
Trends
Seasonal influenza evolves to evade
immune recognition, necessitating
regular vaccine updates. The World
Health Organizationhas collaborated
with academic institutions and national
public health organizations to build a
global surveillance program for moni-
toring influenza evolution.

Scientists have built predictive models
grounded in evolutionary theory that
use surveillance data to forecast which
viral strains or clades will predominate
in the coming months.
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Seasonal influenza is controlled through vaccination campaigns. Evolution of
influenza virus antigens means that vaccines must be updated to match novel
strains, and vaccine effectiveness depends on the ability of scientists to predict
nearly a year in advance which influenza variants will dominate in upcoming
seasons. In this review, we highlight a promising new surveillance tool: predictive
models. Developed through data-sharing and close collaboration between the
World Health Organization and academic scientists, these models use surveil-
lance data to make quantitative predictions regarding influenza evolution. Pre-
dictive models demonstrate the potential of applied evolutionary biology to
improve public health and disease control. We review the state of influenza
predictive modeling and discuss next steps and recommendations to ensure
that these models deliver upon their considerable biomedical promise.
Output from these models is already
being used to inform influenza vaccine
strain selection.

This modeling sheds light on basic
science questions: the degree to
which evolution is directed and the
phylogenetic and genomic signatures
of fitness.

This is a success story for large-scale
collaborative science.
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The Need to Predict Influenza Evolution
Influenza viruses annually cause large numbers of emergency room visits, hospitalizations,
admissions to intensive care units, and deaths worldwide [1–6], as well as billions of dollars in
economic losses in the United States alone [2,7]. Persistent, annual influenza epidemics are
possible in the face of population immunity because influenza lineages gradually accumulate
genetic changes that alter antigenic phenotype and allow reinfection of previously exposed
individuals. Strong positive selection for these new antigenic variants produces antigenic drift
(see Glossary).

In the face of antigenic drift, the influenza vaccine must be updated frequently to maintain its
effectiveness. Because it takes at least 6–8 months to develop and produce an updated
influenza vaccine, scientists must decide which influenza virus variants to include in the vaccine
nearly a year in advance.

To aid these predictions and facilitate informed vaccine update decisions, the World Health
Organization (WHO) coordinates a sweeping collaborative global effort to survey and charac-
terize the diversity of influenza viruses circulating in humans [8–10] (see also WHO vaccine
recommendation reportsi,ii). Surveillance produces a massive corpus of antigenic and genetic
data, which must be analyzed rapidly and systematically. Researchers have developed a
number of quantitative tools to aid these analyses.
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Predictive models that forecast which influenza virus clades will predominate in future influenza
seasons are a new class of quantitative tools at the cutting edge of influenza surveillance. These
models could represent the first step toward an era of applied evolutionary biology, in which
influenza surveillance not only aims to monitor the diversity of circulating viruses, but also aims
to produce robust forecasts of future circulation [11]. Influenza also promises to serve as a
model system for predictive evolutionary modeling in other areas. For example, tumors under
therapy show a very similar mode of evolution, characterized by competing genetic clones
[12,13], high mutation rates, and strong selection pressure driven by the host immune response
[14,15]. Predictive evolutionary modeling also has the potential to provide crucial insights into
the ongoing emergence of treatment resistance in pathogens, vectors, and agricultural pests.

In this article, we review recent work in predictive modeling of influenza and discuss the current
role of models in the influenza vaccine strain-selection process. We then outline key next steps
to ensure that predictive models provide robust insights for vaccine strain selection. We give
particular attention to the importance of maintaining and strengthening the global research
community that has made forecasting influenza evolution possible.

Influenza Prediction and Strain Selection Today
Influenza vaccine strain selection is a year-round continuous process. Predictive models are
most useful when they can be tightly integrated into the fast-paced influenza surveillance and
vaccine development pipeline (see Figures 1 and 3). In this section, we describe that pipeline
and the current role of modeling within it.

Vaccine Strain Selection
The WHO's Global Influenza Surveillance and Response System (GISRS) coordinates influenza
surveillance efforts (Figure 1). Samples are collected from patients across the globe and sent to
one of 143 National Influenza Centers (NICs). NICs identify influenza-positive samples to
Figure 1. Schematic of the Influenza Surveillance and Vaccine Strain-Selection Process. Abbreviations: HA, hemagglutinin; HI, hemagglutination inhibition;
NA, neuraminidase.
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Glossary
Glossary
Antigenic drift: in antigenic drift,
influenza antigens accumulate amino
acid sequence changes over time.
Mutations that alter the antigenic
phenotype of circulating influenza
viruses experience positive selection
if they help variant viruses escape
existing population immunity.
Epistasis: an interaction between
genetic loci in which phenotypic or
fitness effects are non-additive.
Positive epistasis denotes a
combined effect that is greater than
the sum of the individual effects.
Negative epistasis denotes a
combined effect that is less than the
sum of the individual effects.
GISAID EpiFluTM database: a
public database of influenza genetic
sequences. Sequence data from
global surveillance efforts collected
by WHO NICs, by WHOCCs, and by
others are all deposited into
EpiFluTM.
Hemagglutination inhibition (HI)
assay: influenza virus can typically
bind red blood cells and cause them
to agglutinate (clump into a lattice).
The hemagglutination inhibition assay
measures the maximum dilution at
which antibody-containing serum
prevents a particular influenza virus
from agglutinating red blood cells. A
high HI titer indicates that dilute
serum (i.e., low antibody
concentrations) can prevent
agglutination.
Hemagglutinin (HA): an influenza
surface protein that facilitates binding
to cell surface receptors and cell
entry. The globular head of
hemagglutinin contains key antigenic
epitopes recognized by the human
adaptive immune system. Human
antibodies that recognize the
hemagglutinin stalk can also be
generated.
Microneutralization assay: an
assay that measures the dilution at
which serum antibodies are able to
prevent a particular reference virus
from infecting tissue culture cells (i.e.,
neutralize the virus). A high
neutralization titer indicates that
dilute serum (i.e., low antibody
concentrations) can still neutralize the
virus of interest.
National Influenza Center (NIC): a
laboratory or medical institution that
coordinates influenza surveillance for
a given county. NICs analyze
virological samples collected from

Figure 2. Accumulation of Newly Sampled Complete HA Gene Sequences in GISAID EpiFluTM over the
Course of a March–March Year. (A) Cumulative count of sequences deposited in EpiFluTM as a function of time to
submission (difference between sampling date and submission date). Sequences are grouped by collection year. (B)
Accumulation of sequence data for the year 2016 by geographic region. Plotted data was obtained by downloading
sequence records from EpiFluTM databaseiv (data downloaded on 31st March 2017), selecting only sequences that were
submitted to and published directly in GISAID, and comparing collection date and submission date metadata. Abbrevia-
tion: HA, hemagglutinin.
the type and subtype level and then send a representative subset of samples to one of six WHO
Collaborating Centers (WHOCCs) on Influenza (Figure 1).

WHOCCs sequence a large proportion of influenza virus specimens received (Figure 2) and
typically use hemagglutination inhibition (HI) assays to characterize the antigenic pheno-
type of isolates. Some circulating influenza A (H3N2) variants have lost the ability to agglutinate
red blood cells [16], so WHOCCs now use microneutralization assays to complement and
corroborate HI titer data.

Twice yearly, leaders of the WHOCCs, WHO Essential Regulatory Laboratories, regulators, and
others meet to assess surveillance data and develop WHO recommendations for the compo-
sition of vaccines. Recommendations issued at these vaccine composition meetings
(VCMs) inform vaccine campaigns during the northern hemisphere (November–April) and
southern hemisphere (March–October) influenza seasons.

Vaccine updates are not possible unless a suitable candidate vaccine virus (CVV) has been
developed well in advance of the VCM (Figure 3). Emerging influenza variants with high
probabilities of spread in upcoming seasons must therefore be identified as fit and developed
into CVVs at least 9–12 months in advance of their possible inclusion in the vaccine.
104 Trends in Microbiology, February 2018, Vol. 26, No. 2



Figure 3. Approximate Calendar of the Vaccine Update Process for the Quadrivalent Vaccine. Vaccine strains are determined at meetings in February (for
the northern hemisphere) and September (for the southern hemisphere), so that vaccine production and delivery can be completed prior to the onset of the influenza
season in each hemisphere. Influenza surveillance, vaccine development, and vaccine production are underway year-round. Abbreviations: CVV, candidate vaccine
virus; NH, northern hemisphere; NIC, National Influenza Center; SH, southern hemisphere; WHOCC, World Health Organization Collaborating Center.
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respiratory illness patients in their
country and ship influenza-positive
samples and viruses to a WHOCC
for further analysis.
Passaging adaptation: genetic
changes that arise as laboratory-
propagated influenza viruses adapt
to grow and replicate efficiently in
cell culture or eggs. Since laboratory
work on sampled influenza viruses
requires growing the virus in vitro,
Predictive models can systematically search through large surveillance datasets to help identify
emerging influenza clades with high probabilities of expansion. The challenge now is to
integrate the diverse array of existing models into the strain-selection process in ways that
fully leverage their predictive power to improve strain selection.

Predictive Models
Advances in biomedicine have begun to elucidate the biological determinants of the evolution of
seasonal influenza at a variety of scales (Figure 4). The majority of predictive modeling studies
focus on the gene segment that encodes the surface protein hemagglutinin (HA). The
passaging adaptations accumulate in
virus lineages.
Phylodynamics: the simultaneous
analysis of the evolution of a virus
(especially its phylogenetics) and its
epidemic dynamics. Necessary
because many viruses, including
human seasonal influenza, evolve
rapidly enough that epidemics and
substantial evolution occur on the
same timescale.
Vaccine composition meeting
(VCM): twice-yearly meetings at
which leaders of the WHOCCs, WHO
Essential Regulatory Laboratories,
regulators, and others meet to
assess surveillance data and develop
WHO recommendations for the
composition of vaccines.
Recommendations issued at these
meetings inform vaccine campaigns
during the northern hemisphere
(November–April) and southern
hemisphere (March–October)
influenza seasons.
WHO Collaborating Centers
(WHOCCs) on Influenza: six
facilities across the globe that
perform laboratory analyses and
genetic sequencing on influenza
viruses collected by National
Influenza Centers.

Figure 4. The Multiscale Process of Influenza Evolution, with Patterns and Possible Sources of Predictability
at Each Scale.
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globular head of HA contains epitope sites (also known as antigenic sites) – the primary targets
for the human adaptive immune response. HA gene sequences for thousands of influenza A
strains isolated over the last 40 years are publicly available [17,18].

This has made it possible to study the phylodynamics of influenza [19,20] – the interaction
between its epidemiological and evolutionary processes. Predictive analysis can also build
upon advances in influenza population genetics, in particular methods of inferring selection on
virus proteins [21–25].

To predict influenza evolution, it is first necessary to identify viral sublineages or clades
coexisting in the global population and to partition viral phylogenies inferred from sequence
data into such clades. Changes in clade frequency can then be predicted by estimating the
fitness differences between viral clades – that is, their expected relative growth rates.

We first describe predictive models with an evolutionary focus; these models predict properties
of future viral populations based on past and present data (see Box 1).

The fitness model presented in [26] uses genetic clades as units of predictive analysis and
proposes an approximate mapping between HA sequences and viral fitness. Mutations at
epitope sites are assigned a positive fitness effect describing cross-immunity across multiple
strains. Mutations outside the epitope region, which can cause protein destabilization, are
assigned a fitness cost. This fitness model can predict the future evolutionary trajectories of viral
sublineages, and can therefore be used to identify which viral clade is most likely to dominate in
upcoming influenza seasons.

A second group of predictive clade frequency models are based primarily on genealogical tree
data and work without explicitly modeling viral fitness. In [27], recent growth of HA clades
Box 1. Predictive Models

Antigenicity-Stability Fitness Model [26]

This model estimates the fitness (i.e., expected growth rate) of viral clades – ensembles of genetically related strains that
descend from a single common ancestor. The original model [26] used only genetic data, but current iterations utilize
both genetic and antigenic input data to estimate multiple components contributing to viral fitness. In the current model,
antigenic changes (inferred from HI and neutralization data or from epitope mutations) increase fitness, while protein
destabilization (inferred from non-epitope mutations) decreases fitness. The model predicts the frequency trajectory of
clades for about 1 year into the future, and it allows for the early detection of new antigenic variants and inference of their
genetic basis. It has been validated by historical predictions over 2 decades. To estimate the contribution of the
individual model components, several years of historical data are required.

Epitope Clade Growth [27]

This model ranks genetic HA clades seeded by epitope mutations by their recent growth inferred from a genealogical
tree. By mapping HI data on the tree, the model estimates the antigenic differences of high-growth clades. It has been
tested by limited historical predictions. Factors affecting prediction quality include sampling inhomogeneities and fitness
effects outside epitope mutations.

Local Tree Shape [28]

In this model, the branching patterns of reconstructed genealogical trees are used to infer the relative growth rates of the
sampled genetic sublineages, without an explicit modeling of the viral fitness. The growth rate is estimated with the local
branching index, which is defined as the length of the tree, averaged with an exponential decreasing weight, in the
proximity of an internal node. This model can predict the most likely strain to dominate in upcoming influenza seasons
without using historical data. The validity of the prediction has been assessed both with simulated data and with
extensive retrospective analysis on data from influenza surveillance. The quality of the prediction is limited by temporal
and geographical inhomogeneities of strain sampling.
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seeded by epitope changes is extrapolated to identify future predominant clades, which are
then weighed by their inferred antigenic differences. In contrast, the model of [28] evaluates
recent clade growth only from the information contained in the local shape of the HA genea-
logical tree. Branching patterns of reconstructed phylogenies are used to infer the relative
growth rate of the sampled viral sublineages. Rapidly growing populations undergo fast
diversification and therefore show a high degree of local tree branching. A measure of fitness
differences between clades can then be obtained by interpreting the inferred growth rate as
fitness.

Other theoretical models do not aim to predict clade content of the future viral population but
infer phenotypic properties of the current population (see Box 2). These include the expected
effectiveness of the current vaccine strains against newly identified strains [29,30] and amino
acid substitutions in protein loci [31]. Some models can also be used for the identification of
new antigenic variants at their early stage of expansion [26,27,29,30,32].

All the models are probabilistic, not least because stochastic events are important drivers of
influenza evolution: from mutations in individual viral sequences to local burnout of epidemics
(Figure 4).

Next Steps for Modeling and the Influenza Prediction Community
Each of the modeling approaches described above represents a unique combination of
biological details, simplifying assumptions, and informative data. The immediate challenges
are to determine how different approaches and data sources can be combined and how
modeling results should be interpreted when informing strain-selection decisions. In particular,
there is a need (1) to develop best practices in data collection, management, and use; (2) to
choose an appropriate level of biological detail for predictive modeling; and (3) to develop tools
and strategies for comparing models and understanding their limitations (see Outstanding
Questions). All three goals will require collaboration among scientists working at all levels of the
surveillance and strain-selection process, including modelers, laboratory scientists, epidemi-
ologists, and clinicians.

Best Practices for Data Collection, Management, and Use
All predictive models of influenza evolution infer viral fitness using some combination of genetic
and antigenic data. Here, we summarize cautions and challenges associated with each data
stream. We then discuss key next steps.
Box 2. Inference of Antigenic Characterization

Linking Antigenic Properties and Genetic Data

Antigenic properties of influenza A viruses can be inferred from viral HA sequences using machine learning and other
inference methods. Some methods use genetic distances computed from sequence alignments [29,109]. Others apply
phylogenetic methods [44,45]. Structural and physicochemical properties of HA sequences can also be taken into
account [32,110]. These methods can be used to predict antigenic cluster membership [32,110], to quantify the
expected effectiveness of the current vaccine against circulating viral strains [30], or to assess the degree of antigenic
change caused by particular mutations [44,45,109,111].

Identification of Proposed Vaccine Strains

The antigenicity-stability fitness model [26] uses minimization of cross-immunity with predicted future circulating strains
as a criterion to identify candidate vaccine strains. The approach presented in [27] combines measures of strain
proliferation rate with measures of strain antigenic novelty obtained from HI data to identify possible candidate strains for
seasonal influenza vaccine updates; a similar approach has been recently integrated in a new bioinformatic pipeline (S.
A. Schobel, PhD thesis, University of Maryland, 2015). The local branching index [28] can be used to identify vaccine
candidate strains by proximity to high-ranking tree nodes.
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Genetic Data
Each season, WHOCCs characterize the whole genome sequence or HA and neuraminidase
(NA) gene sequences of thousands of the influenza viruses collected and submitted by NICs
around the globe (Figure 2). The WHO’s FluID databaseiii provides open access to the resulting
epidemiological data, while WHOCCs deposit sequence data into the publicly available GISAID
EpiFluTM databaseiv (Figure 1). The genetic data within EpiFluTM has been instrumental to the
development of all modeling approaches reviewed here and has facilitated a wealth of other
basic influenza research.

In recent years, the quantity of data deposited into GISAID has increased dramatically while
delays between virus collection and sequence sharing have decreased (Figure 2). This has
given modelers a better dataset from which to make predictions in advance of VCMs.
Visualization and prediction tools such as the public nextflu web applicationv [33] have lever-
aged these data to allow rapid and up-to-date exploratory analysis. WHO NICs and CCs should
be commended for their efforts to curate and publish this wealth of data [17,18,34,35].

In the past, lags between data collection and sequencing limited the amount of data available to
inform model predictions prior to VCMs. But efforts to reduce delays between sample collection
and sequence publication have been fruitful. In 2016, thousands of complete HA gene
sequences were deposited within 50 days of sample collection; this accounts for more than
one-third of that year’s deposited sequences. (Figure 2). Continuing to streamline this data
deposition pipeline can increase robustness and decrease uncertainty in model predictions.
For similar reasons, it is worth continuing to develop rapid data analysis pipelines so that
models can make use of the large quantities of new data that may become available shortly
before a VCM (Figure 2). Another ongoing challenge is to address geographical disparity in
surveillance data quantity and quality. Europe and North America are well sampled and data
processing and deposition happens quickly, but the same is not true for other regions
(Figure 2).

One caution when using influenza sequence data is that clinical samples are often passaged in
cell culture prior to sequencing and antigenic analysis. Passaging adaptations that arise
when viral isolates are propagated in vitro can influence both antigenic [16,36] and genetic
characterizations of viral specimens [37]. It is possible to correct or exclude genetic sequences
containing passaging adaptations before input into predictive models [37]. Helpful computa-
tional tools can be found onlinevi. Laboratories have also been adopting best practices to
reduce passaging adaptations in sequenced isolates [16,37,38], or to sequence virus speci-
mens without isolation.

However most sequenced isolates are still passaged at least once [37], and passaging is
necessary to characterize the antigenic phenotype of an isolate. Thus, there is a need to
standardize sequence annotation across laboratories to unambiguously communicate the
passage history of a sequence to modelers and other data users. Metadata that helps modelers
compare the passage histories of isolates used to generate antigenic data would also help map
from phenotype to genotype.

Antigenic Data
Panels of HI serological assays are the standard tool used to assess the antigenic properties of
influenza viral isolates. In HI panels, antisera are obtained from ferrets infected with a single
reference virus. To characterize pairwise similarities in antigenicity between viruses, each
antiserum is systematically tested against each reference virus. A high titer indicates high
antigenic similarity and strong potential for cross-reactivity between the virus–antiserum pair
tested [39].
Trends in Microbiology, February 2018, Vol. 26, No. 2 109



Integration of HI data into predictive models can be challenging for a number of reasons. First,
some clades of H3N2 no longer react in HI assays [16], so neutralization assays are increasingly
used to complement HI titer data. Integration of various types of assays requires specialized
modeling approaches. Experiments with human sera have shown that HI titer and neutralization
titer correlate strongly [40], so in principle it is possible to do a mixed analysis that employs both
types of serological data. However, the complexity of interpreting antigenic data should not be
underestimated [36].

A second challenge is that serological patterns obtained using ferret antisera provide a close,
albeit imperfect [41,42], proxy for patterns of antigenic cross-reactivity in humans. Thus, panels
of postvaccination human sera have been used for many years by the WHO to confirm the
antigenic properties of circulating viruses. Nevertheless, an increased use of panels of human
antisera and human monoclonal antibodies is likely to improve further serological analysis of
circulating viruses and potential candidate vaccine viruses.

Third, measured titer differences reflect a combination of antigenic and non-antigenic effects
[43–45]. Non-antigenic effects arise from differences in the receptor binding avidity of a
particular reference virus, the potency of a particular antiserum, and avidity of the red blood
cells being agglutinated [44]. Differences in assay protocol can also affect measured HI titer
values [46]; standardizing protocols makes titer values obtained by different laboratories more
directly comparable [47].

Finally, serological data are available for many, but not all, of the viral sequences available in the
EpiFluTM database. Modelers have therefore developed tools that infer antigenic phenotype
using known genetic sequences. The basic strategy is to gather antigenic data collected from
the annual and interim reports of the WHOCC Londonvii and then to map these antigenic data
onto inferred viral phylogenies [27,44,45,48]. These genotype-to-phenotype mapping tools
can be used as a substitute for missing antigenic data [44,45,48]. The challenge for predictive
models is then to integrate this information in order to predict the future antigenic composition
of influenza virus populations.

Next Steps
Key next steps for improving data collection, management, and use include developing and
enforcing clear data annotation standards, exploring the feasibility of an antigenic data reposi-
tory, and using models to identify important gaps in surveillance.

Influenza research would benefit from clear, well-enforced data annotation standards. Robust
model predictions require selecting input data based on its quality and collection date. This is
only possible if metadata are unambiguous. Passaging adaptations can only be properly taken
into account if the passage histories of isolates are documented in a consistent way. Evaluating
the practical usefulness of model predictions for strain selection requires a record of what
sequence and titer data was available for modeling in advance the VCM of a particular year.
Clear and consistent annotation also deepens the pool of researchers who can contribute to
influenza prediction; it allows scientists not directly involved in data collection to be confident
that the assumptions made in their work are not violated by an undocumented aspect of the
collection process.

Despite the challenges and new developments discussed, antigenic data remain a key part of
influenza surveillance. To that end, we believe it is worth studying the feasibility of creating a
public HI database to complement the genetic data available in EpiFluTM. Ideally, this database
would also include data from neutralization assays. Presently, antigenic data are often unpub-
lished, so the leaders of any database project would need to ensure that data are used
110 Trends in Microbiology, February 2018, Vol. 26, No. 2



responsibly, and that those collecting the data can receive due credit for their work. There is an
ongoing discussion within biomedicine of how best to recognize – and incentivize – the
collection, curation, and archiving of large, high-quality epidemiological datasets [49]. The
influenza community should remain in the vanguard of efforts to share data equitably.

Finally, models may be able to aid surveillance efforts by identifying gaps or inefficiencies in
existing surveillance data. Retrospective analysis of predictive error could help identify under-
sampled geographic areas or other factors that contribute to bias in surveillance data. Models
could also help identify which data would most improve model informativeness if shared rapidly.

Modeling influenza evolution has been made possible through generous sharing of data. We
advocate continued effort to facilitate and improve data sharing. This will allow predictive
models to be better integrated into the strain-selection process, increase the robustness and
accuracy of existing models, and aid basic research on influenza.

Choosing an Appropriate Level of Biological Detail
An ongoing challenge for influenza forecasting will be to assess whether specific simplifying
assumptions undermine the accuracy or robustness of model predictions. Here, we summarize
key biological considerations that have not yet been explicitly included in predictive models.

Genetic Background
Gene interactions and deleterious mutational load can influence which antigenic mutations are
ultimately able to fix. Recent research has found evidence of epistasis between sites in the
influenza HA gene [50] and of intergene epistasis between HA sites and NA sites [51]. Modeling
work suggests that epistatic interactions could play a key role in driving patterns of influenza
antigenic evolution [52]. A model that incorporates epistasis in antigenic phenotype can
reproduce both the gradual antigenic changes that steadily accumulate within a broadly
cross-immunizing ‘antigenic cluster’ [53,44] and also the rarer cluster transitions that occur
every few years [52].

Deleterious mutational load may also regulate the probability that antigenic mutants proliferate
and reach fixation. Against a deleterious background, only large-effect antigenic mutants will
experience strong positive selection; this is another possible explanation for the punctuated
pattern of antigenic cluster transitions [54].

Taking account of the genetic background of newly discovered antigenic variants could allow
for more precise prediction of their likely fitness and their fixation probability.

How Much of the Influenza Genome Should Models Consider?
Despite evidence that substitutions at just a handful of key sites lead to large antigenic changes
[21,53,55], recent analyses [44,45] have shown that tracking substitutions at these key sites
alone yields poor predictions of antigenic phenotype. Rather, the accumulation of small
antigenic changes via substitutions at other sites may be a stronger driver of influenza virus
evolution [44,45] and can increase the accuracy of predicting antigenic phenotypes of emerg-
ing viruses from genotype [44].

HA sites outside the antigenic epitopes are also likely to contribute to the total viral fitness, as
many are under purifying selection [23,26]. Moreover, high rates of amino-acid substitutions,
possibly signaling positive selective pressure by host immunity, have been observed for HA
sites outside the epitope region [56] and for genomic regions other than HA [57]. In particular,
NA, which drives the release and escape of new virions from the cell [58], has been shown to
Trends in Microbiology, February 2018, Vol. 26, No. 2 111



evolve under strong selection pressures imposed by the human immune system and antiviral
drugs [22,59,60].

Incorporating genomic data from sites outside the HA epitope regions may thus lead to a better
estimation of viral fitness and therefore improve predictions. If loci on multiple influenza genome
segments are key to determining the relative fitness of strains, models may also need to
account for intralineage reassortment events [59]. Reassortment events have been shown to
be biased towards certain segment combinations [61,62], implying an associated fitness cost.
As a result, the pool of observed new reassortant strains is restricted, and reassortment events
may be followed by a number of subsequent compensatory mutations [63].

How Important Are Mixed Infections and Within-Host Diversity?
The data deposited into GISAID's EpiFluTM database are either collected using Sanger
sequencing or are consensus sequences obtained from next-generation sequencing. Thus
these data do not capture the fact that multiple viral variants coexist within an infected host.
Deep sequencing studies show that mixed influenza infections involving multiple viral variants
occur frequently in humans [64–69] and that minor variants can be transmitted alongside major
variants [64,65,70]. Ongoing research now aims to determine how evolutionary forces within
the host influence viral dynamics at the population level. To date, most deep-sequencing
studies at the within-host level suggest that de novo genetic diversification is limited [71] and
that rare antigenic variants do not often rise to high frequencies within the host [67–69], despite
the potential fitness advantages provided by their ability to evade host immunity. New evidence
suggests these antigenic mutations may fail to rise in frequency because of clonal interference
[69] or purifying selection on non-antigenic substitutions within the same viral genome [71]. The
evolutionary trajectory of influenza within immunocompromised hosts can thus mirror global
patterns of virus evolution [69]; clonal interference and purifying selection are also known to
prevent some antigenic mutations from fixing at the global scale.

What Predictive Insights Can Be Gained from Observing Influenza Evolution in the
Laboratory?
Further empirical work on short-term influenza evolution could help improve our understanding
of the selection pressures that act on the virus and the antigenic phenotypes that are likely to
result. Evolutionary experiments in which researchers attempt to generate and select for
antigenic mutants under laboratory conditions may also be valuable, and in theory such
experiments could even be used to recreate or predict patterns of antigenic drift in vitro
[72]. As discussed above, passaging adaptations can introduce spurious signals of selection
and should wherever possible be avoided in experimental infections. Studying influenza
infections in natural animal hosts – and development of associated assays and reagents –

is also highly desirable where possible.

In practice, evolutionary experiments are often challenging. Circulating influenza viruses expe-
rience varied and complex selection pressures that are difficult to replicate in the laboratory,
both within individual hosts and during transmission between hosts (see Figure 4). In particular,
the process of transmission remains a challenge to tackle experimentally at scale. In the face of
these challenges, most recent studies have taken an observational approach, studying the
evolutionary trajectories of influenza within human hosts [64,65,67–69,71,73].

However, there is no substitute for experimental infections in testing the mechanistic assump-
tions of epidemiological models (see for instance [74]). As our mechanistic understanding of
within-host evolution and our capacity to process and interpret deep-sequencing data continue
to improve, it may become possible to develop predictive models of within-host influenza
evolution.
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Regional Differences and Seasonality
Existing predictive models largely operate at the global scale, although modelers and users are
aware of evidence for geographic structure in influenza dynamics [75–77]. Most influenza virus
variants originate in and spread from East or Southeast Asia. Influenza B and A(H1N1) lineages
then appear to persist regionally for longer periods of time than A(H3N2) [77]. Yet, in practice, it has
been difficult to balance the collection of surveillance data from across the globe. There are strong
geographical biases in reported data [78]; Europe and North America are sampled more intensely
than other regions (Figure 2). A more sophisticated treatment of regional differences and virus
migration patterns [79] could potentially make predictive models more accurate and robust.

Drivers of influenza seasonality in temperate versus tropical regions are still not fully understood
[80,81]. An improved understanding of influenza seasonality could improve model predictions
of when new clades are likely to proliferate. This could help policymakers continue ongoing
work to time vaccine campaigns optimally, especially in the tropics [82].

Immune History and the Challenge of Individual Variation
HI assays presently assess the antigenicity of an influenza isolate using antisera from ferrets
exposed to a single reference virus. Thus, these data do not capture realistic heterogeneity in
human immune responses, which arises from differences in individual histories of exposure to
multiple influenza strains over a lifetime. Individual histories of exposure can strongly and
predictably alter which B cell responses are expressed against a given seasonal influenza
challenge strain [72,83–89]. Childhood influenza exposures appear to play a particularly strong
role in shaping the lifelong immune memory of an individual [83–85,90,91].

These immune history effects (reviewed in [90]) suggest a mechanistic basis for individual or
birth-year-specific variation in vaccine effectiveness [88,92], and there is a need to better
understand when these effects should or should not be expected to cause meaningful differ-
ences between antigenic maps based on ferret sera and maps generated using human sera
[41,42]. Meanwhile, there is scope for modelers to incorporate serological data and known
patterns of pre-existing population immunity into predictive models.

Comparing Models and Assessing the Limits of Model Foresight
Improving and making practical use of model predictions will require a standard for what
constitutes improvement and an understanding of the theoretical and practical limitations of
predictive models.

Model Assessment and Comparison
One difficulty for decision-makers looking to use information from multiple predictive models is
model heterogeneity. Models make different assumptions about virus evolution. They use
overlapping but not identical datasets. When two predictions substantially differ, it must be
determined whether differences stem from differences in assumptions, data, or both. Models
also have different outputs, which often complicates direct comparisons of predictive success.

The scarcity of testing data compounds this difficulty. Only about 20 historical influenza
seasons are available for rigorous testing of whether a new model outperforms existing ones,
and overfitting of models is a serious concern.

The influenza prediction community should agree upon shared standards for success in viral
forecasting so that outputs from different models can be more readily compared.

It may also be worth developing standard methods for meta-analysis. Differences in model
assumptions may make some models more robust in certain contexts. Meta-analysis could
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help identify such patterns, making it easier to weigh evidence appropriately when different
models disagree.

Finally, it will be important to determine what vaccine policy is optimal given an uncertain
prediction. This will require determining the costs of different degrees of prediction failure given
a certain policy.
What Are the Limits of Model Foresight?
Prudent model-based policymaking requires understanding the limits of the predictive capacity
of models. Ongoing work aims to quantify both the timescales at which models can deliver
accurate results and the uncertainty in existing model predictions [11].

At present, one temporal limitation is clear – existing models cannot predict which antigenic
variants will emerge in the future. They can only assess the probability that an existing, observed
antigenic variant will have high fitness and proliferate.

Virologists and evolutionary biologists have long hoped to overcome this barrier and predict the
emergence of antigenic phenotypes that have not yet been observed [93]. Such prediction
would provide a clear temporal advantage for selection and development of vaccine viruses.
But whether such prediction is feasible will depend upon how truly constrained the antigenic
trajectory of influenza is; evidence remains equivocal [94,95].

The degree to which cross-reactivity between two arbitrary strains can be predicted from
their amino-acid differences (what Gog and Grenfell termed the ‘geometry of the strain
space’ [96]) remains unclear, as does the degree to which this geometry can be captured
by simple, reductive models [44,45,97,98]. The path of the virus through this space
of possible antigenic amino-acid sequences may be further constrained by non-immunologi-
cal fitness benefits, costs, and tradeoffs [54,99,100], as well as immune pressure
acting on more conserved epitopes [101]. How measurable and constant these
constraints are will help determine whether it is practical to attempt the prediction of
unobserved viruses.
Universal Influenza Vaccines and Evolutionary Effects of Vaccination
A recent epidemiological study provides direct evidence for the feedback of influenza vaccina-
tion on viral evolution [102]. This study compares viral isolates from cohorts of vaccinated and
unvaccinated humans. The sequence isolates from vaccinated individuals are found to have a
significantly increased distance from the vaccine strain but remain broadly distributed on the
strain tree, indicating that vaccination tends to accelerate evolution. This is in accordance with
the predictions on vaccination feedback from the antigenicity-stability fitness model [26]. In this
model, vaccination introduces an additional artificial selection fitness cost on circulating strains,
which depends on their cross-immunity with the vaccine strain. The vaccination fitness
component accelerates evolution away from the vaccine strain and, hence, reduces the
efficacy of vaccination.

Ongoing efforts to develop a universal influenza vaccine [103,104] may eventually render
twice-yearly vaccine update decisions obsolete. Universal influenza vaccines would stimulate
immune memory against conserved influenza epitopes, thus providing broad protection
against the full gamut of influenza types and subtypes (reviewed in [105] and [106]). Recent
studies [107,108] have suggested that universal vaccines could even slow the pace of
antigenic evolution.
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Outstanding Questions
What degree of biological detail
makes influenza modeling most
effective?

How can newer forms of surveil-
lance data (e.g., microneutralization
assays) be most effectively integrated
into the modeling and strain-selection
processes?

To what extent must surveillance
and modeling efforts account for indi-
vidual variation among hosts in order
to be effective? How can this variation
best be incorporated into predictive
models?

What currently unavailable surveil-
lance data would be most informative
about influenza antigenic evolution?
Can models help the surveillance com-
munity determine this?

How should models take account of
known biases and uncertainties in
existing data (e.g., regional biases in
sampling and imperfect external
validity of lab assays)?

How should multiple models be
compared and used for vaccine
strain selection?

What methods should decision-
makers use to integrate information
from multiple models, particularly
when those models disagree?

How should model performance be
assessed? Developing agreed-upon
standards for modeling success within
the collaborative influenza community
will ensure that new models are
compared fairly against existing ones.

What vaccine policy decision is opti-
mal given an uncertain prediction? For
a given policy, what are the costs of
different degrees of prediction failure?
Concluding Remarks
The global program to control influenza produces great public health benefit under enormous
time pressure, often with minimal recognition. The process is a continuous cycle (Figure 3). This
public health work is mapping out a new frontier in biomedicine: applied evolutionary biology.

The ongoing effort to improve influenza surveillance, prediction, and control has spurred
important advances in areas ranging from the population-level modeling of viral evolution to
the fine-scale virology and immunology of human influenza infections (Figure 4). Perhaps most
remarkably, influenza research has demonstrated that predictive evolutionary biology can have
practical public health applications. This sets a valuable precedent for other medical fields. The
increasing threat posed by antibiotic-resistant bacteria is but one example of the public health
importance of anticipating pathogen evolution.

The advances in basic and applied science reviewed here have been made possible through
close collaboration between specialists in various fields and through generous data-sharing.

Outstanding challenges include improving influenza surveillance data management and use,
integrating relevant additional biological detail into predictive models, and developing methods
for comparing models and assessing their limitations (see Outstanding Questions).

Our view is that addressing these challenges and making further advances will require
continued commitment to a collaborative approach. There already exists an incipient influenza
prediction community: virologists and immunologists who study immune escape and develop
novel techniques for viral surveillance, modelers who aggregate surveillance data to make
predictions, and epidemiologists who understand how best to use novel insights to control
influenza. This community should be fostered; it promises to advance understanding of virus
evolution and improve disease control.
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