combination are bolded for

clarity.

Median Absolute Error Mean Absolute Error

Location Naïve Piantham MLR FGA GARW Naive Piantham MLR FGA GARW

-30 Lead from date of estimation

Australia 0.80% 0.20% 0.20% 0.20% 0.20% 2.10% 0.60% 0.60% 0.60% 1.80%

Brazil 3.50% 0.80% 0.70% 0.80% 0.60% 7.60% 2.50% 2.40% 4.60% 3.30%

Japan 0.40% 0.20% 0.20% 0.20% 0.20% 2.90% 1.40% 1.40% 1.90% 1.40%

South Africa 3.70% 1.00% 0.90% 0.80% 0.80% 5.50% 2.30% 2.50% 2.20% 2.20%

Trinidad and Tobago 12.50% 1.50% 1.40% 1.40% 1.40% 19.90% 4.20% 4.20% 4.20% 4.20%

USA 0.20% 0.10% 0.10% 0.10% 0.10% 1.30% 0.40% 0.40% 1.80% 0.20%

United Kingdom 0.20% 0.10% 0.10% 0.10% 0.10% 1.50% 0.40% 0.40% 0.50% 1.20%

Vietnam 10.40% 1.50% 1.30% 1.40% 1.40% 21.00% 4.00% 4.00% 7.80% 6.20%

0 Lead from date of estimation

Australia 1.80% 0.80% 0.60% 0.60% 0.70% 6.10% 3.20% 2.80% 2.70% 3.80%

Brazil 7.20% 1.10% 1.00% 0.90% 1.00% 18.30% 7.90% 5.90% 6.10% 6.80%

Japan 4.50% 0.50% 0.30% 0.50% 0.40% 10.10% 3.40% 2.10% 3.70% 2.90%

South Africa 9.30% 1.50% 1.60% 1.50% 1.30% 13.20% 4.30% 4.30% 4.00% 4.30%

Trinidad and Tobago 12.50% 1.90% 2.00% 1.70% 1.60% 27.50% 7.40% 7.30% 8.30% 9.50%

USA 0.60% 0.40% 0.40% 0.40% 0.40% 5.10% 2.30% 2.30% 3.00% 1.80%

United Kingdom 1.10% 0.50% 0.50% 0.40% 0.20% 5.70% 2.30% 2.20% 3.70% 2.40%

Vietnam 22.30% 1.50% 1.40% 1.20% 1.70% 25.60% 8.70% 8.60% 9.90% 10.30%

30 Lead from date of estimation

Australia 6.20% 1.60% 1.50% 1.50% 1.40% 15.90% 6.80% 6.20% 6.40% 7.10%

Brazil 13.40% 0.90% 1.20% 1.00% 1.20% 26.80% 8.90% 8.40% 9.70%

Japan 7.50% 0.50% 0.50% 0.50% 0.50% 17.50% 11.40% 7.30% 8.80% 5.80%

South Africa 15.80% 1.50% 1.60% 1.60% 1.40% 21.40% 6.90% 7.00% 6.40% 6.50%

Trinidad and Tobago 23.50% 2.00% 1.90% 1.60% 1.30% 38.60% 11.30% 12.00% 14.00% 16.10%

USA 2.00% 0.60% 0.70% 0.60% 0.60% 13.10% 6.30% 6.30% 5.80% 6.10%

United Kingdom 3.60% 0.80% 0.70% 0.60% 0.60% 13.90% 6.60% 5.80% 7.40% 5.80%

Vietnam 32.10% 1.60% 1.10% 0.80% 1.10% 33.20% 11.00% 11.60% 11.30% 13.30%

https://doi.org/10.1371/journal.pcbi.1012443.t001
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suggesting that there may be over-dispersion in the sequence counts relative to binomial or

multinomial sampling. We also observe that coverage is higher for the GARW model that

allows for time-varying growth advantage than for the FGA or MLR models which enforce a

fixed growth advantage. As clades evolve and new subclades emerge we expect clade-specific

growth advantage to change alongside.

In observing heterogeneity in prediction accuracy, we hypothesized that error is largest for

emerging variants that present a small window of time to observe dynamics and where

sequence count data is often rare. We investigate this hypothesis by charting how variant-spe-

cific growth advantage estimated in the MLR model varied across analysis dates (Fig 4). Gener-

ally, we see sharp changes in estimated growth advantage in the first 1–3 weeks when a variant

is emerging, but then see less pronounced changes. Thus, it often takes several weeks for the

MLR model to ‘dial in’ estimated growth advantage and accuracy will tend to be poorer in

early weeks when variant-specific growth advantage is uncertain.

Genomic surveillance systems and forecast error

Using the MLR model, we find that different countries have consistently different levels of

forecasting error with forecasts in Brazil and South Africa showing more error than forecasts

in the UK and the USA, while Trinidad and Tobago and Vietnam show more error than the

other six countries (Fig 5A). We correlate broad statistics describing both quantity and quality

of sequence data available in at different analysis time points and in different genomic surveil-

lance systems to forecasting error (Fig 5B–5E). Using Pearson correlations we find that poor

sequence quality as measured by proportion of available sequences labeled as ‘bad’ by Next-

clade quality control [17] correlates slightly with mean AE (Fig 5B). We find that good

sequence quantity as measured by total sequences available at analysis has a moderate negative

correlation with mean absolute error (Fig 5E).

Fig 3. Absolute error across models, countries and forecast lags. Distribution of absolute error on a log scale across models and across forecast lags.

Each point represents the absolute error for a data set / country combination. Solid lines show the median of these distributions and dashed lines show

the means of these distributions.

https://doi.org/10.1371/journal.pcbi.1012443.g003
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These results show that South Africa with *16k sequences collected in 2022 and median of

173 sequences available from the previous 30-days yields a mean absolute +30 day forecasting

error of 7.0% for the MLR model (Table 1), which is only slightly greater than the mean abso-

lute error of 6.3% for the US with *2.0M sequences collected in 2022 and of 5.8% for the UK

with *1.2M sequences collected in 2022. However, Vietnam with *6k sequences collected in

2022 and median of 31 sequences available from the previous 30-delays yields a mean absolute

forecasting error of 11.6% and Trinidad and Tobago with *2.3k sequences collected in 2022

and median of 44 sequences available from the previous 30-delays yields a mean absolute fore-

casting error of 12.0%. This suggests that genomic surveillance systems with cadence and

throughput greater than 50–100 sequences collected in the previous 30 days yield sufficient

timely data to permit short-term forecasts.

We follow up on this across-country analysis and subsample existing sequences from the

United Kingdom and Denmark to investigate what number of sequences need to be collected

weekly to keep forecast error within acceptable bounds. For context, we also computed the

mean weekly sequences collected for selected countries globally in 2022 (Fig 6A). We select the

United Kingdom due to its large counts of available sequences, relatively short submission

delay, and low forecast error. Additionally, we include Denmark due to its large counts of

available sequences and to explore the possibility of stochastic effects due to relative population

sizes (Denmark has *9% the population of the UK). We simulate several downscaled data sets

by subsampling the collected sequences at multiple thresholds for number of sequences per

week and then fit the MLR model to each of the resulting data sets to see how forecast accuracy

varies with sampling intensity. In order to properly account for variability in the subsampled

data sets, we generate 5 subsamples per threshold, location and analysis date.

From this analysis, we find that increasing the number of sequences per week generally

decreases the average error (Fig 6B and 6C), as well as decreasing the proportion of out-of-

bounds predictions (Fig 6D and 6E), but there are diminishing returns. Additionally, the effect

appears to saturate at different values depending on the forecast length. We find that for +14

and +30 day forecasts sampling at least 1000 sequences per week is fully sufficient to minimize

Fig 4. Growth advantage of variants across analysis dates. Growth advantage is estimated via the MLR model and is computed relative to clade 21K

(lineage BA.1).

https://doi.org/10.1371/journal.pcbi.1012443.g004
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forecast error, and 200 sequences per week is largely sufficient to curtail error. We arrive at a

similar threshold of 1000 sequences per week for both the UK and Denmark (Fig 6B–6E).

Comparing country-level and hierarchical short-term forecast models

In observing poor performance in initial period of variant emergence (Fig 4), as well as poor

performance in countries with less intensive genomic surveillance (Fig 5), we conclude lack of

data results in poor fitness estimates and so poor predictive performance. Joint modeling of

data from multiple countries has been proposed as a way to getting improved estimates of vari-

ant growth advantages in general and also specifically improving frequency estimates in low

and middle income countries. Hierarchical or joint forecast models for short-term frequency

forecasts typically operate by pooling parameters between ‘groups’ in a model. For our applica-

tion, we pool the relative fitness of variants across countries, so that estimated relative fitnesses

are informed by not just the observed relative fitness within a location, but also the relative fit-

nesses in other locations.

Fig 5. Sequence quantity and quality influence nowcasts error. (A) Absolute error at nowcast for the MLR model across countries. Points represent

separate data sets at different analysis dates. Median and interquartile range of absolute errors are shown as box-and-whisker plots. (B-E) Correlation of

sequence quality and sequence quantity metrics with absolute error. Points represent separate data sets at different analysis dates. Correlation strength

and significance are calculated via Pearson correlation and are inset in each panel.

https://doi.org/10.1371/journal.pcbi.1012443.g005
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We compare the short-term forecast accuracy for individual models fit using MLR and this

hierarchical MLR model in Fig 7. We find that overall the hierarchical MLR matches or out-

performs the single country models in all locations and at all forecast lengths. Perhaps as

expected the hierarchical MLR model matches MLR performance in countries with abundant

Fig 6. Increasing sequencing intensity reduces forecast error. (A) Mean sequences collected per week for selected countries in 2022. Intervals are 95%

confidence intervals of the mean. Dashed lines correspond to sampling rates used in (B-E). (B, C) Mean absolute error as a function of sequences

collected per week colored by forecast horizon (-30 days, -15 days, 0 days, +15 days, +30 days) for the United Kingdom and Denmark. The dash line

corresponds to 5% frequency error. (D, E) Proportion of forecasts within 5% of retrospective frequency as a function of sequences collected for week for

the United Kingdom and Denmark.

https://doi.org/10.1371/journal.pcbi.1012443.g006

PLOS COMPUTATIONAL BIOLOGY Fitness models provide accurate short-term forecasts of SARS-CoV-2 variant frequency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012443 September 6, 2024 10 / 20

https://doi.org/10.1371/journal.pcbi.1012443.g006
https://doi.org/10.1371/journal.pcbi.1012443


Fig 7. Absolute error comparing standard MLR and hierarchical MLR across countries and forecast lags. (A) Median

absolute error and (B) mean absolute error across countries, models and forecast lags moving from −30 day hindcasts to

+30 day forecasts. For each county / model / lag combination, the median and the mean are summarized across analysis

data sets. Panel A uses a log y axis for legibility while panel B uses a natural y axis.

https://doi.org/10.1371/journal.pcbi.1012443.g007
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data like the US and UK, while countries with less data like Trinidad and Tobago and Vietnam

show a large performance advantage to hierarchical MLR.

Discussion

In this manuscript we sought to perform a comprehensive analysis of the accuracy of nowcasts

and short-term forecasts from fitness models of SARS-CoV-2 variant frequency. We observe

substantial differences between median and mean absolute error (Fig 2 and Table 1) with

median errors generally quite well contained at 0.5–1.9% in the +30 day forecast, while mean

errors are larger at 5.8–12.0%. This difference is due to the highly skewed distribution of

model errors (Fig 3) where most predictions are highly accurate, but a smaller fraction are off-

target. As expected, errors increase as target shifts from −30 day hindcast to +30 day forecast,

but error increases more rapidly for mean absolute error than median absolute error. All four

forecasting models explored here present a largely similar spectrum of errors.

We find that the Piantham, MLR, FGA and GARW models provide systematic and substan-

tial improvements in forecasting accuracy relative to a ‘naive’ model that uses 7-day smoothed

frequency at the last timepoint with sequence data (Fig 2 and Table 1). For the MLR model, at

+30 days the improvement in median absolute error over naive is 1.4–31.0% and the improve-

ment in mean absolute error is 6.8–26.2%. This result supports the use of MLR models in live

dashboards like the CDC Variant Proportions nowcast (covid.cdc.gov/covid-data-tracker/

#variant-proportions) and the Nextstrain SARS-CoV-2 Forecasts (nextstrain.org/sars-cov-2/

forecasts/).

We also observe improvements in accuracy for the −30 day hindcast of modeled frequency

relative to naive frequency with the MLR model showing improvement in median absolute

error of 0.1–11.1% and improvement in mean absolute error of 0.9–17.0%. These improve-

ments were greatest in countries with lower cadence and throughput of genomic surveillance

(Trinidad and Tobago and Vietnam). Importantly, this suggests that fitness models are useful

for hindcasts in addition to short-term forecasts and that −30 day retrospective frequency

should not be taken as truth, ie it takes more time than 30 days for backfill to resolve retrospec-

tive frequency.

However, we observe that coverage is generally lower than ideal with predictive coverage

under 50% for countries with the most sequencing (S8(B) Fig). We believe this may be due to a

combination of over-dispersion of sequence counts relative to the multinomial sampling

assumption as well as clade-level growth advantages changing through time as clades evolve.

The former could be addressed by including over-dispersion in the sequence observation

model and the latter could be addressed by implementing growth advantages that vary through

time in an auto-correlated fashion.

We find that variability in forecast errors is partially driven by data limitations. When new

variants are emerging, we lack sequence counts and lack time to observe growth dynamics

resulting in initial uncertainty of variant growth rates (Fig 3). Relatedly, analyzing the variation

in nowcast error, we find that overall sequence quality and quantity at time of analysis are asso-

ciated with model accuracy (Fig 5). Thus, as expected, sequence quality, volume and turn-

around time are all important for providing accurate, real-time estimates of variant fitness and

frequency. Subsampling existing data in high sequencing intensity countries, we find that

there are diminishing returns to increasing sequencing efforts and that maximum accuracy is

achieved at around 1000 sequences per week and substantial accuracy is achieved at around

200 sequences per week (Fig 6). This level of sequencing enables robust short-term forecasts of

pathogen frequency dynamics at the level of a country and highlights the feasibility of patho-

gen surveillance for evolutionary forecasting. As observed in Susswein et al.
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susswein2023leveraging, pooling data across countries using a hierarchical fitness model

improves short-term forecasts for SARS-CoV-2 variant dynamics (Fig 7).

In live MLR analyses at nextstrain.org/sars-cov-2/forecasts/, we have relied on the number

of sequences available from samples collected in the previous 30-days as the key metric for

inclusion of a country in the analysis. Along these lines, for pragmatic guidance for thresholds

in which to trust MLR results, we observe that Trinidad and Tobago with 2.3k sequences col-

lected in 2022 and a median 30-day sequence count of 43 shows a mean absolute forecasting

error of 12%, that Vietnam with 6k sequences collected in 2022 and a median 30-day sequence

count of 30 shows a mean absolute forecasting error of 11% and that South Africa with 16k

sequences collected in 2022 and a median 30-day sequence count of 170 shows a mean abso-

lute forecasting error of 7%. This suggests that a threshold of 50 sequences in previous 30 days

should be roughly consistent with a*10% forecasting error. Keeping forecasting error under

10% seems like a reasonable target for public display of frequency forecasts and would support

targeting a threshold of 50 sequences from samples collected in the previous 30 days.

In addition to differences in genomic surveillance, we expect countries may differ in variant

dynamics due to differences in absolute viral prevalence. We expect that variant frequencies

we more closely follow the MLR expectation when absolute prevalence is large, achieved

through a large host population and/or frequent repeated infection. Rapid continued

evolution of SARS-CoV-2 [19] suggests that we will continue to see widespread circulation of

SARS-CoV-2 and thus we generally expect fitness-based models to provide an adequate

description of variant frequency dynamics. Of note, in comparing the UK with 67M people to

Denmark with 6M people we observe similar levels of prediction error when sampling

sequences at similar intensities (Fig 6). This suggests that stochastic effects from low absolute

viral prevalence were not strongly manifesting with a population size of 6M. However, we do

expect that at some smaller population size stochastic effects and repeated importations will

cause a deviation in frequency dynamics from fitness model expectations.

Although these models appear largely accurate for short-term forecasts, they may be

improved by incorporating underlying biological mechanism. In general, the methods dis-

cussed here are primarily statistical in nature and do not account for much of the biological or

immunological knowledge that we have or could obtain. The incorporation of such knowledge

could increase the short-term and medium-term capabilities of these models. Additionally,

these fitness models do not account for future mutations and can only project forward from

circulating viral diversity. This intrinsically limits the effective forecasting horizon achievable

by these models. Future modeling work should seek to incorporate the emergence and spread

of ‘adjacent possible’ mutations for longer term forecasts on the order of several months or

years [20]. Without empirical frequency dynamics to draw upon, the fitness effects of these

adjacent possible mutations may be estimated from empirical data such as deep mutational

scanning [21–23]. Continued timely genomic surveillance and biological characterization

along with further model development will be necessary for successful real-time evolutionary

forecasting of SARS-CoV-2.

Methods

Preparing sequence counts and case counts

We prepared sequence count data sets to replicate a live forecasting environment using the

Nextstrain-curated SARS-CoV-2 sequence metadata [24] which is created using the GISAID

EpiCoV database [25]. To reconstruct available sequence data for a given analysis date, we fil-

tered to all sequences with collection dates up to 90 days before the analysis date, and addition-

ally filtered to those sequences which were submitted before the analysis date. These sequences
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were tallied according to their annotated Nextstrain clade to produce sequence count for each

country, for each clade and for each day over the period of interest. Sequence counts were pro-

duced independently for the 8 focal countries Australia, Brazil, Japan, South Africa, Trinidad

and Tobago, the United Kingdom, the United States, and Vietnam. We repeated this process

for a series of analysis dates on the 1st and 15th of each month starting with January 1, 2022

and ending with December 15, 2022 giving a total of 24 analysis data sets for each country.

Since two models (FGA, GARW) also use case counts for their estimates, we additionally pre-

pare data sets using case counts over the time periods of interest as available from Our World

in Data (ourworldindata.org/covid-cases).

Frequency dynamics and transmission advantages

We implemented and evaluated multiple models that forecast variant frequency. These models

estimate the frequency fv(t) of variant v at time t, and simultaneously estimate the variant

transmission advantage Dv ¼
Rvt
Rut

where Rv
t is the effective reproduction number for variant v

and u is an arbitrarily assigned reference variant with fixed fitness. We can interpret these

transmission advantages as the effective reproduction number of a variant relative to some ref-

erence variant.

The four models of interest are: Multinomial Logistic Regression (MLR) of frequency

growth, two models of variant-specific Rt: a fixed growth advantage model (FGA) parameteri-

zation and a growth advantage random walk (GARW) parameterization of the renewal equa-

tion framework of Figgins and Bedford [12], as well as another approach to estimating relative

fitness by Piantham et al [13]. We provide a brief mathematical overview of these methods

below.

The multinomial logistic regression model estimates a fixed growth advantage using logistic

regression with a variant-specific intercept and time coefficient, so that the frequency of vari-

ant v at time t can be modeled as

fvðtÞ ¼
expðav þ dvtÞP
uexpðau þ dutÞ

; ð1Þ

where αv is the initial frequency and δv is the growth rate of variant v, and the summation in

the denominator is over variants 1 to n. Inferred frequency growth fv can be converted to a

growth advantage (or selective coefficient) as Δv = exp(δvτ) assuming a fixed deterministic gen-

eration time of τ.

The model by Piantham et al [13] relies on an approximation to the renewal equation

wherein new infections do not vary greatly over the generation time of the virus. This model

generalizes the MLR model in that it accounts for non-fixed generation time though it assumes

little overall case growth.

The fixed growth advantage (FGA) model uses a renewal equation model based on both

case counts and sequence counts to estimate variant-specific Rt assuming that the growth

advantage Δv of variant v is fixed relative to reference variant u [12]. The growth advantage

random walk (GARW) model uses the same renewal equation framework and data, but allows

variant growth advantages to vary smoothly in time [12].

The models used all differ in the complexity of their assumptions in computing the variant

growth advantage. Growth advantages presented in this manuscript are estimated relative to

the initial Omicron strain (clade 21L, lineage BA.1), providing a point of reference for compet-

ing growth advantages and how median values change over time. Further details on the model

formats can be found in their respective citations. All models were implemented using the

PLOS COMPUTATIONAL BIOLOGY Fitness models provide accurate short-term forecasts of SARS-CoV-2 variant frequency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012443 September 6, 2024 14 / 20

http://ourworldindata.org/covid-cases
https://doi.org/10.1371/journal.pcbi.1012443


evofr software package for evolutionary forecasting (https://github.com/blab/evofr) using

Numpyro for inference.

As a baseline, we compared the four models above to a naive model which generates the

forecast as the average of the last available frequencies.

Additionally, we implement a hierarchical variant of the model where multiple countries

are fit simultaneously with a Normal prior on the relative fitness of a given variant between

countries, so that dv;g � Normalð�dv; sÞ. Similar formulations of this hierarchical model have

been used for SARS-CoV-2 frequency forecasts previously. [18]

Evaluation criteria

We calculated the ‘absolute error’ (AE) for a given model m and data set d as the difference

between the retrospective raw frequencies and the predicted frequencies as

AEm;d
t ¼

1

n

X

v2V
f dv ðtÞ � f̂ m;dv ðtÞ
�
�
�

�
�
�; ð2Þ

where f dv ðtÞ and f̂ m;dv ðtÞ are the retrospective frequencies and the predicted frequencies for

model m, data d, variant v and time t. The AE is the mean across individual variants for a spe-

cific model, data set and time point. Additionally, we often work with the lead time which is

defined as the difference between date of analysis for the data set and the forecast date l = t −
Tobs. We summarized median absolute error and mean absolute error across multiple analysis

datasets in Fig 2 and Table 1.

Throughout this study, we primarily use the median and mean absolute error to evaluate

the accuracy of our point forecasts. We select the median absolute error as a measure of central

tendency on our forecast errors, reducing the influence of outliers and skewed data distribu-

tions due to the contribution of forecasts which tend to diverge rapidly in forecast lead. To bal-

ance this and account for the effect of outliers and rapidly divergent forecasts, we also use the

mean absolute error which is less sensitive to outliers than the mean square error and has units

in terms of frequencies directly.

However, these are not the only possible choices for error metrics, and are motivated by

our decision to focus primarily on point forecasts of variant frequencies. To supplement this

analysis, we also address the coverage of probabilistic extensions of the models discussed here.

Generating predictors of error

We explored four key variables to describe the effect of sequencing efforts on nowcast errors

and estimated Pearson correlations with the mean absolute nowcast errors. These variables are

defined as proportion of bad quality control (QC) sequences according to Nextclade [17], frac-

tion of sequences available within 14 days of the prediction time, total sequences availability

within 14 days of the prediction time and median delay of sequence submission. To calculate

these variables, we selected a 14-day window of data before each and every analysis date and

used the collection and submission dates to determine their availability. Total sequence avail-

ability was calculated by dividing the sequences where submission date was before the date of

analysis by the total collected sequences and similarly fraction of sequences at observation was

estimated. Sequence submission delay was calculated by taking the difference between the sub-

mission date and the date of collection. Bad QC sequence proportion was estimated by divid-

ing the sequences with bad QC classification by the total collected sequences. Estimates were

computed for all defined dates of analysis across all countries.
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Assessing coverage for short-term frequency forecasts

The main results of our analyses rely on mean and median absolute error as metrics, however,

there is much to gain by using probabilistic forecasts for variant frequency. To this aim, we

investigate the coverage of these different methods for forecasting variant frequency. Though

not all models described initially were designed with uncertainty quantification in mind, we

develop and fit Bayesian extensions of these models which are fit to the same data sets as before

using stochastic variational inference.

Downscaling historical sequencing effort

We analyze the effects of scaling back sequencing efforts to assess the effect of sequencing vol-

ume on nowcast and forecast errors. Using the sequencing data from the United Kingdom and

Denmark, we subsampled existing available sequences at the time of analysis at a rate of 100,

200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, and 2000 sequences per week of any submis-

sion date. We then generated datasets for the same analysis dates and study period used in the

previous analyses, generating 5 replicate subsampled data sets of sequences available at each

analysis date for each eventual sequencing rate, location, and analysis date. Subsampling

sequences per week before checking which sequences were available by the analysis date

ensures that we respect the availability of sequences by submission date and submission delay

in each country, so that countries with many sequences per week but long delays will maintain

these delays. Therefore, the selected sequencing rate sets an upper limit on the number of

sequences available per week at any analysis date and preserves the decline in available

sequences that we typically observe in recent weeks since we only include sequences which are

within our original subsample and available at the time of analysis. We then fit the MLR fore-

cast model to each resulting data set and forecast up to 30 days after analysis date and com-

pared these forecasts to the truth set in previous sections to compute the forecast error for each

model. To better understand how the forecast error varies with sequencing intensity and fore-

cast length, we computed the fraction of forecasts within an error tolerance (5% AE) as well as

the average error at different sequence threshold and lag times.

Comparing forecasts using retrospective clade designations and real-time

designations

The main analyses discussed in this manuscript rely on subsetting and filtering SARS-CoV-2

sequence metadata accessed on a particular date. However, the clade designations used

throughout this manuscript may not have been the same as clade designations at the time the

data was available. To understand how this affects our evaluation of forecast error, we compare

the accuracy of models fit to the sequence counts from metadata at the time and using the

available Nextclade reference tree to those fit on the retrospective Nextclade reference tree

used in the rest of the analyses in this paper. This compares lineage designations that were

available in real-time on the historical analysis date to lineage designations that are retrospec-

tively available. In particular, we focus on the timing of the designation of lineage BQ.1 (corre-

sponding to clade 22E) in October 2022 and show the accuracy of MLR using the different

data sets at different forecast leads. We compare the resulting MAE of these analyses between

Nextclade versions in S9 Fig and show trajectories from individual countries in S10–S17 Figs.

Supporting information

S1 Fig. Reconstructing available data sets for Australia, Brazil, South Africa, Trinidad and

Tobago, the United Kingdom, and Vietnam. (A) Variant sequence counts categorized by

PLOS COMPUTATIONAL BIOLOGY Fitness models provide accurate short-term forecasts of SARS-CoV-2 variant frequency

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012443 September 6, 2024 16 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1012443.s001
https://doi.org/10.1371/journal.pcbi.1012443


Nextstrain clade at 4 different analysis dates.

(TIF)

S2 Fig. Reconstructing predictions for Australia. (A) +30 day frequency forecasts for vari-

ants in bimonthly intervals using the MLR model for Australia. Each forecast trajectory is

shown as a different colored line. Retrospective smoothed frequency is shown as a thick black

line.

(TIF)

S3 Fig. Reconstructing predictions for Brazil. (A) +30 day frequency forecasts for variants in

bimonthly intervals using the MLR model for Brazil. Each forecast trajectory is shown as a dif-

ferent colored line. Retrospective smoothed frequency is shown as a thick black line.

(TIF)

S4 Fig. Reconstructing predictions for South Africa. (A) +30 day frequency forecasts for var-

iants in bimonthly intervals using the MLR model for South Africa. Each forecast trajectory is

shown as a different colored line. Retrospective smoothed frequency is shown as a thick black

line.

(TIF)

S5 Fig. Reconstructing predictions for Trinidad and Tobago. (A) +30 day frequency fore-

casts for variants in bimonthly intervals using the MLR model for Trinidad and Tobago. Each

forecast trajectory is shown as a different colored line. Retrospective smoothed frequency is

shown as a thick black line.

(TIF)

S6 Fig. Reconstructing predictions for United Kingdom. (A) +30 day frequency forecasts for

variants in bimonthly intervals using the MLR model for United Kingdom. Each forecast tra-

jectory is shown as a different colored line. Retrospective smoothed frequency is shown as a

thick black line.

(TIF)

S7 Fig. Reconstructing predictions for Vietnam. (A) +30 day frequency forecasts for variants

in bimonthly intervals using the MLR model for Vietnam. Each forecast trajectory is shown as

a different colored line. Retrospective smoothed frequency is shown as a thick black line.

(TIF)

S8 Fig. Posterior and predictive coverage for estimates across countries and models. (A)

The proportion of estimates lying within the 95% confidence intervals (CIs) of posterior latent

frequencies across lag times (-30,-30). (B) The proportion of estimates lying within the 95%

confidence intervals (CIs) of posterior predictive sample frequencies across lag times (-30,-30).

We generate the posterior predictive sample frequencies by sampling random counts for each

variant using their posterior latent frequencies conditioning on the total sequences being those

observed retrospectively.

(TIF)

S9 Fig. Comparing the accuracy of short-term forecast models under retrospective vs real-

time clade assignments. (A-H) Mean absolute error for MLR as a function of days since date

of estimation, starting from 30 day hindcasts to 30 days forecasts. Intervals shown have width

of two standard errors of the mean. We compare retrospective Nextstrain clade assignments

made today (‘Current Nextclade’) to Nextstrain clade assignments available in Oct 2022 (‘Real-

time Nextclade’). We find that errors are qualitatively similar regardless of Nextclade version
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with errors being potentially higher for the current Nextclade version.

(TIF)

S10 Fig. Forecasts for Australia using clade designations under retrospective vs real-time

clade assignments. Forecasts from MLR fit to data generated using retrospective Nextstrain

clade designations (‘Current Nextclade’) (A) and Nextstrain clade assignments available in Oct

2022 (‘Real-time Nextclade’) (B).

(TIF)

S11 Fig. Forecasts for Brazil using clade designations under retrospective vs real-time

clade assignments. Forecasts from MLR fit to data generated using retrospective Nextstrain

clade designations (‘Current Nextclade’) (A) and Nextstrain clade assignments available in Oct

2022 (‘Real-time Nextclade’) (B).

(TIF)

S12 Fig. Forecasts for Japan using clade designations under retrospective vs real-time

clade assignments. Forecasts from MLR fit to data generated using retrospective Nextstrain

clade designations (‘Current Nextclade’) (A) and Nextstrain clade assignments available in Oct

2022 (‘Real-time Nextclade’) (B).

(TIF)

S13 Fig. Forecasts for South Africa using clade designations under retrospective vs real-

time clade assignments. Forecasts from MLR fit to data generated using retrospective Next-

strain clade designations (‘Current Nextclade’) (A) and Nextstrain clade assignments available

in Oct 2022 (‘Real-time Nextclade’) (B).

(TIF)

S14 Fig. Forecasts for Trinidad and Tobago using clade designations under retrospective

vs real-time clade assignments. Forecasts from MLR fit to data generated using retrospective

Nextstrain clade designations (‘Current Nextclade’) (A) and Nextstrain clade assign- ments

available in Oct 2022 (‘Real-time Nextclade’) (B).

(TIF)

S15 Fig. Forecasts for United States using clade designations under retrospective vs real-

time clade assignments. Forecasts from MLR fit to data generated using retrospective Next-

strain clade designations (‘Current Nextclade’) (A) and Nextstrain clade assignments available

in Oct 2022 (‘Real-time Nextclade’) (B).

(TIF)

S16 Fig. Forecasts for United Kingdom using clade designations under retrospective vs

real-time clade assignments. Forecasts from MLR fit to data generated using retrospective

Nextstrain clade designations (‘Current Nextclade’) (A) and Nextstrain clade assignments

available in Oct 2022 (‘Real-time Nextclade’) (B).

(TIF)

S17 Fig. Forecasts for Vietnam using clade designations under retrospective vs real-time

clade assignments. Forecasts from MLR fit to data generated using retrospective Nextstrain

clade designations (‘Current Nextclade’) (A) and Nextstrain clade assignments available in Oct

2022 (‘Real-time Nextclade’) (B).

(TIF)
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