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Phylogenies are the result of branching 
processes



Timeseries and phylogeny are dual 
outcomes of an infectious process
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Can ask for the probability of observing this timeseries 
given epidemiological parameters β and γ.
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Epidemic branching process

Time

Can ask for the probability of observing this tree given 
epidemiological parameters β and γ.



The coalescent
Assume equilibrium number of infecteds.  Call this equilibrium N.



The coalescent
Sample some individuals



The coalescent
Each generation, there is a small 
chance for coalescence for each pair
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The coalescent
Probability of coalescence scales 
quadratically with lineage count
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Population size affects tree shape
The rate of coalescence decreases linearly with the population size N.



Changing population size

that heterochronous samples taken from a population
should be measurably evolving. This expectation has
recently been used to challenge the validity of claims of
successful isolation of DNA from exceptionally ancient
sources of bacteria [37,38].

Previously, phylogenetic calibrations of the rate of
evolution within species have not been possible because
of the difficulty in assigning fossils to specific lineages
at this taxonomic level. As a result, most estimates of
the rate of molecular evolution have been at the level
of genera or higher. Independent estimates based on
ancient DNA will not only give us a more detailed
picture of variation in evolutionary rates across species
and populations, but will also help test the validity of
recent methods designed to estimate the variation in
rates across lineages [16,20–22].

Measuring the evolution of RNA viruses
As a group, RNA viruses encompass such well known
pathogens as HIV, influenza and foot and mouth disease,
and are characterized by populations that continuously
generate huge numbers of mutations owing to their large
numbers, very short generation times and the error-prone
nature of their replication machinery [39,40]. Some of
these mutations are carried to fixation by random genetic
drift or by the strong directional selection exerted by host
immune responses, resulting in a very fast rate of
substitution of the order of 1023 substitutions site21 y21

[19]. This rate is a million-fold greater than that observed
in eukaryotes [41], so that samples of RNAviruses showing
measurable evolution can be obtained from short
sequences (,300 nucleotides) sampled over short time
intervals (,1 year). As a consequence of this wealth of

Box 3. The coalescent and measurably evolving populations

Molecular sequences, whether sampled simultaneously or serially
through time, can be used to reconstruct the demographic history of
natural populations. This approach is based on a population genetic
model called the coalescent, introduced by Kingman [8] and
generalized by Griffiths and Tavaré [9]. Although these papers consider
populations sampled at one time point, the coalescent model has been
subsequently extended tomeasurably evolvingpopulations byRodrigo
and Felsenstein [46].

The coalescent describes the relationship between the demographic
history of a large population and the shared ancestry of individuals
randomly sampled from it, as represented by a genealogical tree. This
tree, in turn, determines the pattern of genetic diversity seen in sampled
sequences (Box 2). Figure I illustrates the shared ancestry of individuals
sampled from constant-sized (a) and exponentially growing popu-
lations (b), respectively. Moving back in time from the present, we
follow the number of lineages in the genealogy in each generation.
This value decreases when two lineages share a common ancestor
(a coalescence event), and increases when sampled individuals are
encountered (a sampling event). Because the probability that a
coalescence event occurs at a particular time is inversely proportional

to the population size at that time, the pattern of observed coalescence
and sampling events can be used to estimate the demographic history
of the population.

The coalescent model provides a probability distribution of times
between the coalescence events in the sample genealogy. This
distribution depends on a demographic function (e.g. constant size,
exponential growth or logistic growth) that describes population-size
change, and the likelihood of this function can be calculated given a
specified genealogy. Hence, the demographic function can be esti-
mated from gene sequences by combining the phylogenetic and
coalescent likelihood functions, as described in Box 4.

The coalescent is a variable process, so it often produces estimates
with large confidence limits. Statistical power is increased by the use of
sequences from multiple unlinked loci (as they represent multiple
independent runs of the coalescent process), or by the use of sequences
sampled at different times. The greater the spread of sampling times of
sequences, the more precise the estimates of population size and
substitution ratewill be [23]. Finally, heterochronous sequences contain
information about mutation rate (Box 2), so the demographic function
can be estimated in calendar time units (generations or years).
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successful isolation of DNA from exceptionally ancient
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of the difficulty in assigning fossils to specific lineages
at this taxonomic level. As a result, most estimates of
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of genera or higher. Independent estimates based on
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through time, can be used to reconstruct the demographic history of
natural populations. This approach is based on a population genetic
model called the coalescent, introduced by Kingman [8] and
generalized by Griffiths and Tavaré [9]. Although these papers consider
populations sampled at one time point, the coalescent model has been
subsequently extended tomeasurably evolvingpopulations byRodrigo
and Felsenstein [46].

The coalescent describes the relationship between the demographic
history of a large population and the shared ancestry of individuals
randomly sampled from it, as represented by a genealogical tree. This
tree, in turn, determines the pattern of genetic diversity seen in sampled
sequences (Box 2). Figure I illustrates the shared ancestry of individuals
sampled from constant-sized (a) and exponentially growing popu-
lations (b), respectively. Moving back in time from the present, we
follow the number of lineages in the genealogy in each generation.
This value decreases when two lineages share a common ancestor
(a coalescence event), and increases when sampled individuals are
encountered (a sampling event). Because the probability that a
coalescence event occurs at a particular time is inversely proportional

to the population size at that time, the pattern of observed coalescence
and sampling events can be used to estimate the demographic history
of the population.

The coalescent model provides a probability distribution of times
between the coalescence events in the sample genealogy. This
distribution depends on a demographic function (e.g. constant size,
exponential growth or logistic growth) that describes population-size
change, and the likelihood of this function can be calculated given a
specified genealogy. Hence, the demographic function can be esti-
mated from gene sequences by combining the phylogenetic and
coalescent likelihood functions, as described in Box 4.

The coalescent is a variable process, so it often produces estimates
with large confidence limits. Statistical power is increased by the use of
sequences from multiple unlinked loci (as they represent multiple
independent runs of the coalescent process), or by the use of sequences
sampled at different times. The greater the spread of sampling times of
sequences, the more precise the estimates of population size and
substitution ratewill be [23]. Finally, heterochronous sequences contain
information about mutation rate (Box 2), so the demographic function
can be estimated in calendar time units (generations or years).
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Changing population size
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that heterochronous samples taken from a population
should be measurably evolving. This expectation has
recently been used to challenge the validity of claims of
successful isolation of DNA from exceptionally ancient
sources of bacteria [37,38].

Previously, phylogenetic calibrations of the rate of
evolution within species have not been possible because
of the difficulty in assigning fossils to specific lineages
at this taxonomic level. As a result, most estimates of
the rate of molecular evolution have been at the level
of genera or higher. Independent estimates based on
ancient DNA will not only give us a more detailed
picture of variation in evolutionary rates across species
and populations, but will also help test the validity of
recent methods designed to estimate the variation in
rates across lineages [16,20–22].

Measuring the evolution of RNA viruses
As a group, RNA viruses encompass such well known
pathogens as HIV, influenza and foot and mouth disease,
and are characterized by populations that continuously
generate huge numbers of mutations owing to their large
numbers, very short generation times and the error-prone
nature of their replication machinery [39,40]. Some of
these mutations are carried to fixation by random genetic
drift or by the strong directional selection exerted by host
immune responses, resulting in a very fast rate of
substitution of the order of 1023 substitutions site21 y21

[19]. This rate is a million-fold greater than that observed
in eukaryotes [41], so that samples of RNAviruses showing
measurable evolution can be obtained from short
sequences (,300 nucleotides) sampled over short time
intervals (,1 year). As a consequence of this wealth of

Box 3. The coalescent and measurably evolving populations

Molecular sequences, whether sampled simultaneously or serially
through time, can be used to reconstruct the demographic history of
natural populations. This approach is based on a population genetic
model called the coalescent, introduced by Kingman [8] and
generalized by Griffiths and Tavaré [9]. Although these papers consider
populations sampled at one time point, the coalescent model has been
subsequently extended tomeasurably evolvingpopulations byRodrigo
and Felsenstein [46].

The coalescent describes the relationship between the demographic
history of a large population and the shared ancestry of individuals
randomly sampled from it, as represented by a genealogical tree. This
tree, in turn, determines the pattern of genetic diversity seen in sampled
sequences (Box 2). Figure I illustrates the shared ancestry of individuals
sampled from constant-sized (a) and exponentially growing popu-
lations (b), respectively. Moving back in time from the present, we
follow the number of lineages in the genealogy in each generation.
This value decreases when two lineages share a common ancestor
(a coalescence event), and increases when sampled individuals are
encountered (a sampling event). Because the probability that a
coalescence event occurs at a particular time is inversely proportional

to the population size at that time, the pattern of observed coalescence
and sampling events can be used to estimate the demographic history
of the population.

The coalescent model provides a probability distribution of times
between the coalescence events in the sample genealogy. This
distribution depends on a demographic function (e.g. constant size,
exponential growth or logistic growth) that describes population-size
change, and the likelihood of this function can be calculated given a
specified genealogy. Hence, the demographic function can be esti-
mated from gene sequences by combining the phylogenetic and
coalescent likelihood functions, as described in Box 4.

The coalescent is a variable process, so it often produces estimates
with large confidence limits. Statistical power is increased by the use of
sequences from multiple unlinked loci (as they represent multiple
independent runs of the coalescent process), or by the use of sequences
sampled at different times. The greater the spread of sampling times of
sequences, the more precise the estimates of population size and
substitution ratewill be [23]. Finally, heterochronous sequences contain
information about mutation rate (Box 2), so the demographic function
can be estimated in calendar time units (generations or years).
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that heterochronous samples taken from a population
should be measurably evolving. This expectation has
recently been used to challenge the validity of claims of
successful isolation of DNA from exceptionally ancient
sources of bacteria [37,38].

Previously, phylogenetic calibrations of the rate of
evolution within species have not been possible because
of the difficulty in assigning fossils to specific lineages
at this taxonomic level. As a result, most estimates of
the rate of molecular evolution have been at the level
of genera or higher. Independent estimates based on
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recent methods designed to estimate the variation in
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immune responses, resulting in a very fast rate of
substitution of the order of 1023 substitutions site21 y21

[19]. This rate is a million-fold greater than that observed
in eukaryotes [41], so that samples of RNAviruses showing
measurable evolution can be obtained from short
sequences (,300 nucleotides) sampled over short time
intervals (,1 year). As a consequence of this wealth of
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through time, can be used to reconstruct the demographic history of
natural populations. This approach is based on a population genetic
model called the coalescent, introduced by Kingman [8] and
generalized by Griffiths and Tavaré [9]. Although these papers consider
populations sampled at one time point, the coalescent model has been
subsequently extended tomeasurably evolvingpopulations byRodrigo
and Felsenstein [46].

The coalescent describes the relationship between the demographic
history of a large population and the shared ancestry of individuals
randomly sampled from it, as represented by a genealogical tree. This
tree, in turn, determines the pattern of genetic diversity seen in sampled
sequences (Box 2). Figure I illustrates the shared ancestry of individuals
sampled from constant-sized (a) and exponentially growing popu-
lations (b), respectively. Moving back in time from the present, we
follow the number of lineages in the genealogy in each generation.
This value decreases when two lineages share a common ancestor
(a coalescence event), and increases when sampled individuals are
encountered (a sampling event). Because the probability that a
coalescence event occurs at a particular time is inversely proportional

to the population size at that time, the pattern of observed coalescence
and sampling events can be used to estimate the demographic history
of the population.

The coalescent model provides a probability distribution of times
between the coalescence events in the sample genealogy. This
distribution depends on a demographic function (e.g. constant size,
exponential growth or logistic growth) that describes population-size
change, and the likelihood of this function can be calculated given a
specified genealogy. Hence, the demographic function can be esti-
mated from gene sequences by combining the phylogenetic and
coalescent likelihood functions, as described in Box 4.

The coalescent is a variable process, so it often produces estimates
with large confidence limits. Statistical power is increased by the use of
sequences from multiple unlinked loci (as they represent multiple
independent runs of the coalescent process), or by the use of sequences
sampled at different times. The greater the spread of sampling times of
sequences, the more precise the estimates of population size and
substitution ratewill be [23]. Finally, heterochronous sequences contain
information about mutation rate (Box 2), so the demographic function
can be estimated in calendar time units (generations or years).
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Generally, we want to know:

Bayes rule:

p(model|data)

Often referred to as:
posterior / likelihood⇥ prior

Given a phylogeny, how can we learn about the 
evolutionary process that underlies it?

p(model|data) / p(data|model) p(model)



In this case, we have:
p(�|⌧) / p(⌧ |�) p(�)

� – coalescent model
– phylogeny⌧

However, we don’t observe the tree directly:
p(⌧, µ|D) / p(D|⌧, µ) p(⌧) p(µ)

– sequence dataD
µ – mutation model

We integrate over uncertainty:

p(�|D) /
Z

p(D|⌧, µ) p(⌧ |�) p(�) p(µ) d⌧ dµ



BEAST: Bayesian Evolutionary 
Analysis by Sampling Trees



Integration through Markov chain Monte Carlo
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Integration through Markov chain Monte Carlo
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Metropolis-Hastings algorithm

Acceptance probability: p (θ*)
p (θ)

If new state is more likely, always accept.  If new state is less likely, accept 
with probability proportional to ratio of new state to old state.

p(x) = 0.2

Starting from state θ propose a new state θ*.  For the following, this proposal 
must to symmetric, i.e. Q(θ➝ θ*) = Q(θ*➝ θ)

min   1,( )

Simple example: p(y) = 0.8

A(x➝y) = 0.8/0.2 = 1 A(y➝x) = 0.2/0.8 = 0.25

Mass moving from x to y: p(x) A(x➝y) = 0.2╳1 = 0.2

Mass moving from y to x: p(y) A(y➝x) = 0.8╳0.25 = 0.2



BEAST will produce samples from:

� – coalescent model

– phylogeny⌧

µ – mutation model



Use a ‘skyline’ demographic model
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Practical part 1



Estimating R0 from timeseries data
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r = 0.20 per day for 1918 influenza

r(0) = � � �

We know the approximate recovery rate

We can solve for β and hence R0

� ⇡ 0.25

� = r + � ⇡ 0.45

R0 =
�

�
⇡ 0.45

0.25
⇡ 1.8



Growth rate of pandemic H1N1
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r = 0.11 per day

β = 0.11 + 0.33 = 0.44 per day

R0 = 0.44 / 0.33 = 1.33



Generation time τ of infection

At the beginning of the epidemic, 
new infections emerge at rate β.
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Ne !  = 7.2 years

Ne = 1050 infections (duration of infection of 5 days)

N = 70 million infections (prevalence)

Off by a factor of 6,700

Ne !  = 124.6 years

Ne = 8270 infections (duration of infection of 11 days)

N = 0.9 million infections (prevalence)

Off by a factor of 110

Effective population sizes of flu vs measles

1970 1980 1990 2000 2010 1950 1960 1970 1980 1990 2000 2010

Influenza A (H3N2) Measles



Practical part 2
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Continuous time Markov chains (CTMCs)

A B

A μAB

B μBA

BB AA A

μAB = 3
μBA = 1

pt!1(A) =
µBA

µAB + µBA

pt!1(B) =
µAB

µAB + µBA

q(B) = 0.75
q(A) = 0.25



A B
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CTMCs on trees

Transition matrix with μAB = 3 μBA = 1 t = 0.2
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Integrate over internal states

Transition matrix with μAB = 3 μBA = 1 t = 0.2
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Integrate over internal states

Transition matrix with μAB = 3 μBA = 1 t = 0.2
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Integrate over internal states
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= 0.0211 + 0.0073 + 0.0036 + 0.0109 = 0.0429p(D|⌧, µ)
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Practical part 3


