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Supplementary Material 1 

Perofsky et al., “Human mobility impacts the transmission of common respiratory viruses: 2 
A modeling study of the Seattle metropolitan area” 3 

Supplementary Methods 4 

Seattle Flu Study surveillance arms 5 
Recruitment sites and sample sizes are listed in Table S2. 6 
 7 
Community and clinic kiosks. In the first year of SFS, participants with acute respiratory illness (ARI) were 8 
recruited at stand-alone kiosks in 7 clinical facilities (emergency departments, clinic and urgent care waiting rooms) 9 
and at 14 public sites, including the UW campus, SeaTac airport, workplaces, and high-traffic tourist areas. 10 
Participants were eligible to enroll if they had two or more new or worsening respiratory symptoms in the previous 7 11 
days (fever, cough, sore throat, headache, diarrhea, nausea or vomiting, runny or stuffy nose, rash, fatigue, muscle or 12 
body aches, increased trouble with breathing, and/or ear pain or discharge) and were English- or Spanish-speaking. 13 
After completing a brief screening for eligibility to participate, individuals were consented. Upon enrolling, 14 
participants (or parent/guardian for minors) completed a questionnaire to collect participant demographics, illness 15 
characteristics, and behavioral and other clinical data. Trained research staff collected middle turbinate swabs for 16 
respiratory virus testing (Copan Diagnostics Inc., Murietta, CA). Participants received a $10 gift card for completing 17 
the study, and no additional study-related follow-up occurred. Participants were not permitted to re-enroll within a 18 
7-day period. 19 
 20 
Outpatient clinics (Kaiser Permanente). From November 2018 to March 2020, participants seeking outpatient care 21 
for acute respiratory illness (ARI) at Seattle-based US Flu Vaccine Effectiveness (VE) Network sites were 22 
prospectively identified and recruited through Kaiser Permanente as part of the CDC Flu VE surveillance protocol 23 
(1, 2). Patients eligible for the CDC Flu VE study were aged at least 6 months of age and had a cough illness of < 8 24 
days duration. Eligible and consenting patients (or parent/guardian for minors) were interviewed for demographics, 25 
risk factors for ARI, and influenza vaccination history. Study staff collected combined nasal and oropharyngeal 26 
swabs (nasal only in children aged < 2 years) for respiratory virus testing. In accordance with UW IRB approval, 27 
Health Insurance Portability and Accountability Act (HIPAA) authorization and written, informed consent was 28 
waived, as there was no direct contact with these participants or reasonable ability to recontact them for consent to 29 
participate in the study. Samples were obtained through a contractual agreement with Kaiser Permanente and 30 
transported to the study laboratory at the University of Washington (UW) for further molecular testing. 31 
 32 
Swab-and-Send Study. From October 2019 to March 2020, SFS deployed swab-and-send kits to collect nasal swabs 33 
from individuals in the community experiencing ARI. Study design, recruitment, and data collection are described in 34 
detail elsewhere (3). Briefly, study participants were recruited through referrals from health care providers, clinics, 35 
SFS community kiosks, schools, and workplaces, dissemination of printed flyers posted at community locations, and 36 
social media advertising. Individuals were eligible to participate in the study if they lived within the greater Seattle 37 
region, had experienced new or worsening cough and/or two ARI symptoms (fever, headache, sore throat or 38 
itchy/scratchy throat, nausea or vomiting, runny/stuffy nose or sneezing, fatigue, muscle or body aches, increased 39 
trouble with breathing, diarrhea, ear pain/discharge, or rash) within 7 days of enrollment, were English speaking, 40 
had a valid email address, and had access to the Internet at home. After an initial online screening questionnaire and 41 
consenting to participate in the research study, eligible participants completed an online enrollment questionnaire to 42 
provide their home address and contact information. Enrollees were mailed a home sample collection kit within 48 43 
hours via private courier. Upon kit receipt, participants completed an online illness questionnaire to collect 44 
demographics, illness characteristics, and data on health behaviors. Samples were self-collected by participants 13 45 
years and older via unsupervised middle turbinate swab (Copan Diagnostics Inc.). Parents or guardians performed 46 
swab collection for children younger than 13 years. Pediatric nasal swabs (Copan Diagnostics Inc.) were available 47 
for participants 5 years of age or younger. Participants were encouraged to return their nasal specimen within 24 48 
hours or as soon as possible. Swab samples were returned to the study laboratory at UW via USPS Priority Mail 49 
prepaid postage, with a median time of 3 days from nasal swab collection to receipt at the lab (3).  50 
 51 
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Greater Seattle Coronavirus Assessment Network. The greater Seattle Coronavirus Assessment Network (SCAN) 52 
was launched on March 23, 2020, and concluded in July 2022. Design, recruitment, and data collection for SCAN 53 
are described in detail elsewhere (4, 5). Briefly, SCAN was restricted to King County residents and recruited 54 
participants through social media advertising and community outreach. Eligibility criteria changed over time in 55 
response to testing demand and and were based on Public Use Microdata Areas (PUMA) and reported symptoms. 56 
Each PUMA had a daily allocation of enrollments, with over sampling of PUMAs in southern King County to 57 
ensure more equitable access to testing across the county population (4, 5). Study materials were available in 58 
English and 12 of the most spoken non-English languages in King County. Although symptom quotas changed over 59 
time, the majority of participants were symptomatic at the time of enrollment (> 90%)(5), with symptomatic 60 
enrollees defined as individuals who self-reported experiencing a new or worsening fever, cough, or shortness of 61 
breath within the past 7 days, and asymptomatic enrollees defined as individuals self-reporting none of these 62 
symptoms. In addition to community enrollments, some participants were invited as part of PHSKC’s contact 63 
tracing efforts or through collaborations with community-based organizations to increase testing of underrepresented 64 
or high-risk populations; these samples were excluded from the analysis. After an initial online screening 65 
questionnaire, eligible participants (or parent/guardian for minors) were prompted to complete a detailed 66 
demographic and health behavior questionnaire. Within 24 hours of enrollment, sample collection kits were 67 
delivered via private courier. Samples were self-collected by participants aged 13 years and older via unsupervised 68 
middle turbinate or anterior nares swabs. Parents or guardians performed swab collection for children younger than 69 
13 years of age. Swab samples were picked up by private courier on the morning after delivery and returned within 70 
24 hours to the study laboratory at UW for testing. 71 
 72 
King County COVID-19 drive-through testing sites. Beginning in April 2021, SFS obtained residual nasal swab 73 
specimens collected at eight Public Health Seattle-King County (PHSKC) COVID-19 drive-through testing sites. In 74 
accordance with UW IRB approval, HIPAA authorization and written, informed consent was waived, as there was 75 
no direct contact with these participants or reasonable ability to recontact them for consent to participate in the 76 
study. Samples were obtained through a contractual agreement with UW Virology, which conducted the SARS-77 
CoV-2 testing for PHSKC drive-through sites. At the time of testing, individuals completed an optional 78 
questionnaire that collected demographics, the reason for testing, COVID-19 vaccination status, whether they are 79 
currently symptomatic, and, if symptomatic, the number of days since symptom onset. Samples from both 80 
symptomatic and asymptomatic individuals were obtained by SFS, with symptomatic individuals defined as those 81 
who answered “yes” to the question “Do you have COVID-19 symptoms now?” 82 
 83 
Residual hospital samples. Since the inception of the study, SFS obtained residual nasal swab specimens collected 84 
at clinician discretion from major hospitals in the Seattle area, including Seattle Children’s, UW Medical Center, 85 
Northwest Hospital, and Harborview Medical Center. In April 2020, surveillance from UW Medical Center and 86 
Northwest Hospital discontinued. Samples were linked with demographic and clinical metadata extracted from the 87 
patients’ electronic medical records (EMR). In accordance with UW IRB approval, HIPAA authorization and 88 
written, informed consent was waived, as there was no direct contact with these participants or reasonable ability to 89 
recontact them for consent to participate in the study. Samples were obtained through contractual agreements with 90 
each medical center and transported to the study laboratory at UW for further molecular testing. Encounter IDs and 91 
medical record numbers (MRNs) in combination were used as unique patient identifiers at sites except Seattle 92 
Children’s, where a unique patient ID was created. Prior to March 2020, most hospital residuals were collected from 93 
patients experiencing ARI. After March 2020, there was increased testing of asymptomatic individuals at hospitals 94 
due to pre-procedure or surveillance testing for COVID-19. We used ICD-10 codes specific to respiratory illness 95 
(Harborview Medical Center, Northwest Hospital, and UW Medical Center) (Table S5) or pre-procedure COVID-19 96 
testing flags (Seattle Children’s) to distinguish symptomatic and asymptomatic patients. 97 
 98 
Statistical Analysis 99 
 100 
Short-term forecasting of daily transmissibility using mobility data. We built predictive models of daily respiratory 101 
virus transmission, using cell phone mobility trends, the co-circulation of other respiratory viruses, and activity of 102 
the target virus during the previous two weeks (14 autoregressive terms) as input variables. Similar to an approach 103 
for forecasting influenza-like illness activity (AutoRegression with GOogle search data)(6), our models 104 
implemented L1 regularization (LASSO) to automatically select the most relevant terms for predicting Rt up to 7-105 
days ahead, using a moving window for the training period (that immediately precedes the dates of estimation) to 106 
capture the most recent changes in mobility behavior and viral activity (6). To better observe changes in predictive 107 



 Perofsky S3 

performance and variable selection over time, we focused on three respiratory viruses that circulated continuously 108 
throughout most of the study period: hRV, AdV, and SARS-CoV-2. In addition to mobility and autoregressive 109 
terms, we included proxies for viral-viral interactions, wherein SARS-CoV-2 Rt was a covariate in the hRV and 110 
AdV models, and hRV Rt was a covariate in the SARS-CoV-2 model. We also tested models that included daily 111 
precipitation, average wet bulb temperature, and average relative humidity as covariates. 112 
 113 
We compared each full model’s estimates, along with those of reduced models including only AR terms, only 114 
mobility terms, or only mobility and pathogen interaction terms, to observed Rt values by calculating several 115 
accuracy metrics, including root-mean-squared error (RMSE), mean absolute error (MAE), mean absolute 116 
percentage error (MAPE), and the Pearson correlation between observed and predicted Rt (Table S2). For all three 117 
viruses, we found that one-month moving windows produced the most accurate forecasts of Rt, though there were 118 
few discernible trends in which mobility terms were retained over time. Expanding the training window produced 119 
clearer patterns of which mobility terms were consistently retained by the model but at the expense of predictive 120 
accuracy. 121 

Supplementary Results 122 
Real-time tracking of rhinovirus, adenovirus, and SARS-CoV-2 transmission 123 
 124 
For all three viruses, full models with mobility terms, pathogen interaction terms, and autoregressive (AR) terms and 125 
models with only autoregressive (AR) terms had similar predictive accuracy and outperformed models with only 126 
mobility terms or only mobility and pathogen interaction terms (Table S2); thus, tracking mobility behavior is not 127 
essential for predicting respiratory virus transmission. However, mobility-only models still produced accurate 128 
forecasts across the entire study period (Pearson’s r with observed data, hRV: 0.92; AdV: 0.82; SARS-CoV-2: 0.83) 129 
(Table S2). We also tested models incorporating local temperature, precipitation, and absolute humidity but climatic 130 
variables did not improve model performance, potentially because non-enveloped viruses and pandemic SARS-131 
CoV-2 do not exhibit strong seasonality. 132 
 133 
Among candidate mobility predictors, the percentage of devices leaving home, between-neighborhood movement, 134 
and the inflow of outside visitors had the highest mean (absolute) coefficient values and were the most frequently 135 
retained variables across moving training windows. To determine if mobility data are more useful in predicting Rt 136 
during drastic changes in population movement, we calculated accuracy metrics for the period including Seattle’s 137 
stay-at-home orders and the initial lifting of restrictions (February 28 – June 30, 2020). In terms of RMSE, models 138 
with only mobility terms were 48% (AdV), 20% (hRV), and 19% (SARS-CoV-2) more accurate during the first half 139 
of 2020 compared to the entire study period (Table S2). Thus, monitoring major changes in mobility could be 140 
helpful for general situational awareness and planning purposes.  141 
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Supplementary Figures 142 

 143 

Figure S1. The weekly age distribution of respiratory specimens collected from community settings and 144 
hospitals, November 2018 – June 2022. Bars are colored by the proportion of samples collected from individuals 145 
aged <5 (light blue) or ≥5 years (dark blue). Sample sources for community-based testing include swab-and-send 146 
at-home testing programs, kiosks in high foot traffic areas, outpatient clinics, and King County COVID-19 drive-147 
through testing sites.  148 
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149 
Figure S2. The weekly number of samples testing positive for respiratory pathogens in hospitals (top) and 150 
community settings (bottom). Colored bars represent the number of samples testing positive for each pathogen. 151 
The gray dashed line is the number of respiratory specimens tested on the OpenArray (OA) platform. The left y-axis 152 
corresponds to the number of positive samples collected each week, and the right y-axis corresponds to the total 153 
number of specimens collected each week and tested on OA. Sources for community-based samples (bottom) 154 
include swab-and-send at-home testing programs, kiosks in high foot traffic areas, outpatient clinics, and King 155 
County COVID-19 drive-through testing sites. 156 
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157 
Figure S3. Reconstructed daily incidences of individual respiratory pathogens, adjusted for testing volume 158 
over time, age, clinical setting, and local syndromic respiratory illness rates. Hospital and community-based 159 
incidences were rescaled to fall between 0 and 1 and summed to aid in comparing relative changes in incidence 160 
between pathogens over time. We applied two-week rolling averages to incidences to reduce noise. The vertical 161 
dashed line indicates the date of Washington’s State of Emergency declaration (February 29, 2020).162 
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 163 

Figure S4. Cell phone mobility metrics for Seattle-King County, Washington, November 2018 – June 2022. 164 
For each mobility indicator, we summed daily or weekly visits for each point of interest (POI) category and 165 
measured the percent change in movement over time relative to the average movement observed in all of 2019 166 
(excluding national holidays) and applied a two-week rolling average to reduce noise. The vertical blue shaded panel 167 
indicates the timing of a major snowstorm in Seattle (February 3-15, 2019), the vertical dashed line indicates the 168 
date of Washington’s State of Emergency declaration (February 29, 2020), and the vertical orange shaded panel 169 
indicates Seattle’s stay-at-home period (March 23 – June 5, 2020). 170 
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 171 

Figure S5. Daily incidences and transmissibility of respiratory viruses circulating in the greater Seattle 172 
region, December 2018 – May 2019. Daily time-varying effective reproduction numbers (Rt, thick lines, left y-173 
axis) and reconstructed incidences of respiratory viruses (thin lines, right y-axis). We applied two-week rolling 174 
averages to incidences to reduce noise. The vertical blue shaded panel indicates the timing of a major snowstorm 175 
(February 3 – 15, 2019).  176 
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 177 

Figure S6. Time series cross-correlations and optimal lags between respiratory pathogen transmissibility 178 
(daily effective reproduction numbers, Rt) and cell phone mobility in the greater Seattle region, December 179 
2018 – May 2019. Weekly time series cross correlations in moving 5-month windows were averaged by calendar 180 
month. Points are individual mobility indicators derived from SafeGraph mobile device location data. Correlation 181 
coefficients are shown on the y-axis, and temporal lags (in weeks) between Rt and mobility are shown on the x-axis. 182 
Negative temporal lags indicate behavior leads Rt, and positive temporal lags indicate Rt leads behavior. The yellow 183 
shaded panel in each facet includes mobility indicators that have a leading, positive relationship with transmission, 184 
and hence would be considered predictive of transmission. 185 
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 186 

Figure S7. A. Daily effective reproduction numbers (Rt) of respiratory viruses circulating in the greater 187 
Seattle region, and B. Rolling daily cross-correlations between pathogen transmissibility and cell phone 188 
mobility during January – February 2019. Points represent the maximum coefficient values for 1-month rolling 189 
cross-correlations between daily effective reproduction numbers (Rt) and individual mobility metrics. Point color 190 
and the number within each point indicate the lag in weeks corresponding to the maximum cross-correlation 191 
coefficient value for each 1-month period (“optimal lag”). Negative values indicate that mobility leads Rt, and 192 
positive values indicate that mobility lags Rt. A lag of 0 indicates that the time series are in phase. Point 193 
transparency indicates statistical significance based on 1000 block bootstrap permutations (yes: solid, no: 194 
transparent). The vertical blue shaded panel indicates the timing of a major snowstorm (February 3 – 15, 2019). 195 
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196 
Figure S8. A. Weekly effective reproduction numbers (Rt) of respiratory viruses circulating in the greater 197 
Seattle region, and B. Rolling cross-correlations between pathogen transmissibility and cell phone mobility 198 
during the 2019-2020 winter season prior to the start of the COVID-19 pandemic, August 2019 – January 199 
2020. Points represent the maximum coefficient values for 5-month rolling cross-correlations between weekly 200 
effective reproduction numbers (Rt) and individual mobility metrics. Point color and the number within each point 201 
indicate the lag in weeks corresponding to the maximum cross-correlation coefficient value for each 5-month period 202 
(“optimal lag”). Negative values indicate that mobility leads Rt, and positive values indicate that mobility lags Rt. A 203 
lag of 0 indicates that the time series are in phase. Point transparency indicates statistical significance based on 1000 204 
block bootstrap permutations (yes: solid, no: transparent). 205 
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 206 
Figure S9. Generalized additive model (GAM) plots showing the partial effects of selected mobility indicators 207 
and time trends on the daily effective reproduction numbers (Rt) of endemic respiratory viruses during the 208 
2019-2020 winter season prior to the start of the COVID-19 pandemic, September 2019 – January 2020. Tick 209 
marks on the x-axis are observed data points. The y-axis represents of the partial effect of each variable. Shaded 210 
areas indicate the 95% confidence intervals of partial effects. The blue points are partial residuals. 211 
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 212 
Figure S10. A. Weekly effective reproduction numbers (Rt) of respiratory viruses circulating in the greater 213 
Seattle region, and B. Rolling cross-correlations between pathogen transmissibility and cell phone mobility 214 
during the initial months of the COVID-19 pandemic, December 2019 – June 2020. Points represent the 215 
maximum coefficient values for 5-month rolling cross-correlations between weekly effective reproduction numbers 216 
(Rt) and individual mobility metrics. Point color and the number within each point indicate the lag in weeks 217 
corresponding to the maximum cross-correlation coefficient value for each 5-month period (“optimal lag”). 218 
Negative values indicate that mobility leads Rt, and positive values indicate that mobility lags Rt. A lag of 0 219 
indicates that the time series are in phase. Point transparency indicates statistical significance based on 1000 block 220 
bootstrap permutations (yes: solid, no: transparent). The vertical dashed line indicates the date of Washington’s State 221 
of Emergency declaration (February 29, 2020), and the vertical orange shaded panel indicates Seattle’s stay-at-home 222 
period (March 23 – June 5, 2020).  223 
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 224 
Figure S11. Generalized additive model (GAM) plots showing the partial effects of selected mobility 225 
indicators and time trends on the daily effective reproduction numbers (Rt) of SARS-CoV-2 during four 226 
COVID-19 waves in Seattle: the winter 2020-2021 wave, the Alpha wave in Spring 2021, the Delta Wave in 227 
Summer 2021, and the Omicron BA.1 wave during late 2021 to early 2022. Tick marks on the x-axis are 228 
observed data points. The y-axis represents of the partial effect of each variable. Shaded areas indicate the 95% 229 
confidence intervals of partial effects. The blue points are partial residuals.  230 
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 231 

 232 
Figure S12. A. Weekly effective reproduction numbers (Rt) of two non-enveloped viruses – rhinovirus and 233 
adenovirus – circulating in the greater Seattle region, and B. Rolling cross-correlations between pathogen 234 
transmissibility and cell phone mobility during the COVID-19 pandemic, January 2020 – March 2022. Points 235 
represent the maximum coefficient values for 5-month rolling cross-correlations between weekly effective 236 
reproduction numbers (Rt) and individual behavioral metrics. Point color and the number within each point indicate 237 
the lag in weeks corresponding to the maximum cross-correlation coefficient value for each 5-month period 238 
(“optimal lag”). Negative values indicate that behavior leads Rt, and positive values indicate that behavior lags Rt. A 239 
lag of 0 indicates that the time series are in phase. Point transparency indicates statistical significance based on 1000 240 
block bootstrap permutations (yes: solid, no: transparent). The vertical dashed line indicates the date of 241 
Washington’s State of Emergency declaration (February 29, 2020), the vertical orange shaded panel indicates 242 
Seattle’s stay-at-home period (March 23 – June 5, 2020), and the vertical blue shaded panel indicates the timing of 243 
the Omicron BA.1 wave (November 2021 – January 2022). 244 
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 245 
Figure S13. Generalized additive model (GAM) plots showing the partial effects of selected mobility 246 
indicators and time trends on the daily effective reproduction numbers (Rt) of two non-enveloped respiratory 247 
viruses – rhinovirus and adenovirus – during their first six months of rebound, June 2020 – November 2020. 248 
Tick marks on the x-axis are observed data points. The y-axis represents of the partial effect of each variable. 249 
Shaded areas indicate the 95% confidence intervals of partial effects. The blue points are partial residuals.  250 
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 251 
Figure S14. A. Weekly effective reproduction numbers (Rt) of enveloped viruses circulating in the greater 252 
Seattle, WA, region, and B. Rolling cross-correlations between pathogen transmissibility and cell phone 253 
mobility during the COVID-19 pandemic, January 2021 – March 2022. Points represent the maximum 254 
coefficient values for 5-month rolling cross-correlations between weekly effective reproduction numbers (Rt) and 255 
individual mobility and behavioral metrics. Point color and the number within each point indicate the lag in weeks 256 
corresponding to the maximum cross-correlation coefficient value for each 5-month period (“optimal lag”). 257 
Negative values indicate that behavior leads Rt, and positive values indicate that behavior lags Rt. A lag of 0 258 
indicates that the time series are in phase. Point transparency indicates statistical significance based on 1000 block 259 
bootstrap permutations (yes: solid, no: transparent). The vertical dashed line indicates when Washington public 260 
schools were required to offer at least two days of partial in-person instruction to all grades (April 19, 2021), and the 261 
vertical blue shaded panel indicates the timing of the Omicron BA.1 wave (November 2021 – January 2022). 262 
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 263 
Figure S15. Generalized additive model (GAM) plots showing the partial effects of selected mobility 264 
indicators and time trends on the daily effective reproduction numbers (Rt) of enveloped respiratory viruses 265 
during their initial months of rebound, January – August 2021. Tick marks on the x-axis are observed data 266 
points. The y-axis represents of the partial effect of each variable. Shaded areas indicate the 95% confidence 267 
intervals of partial effects. The blue points are partial residuals. 268 
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 269 
Figure S16. Mobility and masking trends in the greater Seattle, Washington region during November 2021 – 270 
April 2022 based on cell phone location. In each panel, the vertical blue shaded panel indicates the timing of the 271 
Omicron BA.1 wave in Seattle (November 2021 – February 2022). A. The percent change from baseline for large-272 
scale population movements: inflow of out-of-state visitors, inflow of visitors from other WA counties, between-273 
neighborhood movement of King County residents, and within-neighborhood movement of King County residents. 274 
B. The percent change from baseline in foot traffic to different categories of points of interest (POIs): transit 275 
stations, religious organizations, colleges and universities, full-service restaurants, groceries and pharmacies, and 276 
elementary and secondary schools. C. The percentage of devices staying completely at home (purple) and the 277 
percentage of King County residents masking in public (dark green).  278 
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 279 
Figure S17. Generalized additive model (GAM) plots showing the partial effects of selected mobility 280 
indicators and time trends on the daily effective reproduction numbers of endemic respiratory viruses during 281 
the beginning of the Omicron BA.1 wave, November 2021 – January 2022. Tick marks on the x-axis are 282 
observed data points. The y-axis represents of the partial effect of each variable. Shaded areas indicate the 95% 283 
confidence intervals of partial effects. The blue points are partial residuals. 284 
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285 
Figure S18. Predictive model of daily SARS-CoV-2 transmission (time-varying effective reproduction 286 
number, Rt). The yellow shaded area indicates the initial model training period, and the orange shaded area 287 
indicates Seattle’s stay-at-home period. A. Estimated daily transmissibility (Rt) (left y-axis) from the full model with 288 
autoregressive (AR) terms, mobility terms, and rhinovirus (hRV) interaction terms (red), contrasting with observed 289 
Rt (light green) and estimates from a model with only mobility and hRV interaction terms (blue), a model with only 290 
mobility terms (purple), and a model with only AR terms (orange). Daily COVID-19 cases are shaded dark green 291 
(right y-axis). B. Model estimation error, defined as observed Rt minus predicted Rt. 292 
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293 
Figure S19. Predictive model of daily human rhinovirus (hRV) transmission (time-varying effective 294 
reproduction number, Rt). The yellow shaded area indicates the initial model training period, and the orange 295 
shaded area indicates Seattle’s stay-at-home period. A. Estimated daily transmissibility (Rt) (left y-axis) from the 296 
full model with autoregressive (AR) terms, mobility terms, and SARS-CoV-2 interaction terms (red), contrasting 297 
with observed Rt (light green) and estimates from a model with only mobility and SARS-CoV-2 interaction terms 298 
(blue), a model with only mobility terms (purple), and a model with only AR terms (orange). Daily hRV incidence is 299 
shaded dark green (right y-axis). B. Model estimation error, defined as observed Rt minus predicted Rt. 300 

301 
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302 
Figure S20. Predictive model of daily adenovirus (AdV) transmission (time-varying effective reproduction 303 
number, Rt). The yellow shaded area indicates the initial model training period, and the orange shaded area 304 
indicates Seattle’s stay-at-home period. A. Estimated daily transmissibility (Rt) (left y-axis) from the full model with 305 
autoregressive (AR) terms, mobility terms, and SARS-CoV-2 interaction terms (red), contrasting with observed Rt 306 
(light green) and estimates from a model with only mobility and SARS-CoV-2 interaction terms (blue), a model 307 
with only mobility terms (purple), and a model with only AR terms (orange). Daily AdV incidence is shaded dark 308 
green (right y-axis). B. Model estimation error, defined as observed Rt minus predicted Rt.  309 
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 310 

Figure S21. The weekly proportion of emergency department visits coded as COVID-like illness (CLI), 311 
influenza-like illness (ILI), or broad respiratory illness among patients seeking care at emergency 312 
departments in King County, Washington. Data are disaggregated by age group: < 5 (top) and ≥ 5 years of age 313 
(bottom). We applied a two-week rolling average reduce noise. Respiratory syndromic surveillance data for King 314 
County were obtained from the Rapid Health Information Network (RHINO) program at the Washington 315 
Department of Health. Syndrome criteria are defined by the Electronic Surveillance System for the Early 316 
Notification of Community-Based Epidemics (ESSENCE).  317 
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318 
Figure S22. Comparison of SCAN estimated daily COVID-19 incidence to daily King County COVID-19 319 
cases. Comparisons are split into two periods: pre-Omicron (before December 2021) and Omicron due to high case 320 
counts during the Omicron BA.1 wave in winter 2021-2022. We applied a two-week rolling average reduce noise.   321 
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Supplementary Tables 322 
 323 
Table S1. OpenArray panel probe sets over time. Green shaded areas indicate when a particular probe was in use. 324 
 325 

Pathogen type Probe V1 
Start: 5-5-2019 
End: 2-20-2020 

V2 
Start: 2-21-2020 
End: 5-1-2020 

V3 
Start: 5-29-2020 
End: 11-20-2020 

V4 
Start: 11-23-2020 

Influenza virus 

Flu_A_pan     
Flu_A_H1     
Flu_A_H3     
Flu_B_pan     
Flu_C     

Parainfluenza virus hPIV1_hPIV2_     
hPIV3_hPIV4     

Enterovirus EV_pan     
EV_D68     

Rhinovirus RV_1of1     
RV_1of2     

Adenovirus AdV_1of1     
AdV_1of2     

Coronavirus 

CoV_HKU1_CoV_NL63     
CoV_229E_CoV_OC43     
hCoV_HKU1     
hCoV_NL63     
hCoV_229E     
hCoV_OC43     
SARS_CoV-2_Orf1B     
SARS-CoV-2_S     

Respiratory 
Syncytial Virus 

RSVA     
RSVB     

Metapneumovirus hMPV     
Parechovirus hPeV     
Bocavirus hBoV     
Measles Measles     
Mumps Mumps     

Pneumoniae 

M. pneumoniae     
C. pneumoniae     
M. pneumo_C. pneumo     
S. pneumoniae     

Total unique pathogens 26 26 26 24 
  326 
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Table S2. Number of samples by recruitment type and site. 327 

Recruitment Type Site Sample size 
Clinic (Kiosk) ChildrensHospitalSeattle 944 
Clinic (Kiosk) ChildrensHospitalSeattleOutpatientClinic 246 
Clinic (Kiosk) UWHallHealth 196 
Clinic (Kiosk) ChildrensHospitalBellevue 94 
Clinic (Kiosk) UWSeaMar 88 
Clinic (Kiosk) PioneerSquare 58 
Clinic (Kiosk) ChildrensSeaMar 37 
Clinic (Flu VE Network) Kaiser Permanente 3604 
Community (swab-and-send) SCAN 42837 
Community (swab-and-send) swabNSend 2900 
Community (Residual) RetrospectivePHSKC 7934 
Community (Kiosk) WestlakeMall 392 
Community (Kiosk) HarborviewLobby 254 
Community (Kiosk) UWSuzzalloLibrary 177 
Community (Kiosk) FredHutchLobby 171 
Community (Kiosk) HUB 135 
Community (Kiosk) Costco 34 
Community (Kiosk) CapitolHillLightRailStation 32 
Community (Kiosk) SeattleCenter 23 
Community (Kiosk) ColumbiaCenter 18 
Community (Kiosk) SeaTacDomestic 12 
Community (Kiosk) SeaTacInternational 9 
Community (Kiosk) PICAWA 6 
Community (Kiosk) KingStreetStation 4 
Community (Kiosk) WestlakeLightRailStation 1 
Hospital (Residual) RetrospectiveChildrensHospitalSeattle 16025 
Hospital (Residual) RetrospectiveHarborview 2482 
Hospital (Residual) RetrospectiveNorthwest 1426 
Hospital (Residual) RetrospectiveUWMedicalCenter 707 

  328 
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Table S3. Comparison of different models forecasting daily effective reproduction numbers (Rt) of human 329 
rhinovirus (hRV), adenovirus (AdV), and SARS-CoV-2. The accuracy of 7-day ahead forecasts of hRV, AdV, 330 
and SARS-CoV-2 Rt were measured using the root-mean-squared error (RMSE), mean absolute error (MAE), mean 331 
absolute percentage error (MAPE), and Pearson correlation with observed Rt values. 332 
 333 
Time period: whole study period1 334 

7-day ahead 
accuracy 

Human rhinovirus (hRV) Adenovirus (AdV) SARS-CoV-2 
AR-

Mobility-
COVID 

Rt 

Mobility-
COVID 

Rt 
Mobility AR 

AR-
Mobility-

COVID Rt 

Mobility-
COVID 

Rt 
Mobility AR 

AR-
Mobility-
Rhino Rt 

Mobility-
Rhino Rt Mobility AR 

RMSE 0.011 0.058 0.059 0.007 0.035 0.173 0.174 0.029 0.031 0.129 0.151 0.029 
MAE 0.008 0.042 0.042 0.005 0.026 0.125 0.125 0.021 0.02 0.086 0.099 0.018 
MAPE 0.008 0.043 0.043 0.005 0.028 0.131 0.132 0.022 0.018 0.081 0.091 0.016 
Correlation 1.0 0.93 0.93 1.0 0.99 0.83 0.82 0.99 0.99 0.87 0.83 1.0 

1The hRV and AdV modeling periods include January 2019 – April 2022. The SARS-CoV-2 modeling period includes March 335 
2020 – April 2022. 336 
 337 
Time period: stay-at-home orders and lifting of restrictions2 338 

7-day ahead 
accuracy 

Human rhinovirus (hRV) Adenovirus (AdV) SARS-CoV-2 
AR-

Mobility-
COVID 

Rt 

Mobility-
COVID 

Rt 
Mobility AR 

AR-
Mobility-
COVID 

Rt 

Mobility-
COVID 

Rt 
Mobility AR 

AR-
Mobility-
Rhino Rt 

Mobility-
Rhino Rt Mobility AR 

RMSE 0.006 0.055 0.049 0.005 0.021 0.097 0.091 0.019 0.031 0.133 0.122 0.028 
MAE 0.005 0.042 0.037 0.004 0.017 0.077 0.072 0.014 0.02 0.086 0.085 0.019 
MAPE 0.007 0.057 0.051 0.006 0.025 0.105 0.097 0.021 0.016 0.072 0.072 0.016 
Correlation 1.0 0.93 0.94 1.0 1.0 0.94 0.95 1.0 0.99 0.93 0.94 0.99 

2The hRV and AdV modeling periods include March – June 2020. The SARS-CoV-2 modeling period includes April – June 339 
2020.  340 
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Table S4. Data sources for adjusting the age distributions of pathogen presence/absence data. 341 

 Source Description Proportion 
< 5 years 

Proportion 
≥ 5 years 

Community samples 
Influenza 
A/H3N2, 
A/H1N1, B 

CDC FluView Interactive(7) Age group distribution of influenza 
positive specimens reported by public 
health laboratories in WA state 

Time varying 
(weekly) 

Time varying 
(weekly) 

AdV, hCoV, 
hMPV, hPIV, 
RSV, hRV 

CDC FluView Interactive(7) Age group distribution of influenza-
like illness cases in WA state 

Time varying 
(weekly) 

Time varying 
(weekly) 

SARS-CoV-2 Washington Department of 
Health(8) 

Age group distribution of COVID-19 
positive specimens in King County, 
WA 

Time varying 
(daily) 

Time varying 
(daily) 

Hospital residuals 
Influenza 
A/H3N2, 
A/H1N1, B 

Influenza Hospitalization 
Surveillance Network 
(FluSurv-NET)(9) 

National age group distribution of 
laboratory-confirmed influenza-
associated hospitalizations 

Time varying 
(weekly) 

Time varying 
(weekly) 

RSV Matias et al., 2017(10) Age distribution of RSV detections 
among 186,155 positive patients 
hospitalized for ARI, 
cardiorespiratory disease, or sepsis, 
United States, 1997-2009 

0.54 0.46 

hRV El-Sahly et al., 2000(11) 
 

Age distribution of hRV detections 
among 60 positive patients 
hospitalized for ARI, Houston, Texas, 
1991-1995 

0.4 0.6 

AdV Akello et al., 2020(12) Age distribution of AdV detections 
among 1302 positive patients referred 
to the Institute for Infectious Diseases 
for diagnostic testing, Bern, 
Switzerland, 1998-2017 

0.57 0.43 

hCoV Nickbakhsh et al., 2020(13) Age distribution of hCoV detections 
among 2958 positive patients in 
secondary care, NHS Greater 
Glasgow and Clyde, Scotland, UK, 
2005-2017 

0.29 0.71 

hMPV Barrera-Badillo et al., 
2020(14) 

Age distribution of hMPV detections 
among 331 positive patients 
hospitalized for SARI, Mexico, 2009-
2018 

0.575 0.425 

hPIV Zhao et al., 2017(15) Age distribution of hPIV detections 
among 17,717 positive patients in 
primary or secondary care, England 
and Wales, UK, 1998-2013  

0.64 0.36 

SARS-CoV-2 Washington Department of 
Health(8) 

Age group distribution of laboratory 
confirmed COVID-19 
hospitalizations in Washington state 

Time varying 
(daily) 

Time varying 
(daily) 
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Table S5. Pathogen-specific incubation periods and generation or serial intervals obtained from published 343 
literature. Incubation periods and generation or serial intervals include the mean and standard deviation (SD) in 344 
days. The probability distribution family used to estimate each parameter is listed below the mean and SD. 345 

Pathogen Incubation Period 
(days) 

Generation or Serial 
Interval (days) 

Source 

SARS-CoV-2 Mean = 6.3, SD = 3.6 
Lognormal 

Mean = 5.2, SD = 1.2 
Gamma 

Xin et al. 2021(16);  
Ganyani et al. 2020(17) 

hCoV * Mean = 5.1, SD = 2.2 
Lognormal 

Mean = 5.2, SD = 1.2 
Gamma 

Spencer et al. 2022(18); 
Ganyani et al. 2020(17) 

Influenza Mean = 1.9, SD = 1.22 
Lognormal 

Mean = 3.6, SD = 1.6  
Weibull 

Lessler et al. 2009(19); 
Cowling et al. 2009 (20) 

RSV ˆ Mean = 4.5, SD = 0.9 
Lognormal 

Mean = 7.5, SD = 2.1 
Gamma  

Spencer et al. 2022(18); 
Crowcroft et al. 2008(21) 

hMPV ˆ† Mean = 4.5, SD = 0.9 
Lognormal 

Mean = 5.2, SD = 1.5 
Gamma 

Spencer et al. 2022(18);  
Matzuzaki et a. 2013(22) 

hPIV ˆ‡ Mean = 2.6, SD = 1.35 
Lognormal 

Mean = 7.5, SD = 2.1 
Gamma 

Lessler et al. 2009(19); 
Crowcroft et al. 2008(21) 

hRV ˆ Mean = 2.36, SD = 1.1 
Lognormal 

Mean = 4.4, SD = 2.7  
Gamma 

Spencer et al. 2022(18);  
Foy et al. 1988(23) 

AdV ˆ Mean = 5.6, SD = 1.26 
Lognormal 

Mean = 7.8, SD = 2.4 
Gamma 

Lessler et al. 2009(19); 
Guo et al. 2020(24) 

* Generation interval for SARS-CoV-2. 346 
ˆ Serial interval reanalyzed using time intervals of disease onset for infectors and infectees from the published study. 347 
† Incubation period for RSV. 348 
‡ Serial interval for RSV.  349 
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Table S6. International Classification of Diseases, Tenth Revision (ICD-10) codes used to designate 350 
hospitalized patients as symptomatic for respiratory illness. 351 

Condition ICD-10 Code 
Acute upper respiratory infections J00-J06 
Influenza and pneumonia J10-J18 
Other acute lower respiratory infections J20-J22 
Other diseases of upper respiratory tract J30-J39 
Chronic lower respiratory diseases J40-J47 
Other respiratory diseases principally affecting 
the interstitium 

J80-J84 

Suppurative and necrotic conditions of the 
lower respiratory tract 

J85-J86 

Other diseases of the pleura J90-J94 
Other diseases of the respiratory system J96-J99 
COVID-19 U07.1 
Otitis media H65-H66 
Hemorrhage from respiratory passages R04 
Cough R05 
Abnormalities in breathing R06 
Pain in throat and chest R07 
Hypoxemia R09.02 
Nasal congestion or postnasal drip R09.8 
Fever, unspecified R50.9 
Respiratory tuberculosis A15 
Viral infection of unspecified site B34 
Viral conjunctivitis B30 
Streptococcus, Staphylococcus, and 
Enterococcus as the cause of diseases classified 
elsewhere 

B95 

Adenovirus as the cause of diseases classified 
elsewhere 

B97.0 

Enterovirus as the cause of diseases classified 
elsewhere 

B97.1 

Coronavirus as the cause of diseases classified 
elsewhere 

B97.2 

Respiratory syncytial virus as the cause of 
diseases classified elsewhere 

B97.4 

Human metapneumovirus as the cause of 
diseases classified elsewhere 

B97.81 
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