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Abstract: Viral phylodynamics is defined as the study of
how epidemiological, immunological, and evolutionary
processes act and potentially interact to shape viral
phylogenies. Since the coining of the term in 2004,
research on viral phylodynamics has focused on trans-
mission dynamics in an effort to shed light on how these
dynamics impact viral genetic variation. Transmission
dynamics can be considered at the level of cells within
an infected host, individual hosts within a population, or
entire populations of hosts. Many viruses, especially RNA
viruses, rapidly accumulate genetic variation because of
short generation times and high mutation rates. Patterns
of viral genetic variation are therefore heavily influenced
by how quickly transmission occurs and by which entities
transmit to one another. Patterns of viral genetic variation
will also be affected by selection acting on viral
phenotypes. Although viruses can differ with respect to
many phenotypes, phylodynamic studies have to date
tended to focus on a limited number of viral phenotypes.
These include virulence phenotypes, phenotypes associ-
ated with viral transmissibility, cell or tissue tropism
phenotypes, and antigenic phenotypes that can facilitate
escape from host immunity. Due to the impact that
transmission dynamics and selection can have on viral
genetic variation, viral phylogenies can therefore be used
to investigate important epidemiological, immunological,
and evolutionary processes, such as epidemic spread [2],
spatio-temporal dynamics including metapopulation
dynamics [3], zoonotic transmission, tissue tropism [4],
and antigenic drift [5]. The quantitative investigation of
these processes through the consideration of viral
phylogenies is the central aim of viral phylodynamics.

This is a ‘‘Topic Page’’ article for PLOS Computational Biology.

Sources of Phylodynamic Variation

In coining the term phylodynamics, Grenfell and coauthors [1]

postulated that viral phylogenies ‘‘… are determined by a

combination of immune selection, changes in viral population

size, and spatial dynamics.’’ Their study showcased three features

of viral phylogenies, which may serve as rules of thumb for

identifying important epidemiological, immunological, and evolu-

tionary processes influencing patterns of viral genetic variation.

The Relative Lengths of Internal Versus External Branches
Will Be Affected by Changes in Viral Population Size over
Time (see Figure 1) [1]

Rapid expansion of a virus in a population will be reflected by a

‘‘star-like’’ tree, in which external branches are long relative to internal

branches. Star-like trees arise because viruses are more likely to share a

recent common ancestor when the population is small, and a growing

population has an increasingly smaller population size towards the past.

Compared to a phylogeny of an expanding virus, a phylogeny of a viral

population that stays constant in size will have external branches that

are shorter relative to branches on the interior of the tree. The

phylogeny of HIV provides a good example of a star-like tree, as the

prevalence of HIV infection rose rapidly throughout the 1980s

(caricatured by Figure 1A). The phylogeny of hepatitis B virus

(caricatured by Figure 1B) instead reflects a viral population that has

remained roughly constant in size. Similarly, trees reconstructed from

viral sequences isolated from chronically infected individuals can be

used to gauge changes in viral population sizes within a host.

The Clustering of Taxa on a Viral Phylogeny Will Be
Affected by Host Population Structure (See Figure 2) [1]

Viruses within similar hosts, such as hosts that reside in the same

geographic region, are expected to be more closely related genetically if

transmission occurs more commonly between them. The phylogenies

of measles and rabies virus (caricatured by Figure 2A) illustrate viruses

with strong spatial structure. These phylogenies stand in contrast to the

phylogeny of human influenza, which does not appear to exhibit strong

spatial structure over extended periods of time. Clustering of taxa,

when it occurs, is not necessarily observed at all scales, and a

population that appears structured at some scale may appear panmictic

at another scale, for example at a smaller spatial scale. While spatial

structure is the most commonly observed population structure in

phylodynamic analyses, viruses may also have nonrandom admixture

by attributes such as the age, race, and risk behavior [6]. This is

because viral transmission can preferentially occur between hosts

sharing any of these attributes.

Tree Balance Will Be Affected by Selection, Most Notably
Immune Escape (See Figure 3) [1]

The effect of directional selection on the shape of a viral

phylogeny is exemplified by contrasting the trees of influenza virus
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and HIV’s surface proteins. The ladder-like phylogeny of influenza

virus A/H3N2’s hemagglutinin protein bears the hallmarks of

strong directional selection, driven by immune escape (caricatured

by Figure 3A). In contrast, a more balanced phylogeny may occur

when a virus is not subject to strong immune selection or other

source of directional selection. An example of this is the phylogeny

of HIV’s envelope protein inferred from sequences isolated from

different individuals in a population (caricatured by Figure 3B).

Interestingly, phylogenies of HIV’s envelope protein from

chronically infected hosts resemble influenza’s ladder-like tree

(caricatured by Figure 3A). This highlights that the processes

affecting viral genetic variation can differ across scales. Indeed,

contrasting patterns of viral genetic variation within and between

hosts has been an active topic in phylodynamic research since the

field’s inception [1].

Although these three phylogenetic features are useful rules of

thumb to identify epidemiological, immunological, and evolution-

ary processes that might be impacting viral genetic variation, there

is growing recognition that the mapping between process and

phylogenetic pattern can be many-to-one. For instance, although

ladder-like trees such as the one shown in Figure 3A could reflect the

presence of directional selection, ladder-like trees could also reflect

sequential genetic bottlenecks that might occur with rapid spatial

spread, as in the case of rabies virus [7]. Because of this many-to-one

mapping between process and phylogenetic pattern, research in the

field of viral phylodynamics has sought to develop and apply

quantitative methods to effectively infer process from reconstructed

viral phylogenies (see Methods). The consideration of other data

sources (e.g., incidence patterns) may aid in distinguishing between

competing phylodynamic hypotheses. Combining disparate sources

of data for phylodynamic analysis remains a major challenge in the

field and is an active area of research.

Applications

Viral Origins
Phylodynamic models may aid in dating epidemic and pandemic

origins. The rapid rate of evolution in viruses allows molecular clock

models to be estimated from genetic sequences, thus providing a

per-year rate of evolution of the virus. With the rate of evolution

measured in real units of time, it is possible to infer the date of the

most recent common ancestor (MRCA) for a set of viral sequences.

The age of the MRCA of these isolates is a lower bound; the

common ancestor of the entire virus population must have existed

earlier than the MRCA of the virus sample. In April 2009, genetic

analysis of 11 sequences of swine-origin H1N1 influenza suggested

that the common ancestor existed at or before 12 January 2009 [8].

This finding aided in making an early estimate of the basic

reproduction number R0 of the pandemic. Similarly, genetic

analysis of sequences isolated from within an individual can be

used to determine the individual’s infection time [9].

Viral Spread
Phylodynamic models may provide insight into epidemiological

parameters that are difficult to assess through traditional surveil-

lance means. For example, assessment of R0 from surveillance data

requires careful control of the variation of the reporting rate and the

intensity of surveillance. Inferring the demographic history of the

virus population from genetic data may help to avoid these

difficulties and can provide a separate avenue for inference of R0 [2].

Figure 1. Idealized caricatures of virus phylogenies that show the effects of changes in viral population size.
doi:10.1371/journal.pcbi.1002947.g001
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Such approaches have been used to estimate R0 in hepatitis C virus

[10] and HIV [2]. Additionally, differential transmission between

groups, be they geographic-, age-, or risk-related, is very difficult to

assess from surveillance data alone. Phylogeographic models have

the possibility of more directly revealing these otherwise hidden

transmission patterns [11]. Phylodynamic approaches have mapped

the geographic movement of the human influenza virus [3] and

quantified the epidemic spread of rabies virus in North American

raccoons [12,13]. However, nonrepresentative sampling may bias

inferences of both R0 [14] and migration patterns [3]. Phylody-

namic approaches have also been used to better understand viral

transmission dynamics and spread within infected hosts. For

example, phylodynamic studies have been used to infer the rate of

viral growth within infected hosts and to argue for the occurrence of

viral compartmentalization in hepatitis C infection [4].

Viral Control Efforts
Phylodynamic approaches can also be useful in ascertaining the

effectiveness of viral control efforts, particularly for diseases with low

reporting rates. For example, the genetic diversity of the DNA-based

hepatitis B virus declined in the Netherlands in the late 1990s, following

the initiation of a vaccination program [15]. This correlation was used

to argue that vaccination was effective at reducing the prevalence of

infection, although alternative explanations are possible [16].

Viral control efforts can also impact the rate at which virus

populations evolve, thereby influencing phylogenetic patterns.

Phylodynamic approaches that quantify how evolutionary rates

change over time can therefore provide insight into the

effectiveness of control strategies. For example, an application to

HIV sequences within infected hosts showed that viral substitution

rates dropped to effectively zero following the initiation of

antiretroviral drug therapy [17]. This decrease in substitution

rates was interpreted as an effective cessation of viral replication

following the commencement of treatment, and would be expected

to lead to lower viral loads. This finding is especially encouraging

because lower substitution rates are associated with slower

progression to AIDS in treatment-naive patients [18].

Antiviral treatment also creates selective pressure for the

evolution of drug resistance in virus populations, and can thereby

affect patterns of genetic diversity. Commonly, there is a fitness

trade-off between faster replication of susceptible strains in the

absence of antiviral treatment and faster replication of resistant

strains in the presence of antivirals [19]. Thus, ascertaining the

level of antiviral pressure necessary to shift evolutionary outcomes

is of public health importance. Phylodynamic approaches have

been used to examine the spread of Oseltamivir resistance in

influenza A/H1N1 [20].

Methods

Most often, the goal of phylodynamic analyses is to make

inferences of epidemiological processes from viral phylogenies.

Figure 2. Idealized caricatures of virus phylogenies that show the effects of population structure. Red and blue circles represent spatial
locations from which viral samples were isolated.
doi:10.1371/journal.pcbi.1002947.g002
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Thus, most phylodynamic analyses begin with the reconstruction

of a phylogenetic tree. Genetic sequences are often sampled at

multiple time points, which allows the estimation of substitution

rates and the time of the MRCA using a molecular clock model

[21]. For viruses, Bayesian phylogenetic methods are popular

because of the ability to fit complex demographic scenarios while

integrating out phylogenetic uncertainty [22,23].

Traditional evolutionary approaches directly utilize methods

from computational phylogenetics and population genetics to

assess hypotheses of selection and population structure without

direct regard for epidemiological models. For example,

N the magnitude of selection can be measured by comparing the

rate of nonsynonymous substitution to the rate of synonymous

substitution (dN/dS);

N the population structure of the host population may be

examined by calculation of F-statistics; and

N hypotheses concerning panmixis and selective neutrality of the

virus may be tested with statistics such as Tajima’s D.

However, such analyses were not designed with epidemiological

inference in mind and it may be difficult to extrapolate from

standard statistics to desired epidemiological quantities.

In an effort to bridge the gap between traditional evolutionary

approaches and epidemiological models, several analytical methods

have been developed to specifically address problems related to

phylodynamics. These methods are based on coalescent theory,

birth-death models [24], and simulation, and are used to more directly

relate epidemiological parameters to observed viral sequences.

Coalescent Theory and Phylodynamics
Effective population size. The coalescent is a mathematical

model that describes the ancestry of a sample of nonrecombining

gene copies. In modeling the coalescent process, time is usually

considered to flow backwards from the present. In a selectively

neutral population of constant size N and nonoverlapping

generations (the Wright Fisher model), the expected time for a

sample of two gene copies to coalesce (i.e., find a common ancestor)

is N generations. More generally, the waiting time for two

members of a sample of n gene copies to share a common ancestor

is exponentially distributed, with rate

ln~
n

2

� �
1

N
:

This time interval is labeled Tn, and at its end there are n21 extant

lineages remaining (see Figure 4). These remaining lineages will

coalesce at the rate ln{1 � � � l2 after intervals Tn{1 � � �T2. This process

can be simulated by drawing exponential random variables with rates

ln{if gi~0,...,n{2 until there is only a single lineage remaining (the

MRCA of the sample). In the absence of selection and population

structure, the tree topology may be simulated by picking two lineages

uniformly at random after each coalescent interval Ti.

The expected waiting time to find the MRCA of the sample is

the sum of the expected values of the internode intervals,

E½TMRCA�~E½Tn�zE½Tn{1�z � � �zE½T2�

~1=lnz1=ln{1z � � �z1=l2

~2N 1{
1

n

� � :

Figure 4. A gene genealogy illustrating internode intervals.
doi:10.1371/journal.pcbi.1002947.g004

Figure 3. Idealized caricatures of virus phylogenies that show
the effects of immune escape.
doi:10.1371/journal.pcbi.1002947.g003
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Two corollaries are:

N The time to the MRCA (TMRCA) of a sample is not

unbounded in the sample size, lim
n?inf

E TMRCA½ �~2N.

N Few samples are required for the expected TMRCA of the

sample to be close to the theoretical upper bound, as the

difference is O(1/n).

Consequently, the TMRCA estimated from a relatively small

sample of viral genetic sequences is an asymptotically unbiased

estimate for the time that the viral population was founded in the

host population.

For example, Robbins et al. [25] estimated the TMRCA for 74

HIV-1 subtype-B genetic sequences collected in North America to

be 1968. Assuming a constant population size, we expect the time

back to 1968 to represent 121/74 = 99% of the TMRCA of the

North American virus population.

If the population size N(t) changes over time, the coalescent rate

ln(t) will also be a function of time. Donnelley and Tavaré [26]

derived this rate for a time-varying population size under the

assumption of constant birth rates:

ln(t)~
n

2

� �
1

N(t)
:

Because all topologies are equally likely under the neutral

coalescent, this model will have the same properties as the

constant-size coalescent under a rescaling of the time variable:

t?
ð

t

t~0

dt

N(t)
:

Very early in an epidemic, the virus population may be growing

exponentially at rate r, so that t units of time in the past, the

population will have size N(t) = N0e2rt. In this case, the rate of

coalescence becomes

ln(t)~
n

2

� �
1

N0e{rt
:

This rate is small close to when the sample was collected (t = 0),

so that external branches (those without descendants) of a gene

genealogy will tend to be long relative to those close to the root of

the tree. This is why rapidly growing populations yield trees as

depicted in Figure 1A.

If the rate of exponential growth is estimated from a gene

genealogy, it may be combined with knowledge of the duration of

infection or the serial interval D for a particular pathogen to

estimate the basic reproduction number, R0. The two may be

linked by the following equation [27]:

r~
R0{1

D
:

For example, Fraser et al. [8] generated one of the first estimates

of R0 for pandemic H1N1 influenza in 2009 by using a coalescent-

based analysis of 11 hemagglutinin sequences in combination with

prior data about the infectious period for influenza.

Compartmental models. Infectious disease epidemics are

often characterized by highly nonlinear and rapid changes in the

number of infected individuals and the effective population size of

the virus. In such cases, birth rates are highly variable, which can

diminish the correspondence between effective population size and

the prevalence of infection [28]. Many mathematical models have

been developed in the field of mathematical epidemiology to

describe the nonlinear time series of prevalence of infection and

the number of susceptible hosts. A well studied example is the

Susceptible-Infected-Recovered (SIR) system of differential

equations, which describes the fractions of the population S(t)

susceptible, I(t) infected, and R(t) recovered as a function of time:

dS

dt
~{bSI ,

dI

dt
~bSI{cI, and

dR

dt
~cI :

Here, b is the per capita rate of transmission to susceptible hosts,

and c is the rate at which infected individuals recover, whereupon

they are no longer infectious. In this case, the incidence of new

infections per unit time is f (t)~bSI , which is analogous to the

birth rate in classical population genetics models. Volz et al. [2]

proposed that the general formula for the rate of coalescence will

be:

ln(t)~
n

2

� �
2f (t)

I(t)2
:

The ratio 2
n

2

� �
=I(t)2 can be understood as arising from the

probability that two lineages selected uniformly at random are

both ancestral to the sample. This probability is the ratio of the

number of ways to pick two lineages without replacement from the

set of lineages and from the set of all infections:

n

2

� �
=

I(t)

2

� �
&2

n

2

� �
=I(t)2. Coalescent events will occur with

this probability at the rate given by the incidence function f(t).

For the simple SIR model, this yields

ln(t)~
n

2

� �
2bS(t)

I(t)
:

This expression is similar to the Kingman coalescent rate, but is

damped by the fraction susceptible S(t).

Early in an epidemic, S(0)<1, so for the SIR model

ln(t)&
n

2

� �
2b

I(t)
:

This has the same mathematical form as the rate in the

Kingman coalescent, substituting Ne = I(t)/2b. Consequently,

estimates of effective population size based on the Kingman
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coalescent will be proportional to prevalence of infection during

the early period of exponential growth of the epidemic [28].

When a disease is no longer exponentially growing but has

become endemic, the rate of lineage coalescence can also be derived

for the epidemiological model governing the disease’s transmission

dynamics. This can be done by extending the Wright Fisher model

to allow for unequal offspring distributions. With a Wright Fisher

generation taking t units of time, the rate of coalescence is given by:

ln~
n

2

� �
1

Net
,

where the effective population size Ne is the population size N
divided by the variance of the offspring distribution s2 [29]. The

generation time t for an epidemiological model at equilibrium is

given by the duration of infection and the population size N is

closely related to the equilibrium number of infected individuals. To

derive the variance in the offspring distribution s2 for a given

epidemiological model, one can imagine that infected individuals

can differ from one another in their infectivities, their contact rates,

their durations of infection, or in other characteristics relating to

their ability to transmit the virus with which they are infected. These

differences can be acknowledged by assuming that the basic

reproduction number is a random variable n that varies across

individuals in the population and that n follows some continuous

probability distribution [30]. The mean and variance of these

individual basic reproduction numbers, E[n] and Var[n], respec-

tively, can then be used to compute s2. The expression relating

these quantities is given by [31]:

s2~
Var½n�
E½n�2

z1:

For example, for the SIR model above, modified to include

births into the population and deaths out of the population, the

population size N is given by the equilibrium number of infected

individuals, I. The mean basic reproduction number, averaged

across all infected individuals, is given by b/c, under the

assumption that the background mortality rate is negligible

compared to the rate of recovery c. The variance in individuals’

basic reproduction rates is given by (b/c)2, because the duration of

time individuals remain infected in the SIR model is exponentially

distributed. The variance in the offspring distribution s2 is

therefore 2. Ne therefore becomes I/2 and the rate of coalescence

becomes:

ln~
n

2

� �
2c

I
:

This rate, derived for the SIR model at equilibrium, is

equivalent to the rate of coalescence given by the more general

formula provided by Volz et al. [2]. Rates of coalescence can

similarly be derived for epidemiological models with super-

spreaders or other transmission heterogeneities, for models with

individuals who are exposed but not yet infectious, and for models

with variable infectious periods, among others [31]. Given some

epidemiological information (such as the duration of infection) and

a specification of a mathematical model, viral phylogenies can

therefore be used to estimate epidemiological parameters that

might otherwise be difficult to quantify.

Phylogeography
At the most basic level, the presence of geographic population

structure can be revealed by comparing the genetic relatedness of

viral isolates to geographic relatedness. A basic question is whether

geographic character labels are more clustered on a phylogeny

than expected under a simple nonstructured model (see Figure 3).

This question can be answered by counting the number of

geographic transitions on the phylogeny via parsimony, maximum

likelihood, or through Bayesian inference. If population structure

exists, then there will be fewer geographic transitions on the

phylogeny than expected in a panmictic model [32]. This

hypothesis can be tested by randomly scrambling the character

labels on the tips of the phylogeny and counting the number of

geographic transitions present in the scrambled data. By

repeatedly scrambling the data and calculating transition counts,

a null distribution can be constructed and a p-value computed by

comparing the observed transition counts to this null distribution

[32].

Beyond the presence or absence of population structure,

phylodynamic methods can be used to infer the rates of movement

of viral lineages between geographic locations and reconstruct the

geographic locations of ancestral lineages. Here, geographic

location is treated as a phylogenetic character state, similar in

spirit to ‘‘A,’’ ‘‘T,’’ ‘‘G,’’ and ‘‘C,’’ so that geographic location is

encoded as a substitution model. The same phylogenetic

machinery that is used to infer models of DNA evolution can

thus be used to infer geographic transition matrices [33]. The end

result is a rate, measured in terms of years or in terms of nucleotide

substitutions per site, that a lineage in one region moves to another

region over the course of the phylogenetic tree. In a geographic

transmission network, some regions may mix more readily and

other regions may be more isolated. Additionally, some transmis-

sion connections may be asymmetric, so that the rate at which

lineages in region ‘‘A’’ move to region ‘‘B’’ may differ from the

rate at which lineages in ‘‘B’’ move to ‘‘A.’’ With geographic

location thus encoded, ancestral state reconstruction can be used

to infer ancestral geographic locations of particular nodes in the

phylogeny [33]. These types of approaches can be extended by

substituting other attributes for geographic locations. For example,

in an application to rabies virus, Streicker and colleagues

estimated rates of cross-species transmission by considering host

species as the attribute [7].

Simulation
As discussed above, it is possible to directly infer parameters of

simple compartmental epidemiological models, such as SIR

models, from sequence data by looking at genealogical patterns.

Additionally, general patterns of geographic movement can be

inferred from sequence data, but these inferences do not involve

an explicit model of transmission dynamics between infected

individuals. For more complicated epidemiological models, such as

those involving cross-immunity, age structure of host contact rates,

seasonality, or multiple host populations with different life history

traits, it is often impossible to analytically predict genealogical

patterns from epidemiological parameters. As such, the traditional

statistical inference machinery will not work with these more

complicated models, and in this case, it is common to instead use a

forward simulation-based approach.

Simulation-based models require specification of a transmission

model for the infection process between infected hosts and

susceptible hosts and for the recovery process of infected hosts.

Simulation-based models may be compartmental, tracking the

PLOS Computational Biology | www.ploscompbiol.org 6 March 2013 | Volume 9 | Issue 3 | e1002947



numbers of hosts infected and recovered to different viral strains

[34], or may be individual-based, tracking the infection state and

immune history of every host in the population [5,35]. Generally,

compartmental models offer significant advantages in terms of

speed and memory usage, but may be difficult to implement for

complex evolutionary or epidemiological scenarios. A forward

simulation model may account for geographic population

structure or age structure by modulating transmission rates

between host individuals of different geographic or age classes.

Additionally, seasonality may be incorporated by allowing time of

year to influence transmission rate in a stepwise or sinusoidal

fashion.

To connect the epidemiological model to viral genealogies requires

that multiple viral strains, with different nucleotide or amino acid

sequences, exist in the simulation, often denoted I1, … , In for different

infected classes. In this case, mutation acts to convert a host in one

infected class to another infected class. Over the course of the

simulation, viruses mutate and sequences are produced, from which

phylogenies may be constructed and analyzed.

For antigenically variable viruses, it becomes crucial to model

the risk of transmission from an individual infected with virus

strain ‘‘A’’ to an individual who has previously been infected with

virus strains ‘‘B,’’ ‘‘C,’’ etc. The level of protection against one

strain of virus by a second strain is known as cross-immunity. In

addition to risk of infection, cross-immunity may modulate the

probability that a host becomes infectious and the duration that a

host remains infectious [36]. Often, the degree of cross-immunity

between virus strains is assumed to be related to their sequence

distance.

In general, in needing to run simulations rather than compute

likelihoods, it may be difficult to make fine-scale inferences on

epidemiological parameters, and instead, this work usually focuses

on broader questions, testing whether overall genealogical patterns

are consistent with one epidemiological model or another.

Additionally, simulation-based methods are often used to validate

inference results, providing test data where the correct answer is

known ahead of time. Because computing likelihoods for

genealogical data under complex simulation models has proven

difficult, an alternative statistical approach called Approximate

Bayesian Computation (ABC) is becoming popular in fitting these

simulation models to patterns of genetic variation, following

successful application of this approach to bacterial diseases [37–

39]. This is because ABC makes use of easily computable

summary statistics to approximate likelihoods, rather than the

likelihoods themselves.

Examples

Phylodynamics of Influenza
Human influenza is an acute respiratory infection primarily

caused by viruses influenza A and influenza B. Influenza A viruses

can be further classified into subtypes, such as A/H1N1 and A/

H3N2. Here, subtypes are denoted according to their

hemagglutinin (H or HA) and neuraminidase (N or NA) genes,

which as surface proteins, act as the primary targets for the

humoral immune response. Influenza viruses circulate in other

species as well, most notably as swine influenza and avian

influenza. Through reassortment, genetic sequences from swine

and avian influenza occasionally enter the human population. If a

particular hemagglutinin or neuraminidase has been circulating

outside the human population, then humans will lack immunity to

this protein and an influenza pandemic may follow a host switch

event, as seen in 1918, 1957, 1968, and 2009. After introduction

into the human population, a lineage of influenza generally persists

through antigenic drift, in which HA and NA continually

accumulate mutations allowing viruses to infect hosts immune to

earlier forms of the virus. These lineages of influenza show

recurrent seasonal epidemics in temperate regions and less

periodic transmission in the tropics. Generally, at each pandemic

event, the new form of the virus outcompetes existing lineages

[35]. The study of viral phylodynamics in influenza primarily

focuses on the continual circulation and evolution of epidemic

influenza, rather than on pandemic emergence. Of central interest

to the study of viral phylodynamics is the distinctive phylogenetic

tree of epidemic influenza A/H3N2, which shows a single

predominant trunk lineage that persists through time and side

branches that persist for only 1–5 years before going extinct (see

Figure 5) [40].

Selective pressures. Phylodynamic techniques have provid-

ed insight into the relative selective effects of mutations to different

sites and different genes across the influenza virus genome. The

exposed location of hemagglutinin (HA) suggests that there should

exist strong selective pressure for evolution to the specific sites on

HA that are recognized by antibodies in the human immune

system. These sites are referred to as epitope sites. Phylogenetic

analysis of H3N2 influenza has shown that putative epitope sites of

the HA protein evolve approximately 3.5 times faster on the trunk

of the phylogeny than on side branches (see Figure 5) [41,42]. This

suggests that viruses possessing mutations to these exposed sites

benefit from positive selection and are more likely than viruses

lacking such mutations to take over the influenza population.

Conversely, putative nonepitope sites of the HA protein evolve

approximately twice as fast on side branches than on the trunk of

the H3 phylogeny [41,42], indicating that mutations to these sites

are selected against and viruses possessing such mutations are less

likely to take over the influenza population. Thus, analysis of

phylogenetic patterns gives insight into underlying selective forces.

A similar analysis combining sites across genes shows that while

both HA and NA undergo substantial positive selection, internal

genes show low rates of amino acid fixation relative to levels of

polymorphism, suggesting an absence of positive selection [43].

Further analysis of HA has shown it to have a very small

effective population size relative to the census size of the virus

population, as expected for a gene undergoing strong positive

selection [44]. However, across the influenza genome, there is

surprisingly little variation in effective population size; all genes are

nearly equally low [45]. This finding suggests that reassortment

between segments occurs slowly enough, relative to the actions of

positive selection, that genetic hitchhiking causes beneficial

mutations in HA and NA to reduce diversity in linked neutral

variation in other segments of the genome.

Influenza A/H1N1 shows a larger effective population size and

greater genetic diversity than influenza H3N2 [45], suggesting that

H1N1 undergoes less adaptive evolution than H3N2. This

hypothesis is supported by empirical patterns of antigenic

evolution; there have been nine vaccine updates recommended

by the WHO for H1N1 in the interpandemic period between 1978

and 2009, while there have been 20 vaccine updates recom-

mended for H3N2 during this same time period [46]. Additionally,

an analysis of patterns of sequence evolution on trunk and side

branches suggests that H1N1 undergoes substantially less positive

selection than H3N2 [42,43]. However, the underlying evolution-

ary or epidemiological cause for this difference between H3N2 and

H1N1 remains unclear.

Circulation patterns. The extremely rapid turnover of the

influenza population means that the rate of geographic spread of

influenza lineages must also, to some extent, be rapid. Surveillance

data show a clear pattern of strong seasonal epidemics in
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temperate regions and less periodic epidemics in the tropics [47].

The geographic origin of seasonal epidemics in the Northern and

Southern Hemispheres had been a major open question in the

field. However, recent work by Rambaut et al. [45] and Russell et

al. [48] has shown that temperate epidemics usually emerge from a

global reservoir rather than emerging from within the previous

season’s genetic diversity. This work, and more recent work by

Bedford et al. [3] and Bahl et al. [49], has suggested that the global

persistence of the influenza population is driven by viruses being

passed from epidemic to epidemic, with no individual region in the

world showing continual persistence. However, there is consider-

able debate regarding the particular configuration of the global

network of influenza, with one hypothesis suggesting a metapop-

ulation in East and Southeast Asia that continually seeds influenza

in the rest of the world [48], and another hypothesis advocating a

more global metapopulation in which temperate lineages often

return to the tropics at the end of a seasonal epidemic [3,49].

All of these phylogeographic studies necessarily suffer from

limitations in the worldwide sampling of influenza viruses. For

example, the relative importance of tropical Africa and India has

yet to be uncovered. Additionally, the phylogeographic methods

used in these studies (see section on phylogeographic methods)

make inferences of the ancestral locations and migration rates on

only the samples at hand, rather than on the population in which

these samples are embedded. Because of this, study-specific

sampling procedures are a concern in extrapolating to popula-

tion-level inferences. However, through joint epidemiological and

evolutionary simulations, Bedford et al. [3] show that their

estimates of migration rates appear robust to a large degree of

undersampling or oversampling of a particular region. Further

methodological progress is required to more fully address these

issues.

Simulation-based models. Forward simulation-based ap-

proaches for addressing how immune selection can shape the

phylogeny of influenza A/H3N2’s hemagglutinin protein have

been actively developed by disease modelers since the early 2000s.

These approaches include both compartmental models and agent-

based models. One of the first compartmental models for influenza

was developed by Gog and Grenfell [34], who simulated the

dynamics of many strains with partial cross-immunity to one

another. Under a parameterization of long host lifespan and short

infectious period, they found that strains would form self-

organized sets that would emerge and replace one another.

Although the authors did not reconstruct a phylogeny from their

Figure 5. Phylogenetic tree of the HA1 region of the HA gene of influenza A (H3N2) from viruses sampled between 1968 and 2002.
doi:10.1371/journal.pcbi.1002947.g005
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simulated results, the dynamics they found were consistent with a

ladder-like viral phylogeny exhibiting low strain diversity and

rapid lineage turnover.

Later work by Ferguson and colleagues [35] adopted an agent-

based approach to better identify the immunological and

ecological determinants of influenza evolution. The authors

modeled influenza’s hemagglutinin as four epitopes, each consist-

ing of three amino acids. They showed that under strain-specific

immunity alone (with partial cross-immunity between strains

based on their amino acid similarity), the phylogeny of influenza

A/H3N2’s HA was expected to exhibit ‘‘explosive genetic

diversity,’’ a pattern that is inconsistent with empirical data. This

led the authors to postulate the existence of a temporary strain-

transcending immunity: individuals were immune to reinfection

with any other influenza strain for approximately six months

following an infection. With this assumption, the agent-based

model could reproduce the ladder-like phylogeny of influenza A/

H3N2’s HA protein.

Work by Koelle and colleagues [5] revisited the dynamics of

influenza A/H3N2 evolution following the publication of a paper

by Smith and colleagues [50], which showed that the antigenic

evolution of the virus occurred in a punctuated manner. The

phylodynamic model designed by Koelle and coauthors argued

that this pattern reflected a many-to-one genotype-to-phenotype

mapping, with the possibility of strains from antigenically distinct

clusters of influenza sharing a high degree of genetic similarity.

Through incorporating this mapping of viral genotype into viral

phenotype (or antigenic cluster) into their model, the authors were

able to reproduce the ladder-like phylogeny of influenza’s HA

protein without generalized strain-transcending immunity. The

reproduction of the ladder-like phylogeny resulted from the viral

population passing through repeated selective sweeps. These

sweeps were driven by herd immunity and acted to constrain viral

genetic diversity.

Instead of modeling the genotypes of viral strains, a compart-

mental simulation model by Gökaydin and colleagues [51]

considered influenza evolution at the scale of antigenic clusters

(or phenotypes). This model showed that antigenic emergence and

replacement could result under certain epidemiological conditions.

These antigenic dynamics would be consistent with a ladder-like

phylogeny of influenza exhibiting low genetic diversity and

continual strain turnover.

In recent work, Bedford and colleagues [52] used an agent-

based model to show that evolution in a Euclidean antigenic space

can account for the phylogenetic pattern of influenza A/H3N2’s

HA, as well as the virus’s antigenic, epidemiological, and

geographic patterns. The model showed the reproduction of

influenza’s ladder-like phylogeny depended critically on the

mutation rate of the virus as well as the immunological distance

yielded by each mutation.

The phylodynamic diversity of influenza. Although most

research on the phylodynamics of influenza has focused on

seasonal influenza A/H3N2 in humans, influenza viruses exhibit a

wide variety of phylogenetic patterns. Qualitatively similar to the

phylogeny of influenza A/H3N2’s hemagglutinin protein (see

Figure 5), influenza A/H1N1 exhibits a ladder-like phylogeny with

relatively low genetic diversity at any point in time and rapid

lineage turnover [35]. However, the phylogeny of influenza B’s

hemagglutinin protein has two circulating lineages: the Yamagata

and the Victoria lineage [53]. It is unclear how the population

dynamics of influenza B contribute to this evolutionary pattern,

although one simulation model has been able to reproduce this

phylogenetic pattern with longer infectious periods of the host

[54].

Genetic and antigenic variation of influenza is also present

across a diverse set of host species. The impact of host population

structure can be seen in the evolution of equine influenza A/

H3N8: instead of a single trunk with short side-branches, the

hemagglutinin of influenza A/H3N8 splits into two geographically

distinct lineages, representing American and European viruses

[55,56]. The evolution of these two lineages is thought to have

occurred as a consequence of quarantine measures [55].

Additionally, host immune responses are hypothesized to modu-

late virus evolutionary dynamics. Swine influenza A/H3N2 is

known to evolve antigenically at a rate that is six times slower than

that of the same virus circulating in humans, although these

viruses’ rates of genetic evolution are similar [57]. Influenza in

aquatic birds is hypothesized to exhibit ‘‘evolutionary stasis’’ [58],

although recent phylogenetic work indicates that the rate of

evolutionary change in these hosts is similar to those in other hosts,

including humans [59]. In these cases, it is thought that short host

lifespans prevent the build-up of host immunity necessary to

effectively drive antigenic drift.

Phylodynamics of HIV
Origin and spread. The global diversity of HIV-1 group M

is shaped by its origins in Central Africa around the turn of the

20th century. The epidemic underwent explosive growth through-

out the early 20th century with multiple radiations out of Central

Africa. While traditional epidemiological surveillance data are

almost nonexistent for the early period of epidemic expansion,

phylodynamic analyses based on modern sequence data can be

used to estimate when the epidemic began and to estimate the

early growth rate. The rapid early growth of HIV-1 in Central

Africa is reflected in the star-like phylogenies of the virus

(caricatured in Figure 2), with most coalescent events occurring

in the distant past. Multiple founder events have given rise to

distinct HIV-1 group M subtypes which predominate in different

parts of the world. Subtype B is most prevalent in North America

and Western Europe, while subtypes A and C, which account for

more than half of infections worldwide, are common in Africa

[60]. HIV subtypes differ slightly in their transmissibility,

virulence, effectiveness of antiretroviral therapy, and pathogenesis

[61].

The rate of exponential growth of HIV in Central Africa in the

early 20th century preceding the establishment of modern

subtypes has been estimated using coalescent approaches. Several

estimates based on parametric exponential growth models are

shown in Table 1, for different time periods, risk groups, and

subtypes. The early spread of HIV-1 has also been characterized

using nonparametric (‘‘skyline’’) estimates of Ne [62].

The early growth of subtype B in North America was quite

high, however the duration of exponential growth was relatively

short, with saturation occurring in the mid- and late-1980s [2]. At

the opposite extreme, HIV-1 group O, a relatively rare group that

is geographically confined to Cameroon and that is mainly spread

by heterosexual sex, has grown at a lower rate than either subtype

B or C [63].

HIV-1 sequences sampled over a span of five decades have

been used with relaxed molecular clock phylogenetic methods to

estimate the time of cross-species viral spillover into humans

around the early 20th century [64]. The estimated TMRCA for

HIV-1 coincides with the appearance of the first densely

populated large cities in Central Africa. Similar methods have

been used to estimate the time that HIV originated in different

parts of the world. The origin of subtype B in North America is

estimated to be in the 1960s, where it went undetected until the

AIDS epidemic in the 1980s [65]. There is evidence that

PLOS Computational Biology | www.ploscompbiol.org 9 March 2013 | Volume 9 | Issue 3 | e1002947



progenitors of modern subtype B originally colonized the

Caribbean before undergoing multiple radiations to North and

South America [66]. Subtype C originated around the same time

in Africa [67].

Contemporary epidemiological dynamics. At shorter

time scales and finer geographical scales, HIV phylogenies may

reflect epidemiological dynamics related to risk behavior and

sexual networks. Very dense sampling of viral sequences within

cities over short periods of time has given a detailed picture of HIV

transmission patterns in modern epidemics. Sequencing of virus

from newly diagnosed patients is now routine in many countries

for surveillance of drug resistance mutations, which has yielded

large databases of sequence data in those areas. There is evidence

that HIV transmission within heterogeneous sexual networks

leaves a trace in HIV phylogenies, in particular making

phylogenies more imbalanced and concentrating coalescent events

on a minority of lineages [68].

By analyzing phylogenies estimated from HIV sequences from

men who have sex with men in London, United Kingdom, Lewis

et al. found evidence that transmission is highly concentrated in

the brief period of primary HIV infection (PHI), which consists of

approximately the first 6 months of the infectious period [69]. In a

separate analysis, Volz et al. [70] found that simple epidemiolog-

ical dynamics explain phylogenetic clustering of viruses collected

from patients with PHI. Patients who were recently infected were

more likely to harbor virus that is phylogenetically close to samples

from other recently infected patients. Such clustering is consistent

with observations in simulated epidemiological dynamics featuring

an early period of intensified transmission during PHI. These

results therefore provided further support for Lewis et al.’s findings

that HIV transmission occurs frequently from individuals early in

their infection.

Viral adaptation. Purifying immune selection dominates

evolution of HIV within hosts, but evolution between hosts is

largely decoupled from within-host evolution (see Figure 6) [71].

Immune selection has relatively little influence on HIV

phylogenies at the population level for three reasons. First,

there is an extreme bottleneck in viral diversity at the time of

sexual transmission [72]. Second, transmission tends to occur

early in infection before immune selection has had a chance to

operate [73]. Finally, the replicative fitness of a viral strain

(measured in transmissions per host) is largely extrinsic to

virological factors, depending more heavily on behaviors in the

host population. These include heterogeneous sexual and drug-

use behaviors.

There is some evidence from comparative phylogenetic analysis

and epidemic simulations that HIV adapts at the level of the

population to maximize transmission potential between hosts [74].

This adaptation is towards intermediate virulence levels, which

balances the productive lifetime of the host (time until AIDS) with

the transmission probability per act. A useful proxy for virulence is

the set-point viral load (SPVL), which is correlated with the time

until AIDS [75]. SPVL is the quasi-equilibrium titer of viral

particles in the blood during chronic infection. For adaptation

towards intermediate virulence to be possible, SPVL needs to be

Table 1. Estimated annual growth rates of Ne for early HIV
sub-epidemics.

Growth Rate Group Subtype Risk Group

0.17 [83] M NA Central Africa

0.27 [84] M C Central Africa

0.48 [67]–0.83 [65] M B North America/Eur/Aust, MSM

0.068 [63] O NA Cameroon

doi:10.1371/journal.pcbi.1002947.t001

Figure 6. Between-host and within-host HIV phylogenies. Sequences were downloaded from the LANL HIV sequence database (http://www.
hiv.lanl.gov/content/sequence/HIV/SI_alignments/set1.html). Neighbor-joining trees were estimated from Alignment1, and the within host tree is
based on data from patient 2. Trees were re-rooted using Path-o-gen using known sample dates (http://tree.bio.ed.ac.uk/software/pathogen/).
doi:10.1371/journal.pcbi.1002947.g006
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heritable and a trade-off between viral transmissibility and the

lifespan of the host needs to exist. SPVL has been shown to be

correlated between HIV donor and recipients in transmission pairs

[76], thereby providing evidence that SPVL is at least partly

heritable. The transmission probability of HIV per sexual act is

positively correlated with viral load [77,78], thereby providing

evidence of the trade-off between transmissibility and virulence. It

is therefore theoretically possible that HIV evolves to maximize its

transmission potential. Epidemiological simulation and compara-

tive phylogenetic studies have shown that adaptation of HIV

towards optimum SPVL could be expected over 100–150 years

[79]. These results depend on empirical estimates for the

transmissibility of HIV and the lifespan of hosts as a function of

SPVL.

Future Directions

Up to this point, phylodynamic approaches have focused

almost entirely on RNA viruses, which often have mutation rates

on the order of 1023 to 1024 substitutions per site per year [80].

This allows a sample of around 1,000 bases to have power to give

a fair degree of confidence in estimating the underlying

genealogy connecting sampled viruses. However, other patho-

gens may have significantly slower rates of evolution. DNA

viruses, such as herpes simplex virus, evolve orders of magnitude

more slowly [81]. These viruses have commensurately larger

genomes. Bacterial pathogens such as pneumococcus and

tuberculosis evolve slower still and have even larger genomes.

In fact, there exists a very general negative correlation between

genome size and mutation rate across observed systems [82].

Because of this, similar amounts of phylogenetic signal are likely

to result from sequencing full genomes of RNA viruses, DNA

viruses, or bacteria. As sequencing technologies continue to

improve, it is becoming increasingly feasible to conduct

phylodynamic analyses on the full diversity of pathogenic

organisms.

Additionally, improvements in sequencing technologies will

allow detailed investigation of within-host evolution, as the full

diversity of an infecting quasispecies may be uncovered given

enough sequencing effort.
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