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Abstract

With the expansion of DNA sequencing technology, quantifying evolution during emerging viral outbreaks has become
an important tool for scientists and public health officials. Although it is known that the degree of sequence divergence
significantly affects the calculation of evolutionary metrics in viral outbreaks, the extent and duration of this effect
during an actual outbreak remains unclear. We have analyzed how limited divergence time during an early viral outbreak
affects the accuracy of molecular evolutionary metrics. Using sequence data from the first 25 months of the 2009
pandemic HIN1 (pH1N1) outbreak, we calculated each of three different standard evolutionary metrics—molecular clock
rate (i.e., evolutionary rate), whole-gene dN/dS, and site-wise dN/dS—for hemagglutinin and neuraminidase, using
increasingly longer time windows, from 1 month to 25 months. For the molecular clock rate, we found that at least

3-4 months of temporal divergence from the start of sampling was required to make precise estimates that also agreed
with long-term values. For whole-gene dN/dS, we found that at least 2 months of data were required to generate precise
estimates, but 6-9 months were required for estimates to approach their long term values. For site-wise dN/dS estimates,
we found that at least 6 months of sampling divergence was required before the majority of sites had at least one muta-
tion and were thus evolutionarily informative. Furthermore, 8 months of sampling divergence was required before the
site-wise estimates appropriately reflected the distribution of values expected from known protein-structure-based evo-
lutionary pressure in influenza. In summary, we found that evolutionary metrics calculated from gene sequence data in
early outbreaks should be expected to deviate from their long-term estimates for at least several months after the initial
emergence and sequencing of the virus.
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1 Introduction

While modern medicine has been able to control the preva-
lence of traditional human pathogens through vaccines and
medications, emerging infectious diseases remain a major
threat to public health. Many emerging infectious diseases
are caused by zoonotic viruses, which are normally endemic

to a reservoir animal and are transmitted to humans upon
exposure to the respective reservoir. Some viruses that
have successfully undergone zoonoses into humans dur-
ing the last century include HIV, Zaire ebolavirus,
Hantavirus, Machupo virus, Marburg virus, and Chickungya
virus, as well as most major influenza virus subtypes,
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including pandemic 1918 H1N1, H2N2, H3N2, pH1N1, H5N1,
and the recent H7NO.

Quantifying the evolutionary dynamics of emerging zoonotic
epidemics has become an important tool in understanding and
controlling such epidemics. Computational methods that ex-
tract evolutionary information from gene-sequence data can
produce valuable hypotheses regarding viral adaptation (Bush
et al. 1999b; Luksza and Lassig 2014). Two particular metrics
have been widely used to analyze such evolutionary dynamics
from genetic data: the molecular clock rate (also known as the
clock rate, the nucleotide substitution rate, or the evolutionary
rate) and the evolutionary rate ratio, dN/dS (Bush et al. 1999a;
Rambaut and Holmes 2009; Bhatt et al. 2013). The molecular
clock rate indicates the rate of sequence divergence, whereas
the dN/dS rate ratio gives the relative rate of non-synonymous
to synonymous sequence changes and is widely used to infer
positive selection (when dN/dS > 1). In viral sequences, dN/dS
> 1 is thought to reflect viral adaptation, typically in response
to selection pressure exerted by the host immune system. Most
commonly, the clock rate is measured on an entire genome or
occasionally on a single gene, and dN/dS is measured either on a
gene or at individual sites in a gene.

Importantly, each of these metrics is computed using models
of molecular evolution which assume that observed mutations
represent fixed population differences, not intra-population poly-
morphisms. This assumption has wide-reaching consequences
for inferences. A growing body of theoretical work has demon-
strated that data collected over short-time scales may yield bi-
ased estimates for both the molecular clock rate (Ho et al. 2005,
2007; Peterson and Masel 2009; Ho et al. 2011; Biek et al. 2015) and
dN/dS (Rocha et al. 2006; Kryazhimskiy and Plotkin 2008; dos Reis
and Yang 2013; Mugal, Wolf, and Kaj 2014). Moreover, a pattern of
over-estimation in the molecular clock rate relative to long-term
estimates has been shown in a small number of real viral sys-
tems (Wertheim and Kosakovsky-Pond 2011). This would be ex-
pected either because sufficient time has not passed for natural
selection to purge slightly deleterious (often non-synonymous)
mutations from the gene pool or because not enough mutations
have accumulated to correctly compute a dN/dS ratio.
Much of this work has additionally demonstrated that, after
sequences have sufficiently diverged, the clock rate and dN/dS es-
timates do converge to a long-term steady-state value (Ho et al.
2007; Peterson and Masel 2009; Mugal, Wolf, and Kaj 2014). We
therefore expect that evolutionary estimates computed
with sequences from early outbreak stages will not be reliable
approximations of longer term values. It is not known,
however, how much time is required to obtain long-term clock
rates or dN/dS estimates either per gene or in the site-wise
distribution.

Here, we have investigated the extent to which limited sam-
pling divergence time produces molecular clock rate and dN//dS
estimates in an emerging virus that do not agree with long-term
estimates for that virus. Specifically, we have analyzed the
hemagglutinin (pH1) and neuraminidase (pN1) sequences from
the 2009 pandemic HIN1 (pHIN1) to systematically examine
how divergence time influences clock rate and dN/dS estimates
both across the entire protein and at each site individually.
Previously, Hedge, Lycett, and Rambaut (2013) conducted a simi-
lar time-series study of pH1N1. Their analysis included an esti-
mate of Ry, an analysis of the time dependence in the molecular
clock rate, and the identification of the most recent common
ancestor with whole-genome data. We have performed a more
detailed analysis of the two genes that dominate influenza anti-
genicity and have included calculations of the gene-wise

molecular clock rate, the whole-gene dN/dS, and the site-wise
dN/dS (Bush et al. 1999a; Luksza and Lassig 2014; Meyer and
Wilke 2015). Thus, the two studies are complementary for quan-
tifying the evolution of pHIN1.

We have found that, early in the outbreak, both clock rate
and dN/dS estimates are not equal to their long-term, steady-
state values. In particular, when only the first month of se-
quence data is used to generate estimates, the clock rate is three
to five times higher than the value obtained after 25 months of
divergence in the sample. Similarly, we have found that whole-
gene dN/dS for pH1 and pN1 are approximately 30 per cent
higher for pH1 and 50 per cent lower for pN1 than their values
after 25 months. Additionally, the majority of site-wise dN/dS
estimates are completely uninformative until at least 6 months
of mutations have accumulated. Finally, we have found that at
least 8 months of accumulated sample divergence are required
for site-wise dN/dS calculations to reflect structural constraints
on protein evolution.

Taken together, our results indicate that some of the most
commonly used metrics in molecular evolution can be very dif-
ferent in early outbreaks relative to long-term estimates. In ad-
dition, considering the relatively rapid evolution of influenza, it
is likely that most other emerging viruses will require substan-
tially more divergence time than reported here for influenza.
Therefore, investigators should expect that early estimates of
the clock rate, the whole-gene dN/dS, and the site-wise dN/dS
will likely not agree with their long-term values. Specifically,
the early molecular clock rate will probably be elevated, the
early whole-gene dN/dS may be unpredictably increased or de-
creased, and the early site-wise dN/dS will likely be uninforma-
tive in emerging outbreaks.

2 Materials and methods
2.1 Data collection and processing

All data analyzed were taken from the Influenza Research
Database (IRD) (Squires et al. 2012). We specifically selected
PH1N1 sequences for the genes hemagglutinin (pH1) and neur-
aminidase (pN1) collected from humans in North America, be-
ginning in April 2009. We used the built-in IRD filter to include
only pH1N1 sequences. Further, we used the built-in IRD filters
to select specifically the pandemic strains. We downloaded se-
quences sampled from April 2009 to April 2011. We chose to ex-
clude data dated after April 2011 because the number of
available sequences began dropping quickly as pH1IN1 became a
seasonal strain, peaking in the winter and dropping to almost
undetectable levels in the summer. We selected only sequences
that represented the entire coding regions of the pH1 and pN1
genes. All laboratory strains, duplicate strains, and sequences
which contained ambiguous nucleotides were omitted.

2.2 Molecular clock rate estimation

For molecular-clock rate estimation, we grouped sequences for
each gene into time-aggregated datasets, as follows. We estab-
lished a dataset for April 2009, a dataset for April-May 2009, a
dataset for April-June 2009, and so on, until all months were in-
cluded. Because datasets containing more than 2 months of data
were too large for the estimation procedure to be computation-
ally tractable, we down-sampled the datasets, as follows: For esti-
mates in the third month, we aggregated twenty-five sequences
from the first month, twenty-five sequences from the second
month, and twenty-five sequences from the third month. Thus,



estimates from June 2009 contained seventy-five sequences sam-
pled at random from each month. For any month that did not
have twenty-five sequences, we simply added all of the se-
quences from that month. For each subsequent time window, we
added an additional twenty-five sequences from the next month
(or all), such that the 25-month time window contained 470 se-
quences. For all subsampling, we used completely random sam-
pling within each month’s sequences.

After compiling all datasets for all time windows, we con-
verted each set of nucleotide sequences to amino acids and
aligned them with MAFFT (Katoh and Standley 2013), specifying
the ‘-auto’ flag. We then backtranslated each amino-acid align-
ment to the original codons.

For each alignment, we used BEAST (Drummond and
Rambaut 2007) to infer the molecular clock rate. Here, a tempo-
rally dated phylogeny was estimated using BEAST with a logis-
tic growth coalescent demographic model, an HKY nucleotide
substitution model, and a strict molecular clock. The molecular
clock rate was given a non-informative CTMC reference prior
(Ferreira and Suchard 2008). Inclusion of gamma rate heteroge-
neity was avoided as preliminary analysis showed little effect
on molecular clock rate with this data. Using a strict clock re-
duced the risk of model over-parameterization, as relaxed clock
models add an additional parameter for every branch in the
phylogeny, and strict clock models have been commonly used
when studying influenza molecular evolution (Bedford et al.
2014). We ran Markov chain Monte Carlo (MCMC) for 500 million
steps for most datasets and confirmed Bayesian convergence
using Tracer. For the 25-month set, we ran MCMC until the runs
had clearly converge via Tracer. All runs had an effective sam-
ple size in the 165-1,383 range.

To be sure that codon site heterogeneity was not affecting
the molecular clock rate calculations, we repeated the MCMC
calculation adding the gamma site heterogeneity model with
four rate categories. The results were statistically identical to
those we found previously (Supplementary Fig. S5). In addition,
to ensure that sample divergence was increasing during the
sampling period, we plotted the root height of the tree against
the sampling time. We found a progressively taller phylogenetic
tree as the sample time increased (Supplementary Fig. S6).

2.3 Estimating dN/dS for the whole-gene and individual
sites

Estimation of dN/dS is commonly carried out by maximum like-
lihood, which scales to much larger dataset sizes than the
Bayesian approach implemented in BEAST. Therefore, down-
sampling of the data was not necessary for dN/dS estimates.
Thus, for all dN/dS analyses, we established time-aggregated
datasets as described in the previous subsection but did not
down-sample. Again, we aligned each dataset by amino acids
with MAFFT and then backtranslated to codons for subsequent
dN/dS inference. We estimated a phylogeny for each alignment
using FastTree v2.1.7 (Price, Dehal, and Arkin 2009), specifying
the flags ‘-nt -gtr -nosupport’ to use the generalized time-
reversible model.

Next, we used HyPhy (Kosakovsky Pond, Frost, and Muse
2005) to compute both whole-gene and site-wise dN/dS esti-
mates for all alignments. We specifically used HyPhy’s
MG94xHKY85 model (Kosakovsky Pond and Frost 2005;
Kosakovsky Pond and Muse 2005), which is less biased than the
more frequently used GY94 model (Spielman and Wilke 2015).
In our estimates, we specified a single parameter o to represent
the dN/dS ratio, rather than using separate parameters for dN
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and dS as is often done in MG94 models (Kosakovsky Pond and
Muse 2005). Site-specific dN/dS values were inferred using the
fixed-effects likelihood method (Yang and Swanson 2002;
Kosakovsky Pond and Frost 2005). As influenza proteins un-
dergo substantial post-translational modification, we consid-
ered dN/dS values only for those sites which could be aligned to
a known crystal structure, that is, sites which appeared in the
mature protein. We obtained protein structures from the
Protein Data Bank (Berman et al. 2000) with PDBID: 1RD8 for
hemagglutinin and PDBID: 3TI3 for neuraminidase.

2.4 Calculating proximity to the receptor-binding site as
a constraint on site-wise dN/dS

It has been shown that protein structure is a major determinant
of hemagglutinin and neurminidase evolution (Meyer and
Wilke 2013; Meyer, Dawson, and Wilke 2013; Sikosek and Chan
2014); in particular in hemagglutinin, distance to the sialic acid-
binding site is a major constraint on hemagglutinin evolution
(Meyer and Wilke 2015). For each time point, we evaluated the
degree to which the distance from the sialic acid-binding site
can predict the site-wise dN/dS of hemagglutinin.

To start, we first calculated the distances from every alpha-
carbon to every other alpha—-carbon. For hemagglutinin, this pro-
duced a square, symmetric matrix of 490 x 490 sites in the protein
structure where the diagonal is all zeros (the diagonal represents
the distance from a site to itself). To be clear, for hemagglutinin,
the first column in the matrix (a 1 x 490 column) represents the
distances from the first amino acid to all amino acids in the pro-
tein; the second column represents to distances from the second
amino acid to all amino acids in the protein, etc. Then, for each
column in the matrix, we calculated the correlation of site-wise
dN/dS to the inverse distances for each site in the structure;
again, for hemagglutinin, there were 490 dN/dS values (one for ev-
ery site in the structure) and a set of 490 distances in each col-
umn (i.e., for each reference C,). We then plotted the correlation
onto the structure at each amino acid site, using PyMOL
(Schrodinger, LLC 2010). The same procedure was used to calcu-
late distances using the neuraminidase structure and site-wise
dN/dS values. As with hemagglutinin, we also used the inverse
distance to compute correlations for neuraminidase.

We repeated this process for each month, where the site-
wise dN/dS estimates were calculated with the aggregate of data
for all previous months. Thus, at each time point, we were left
with a distribution of correlations between distance and rates
calculated with data up to that time point. The distribution of
correlations was plotted as a violin plot for each time point (Figs
5 and 6); the violin plot should be seen as a horizontal, symmet-
ric histogram. Thus, wider regions represent higher counts. For
select time points (every 5 months), we plotted the distribution
of correlations directly onto the protein structure below the vio-
lin plot. The figure shows that as more divergence was aggre-
gated, the ability of this distance constraint to predict evolution
in hemagglutinin and neuraminidase improved dramatically.
This accompanies a characteristic flattening of the distribution
of correlations; the flattening implies that as data are added, all
of the sites in the protein appear to encode the same directional
evolutionary pressure.

2.5 Statistical analysis and plotting

We used the R statistical programming language and the
ggplot2 R package for all statistical analyses and plots, respec-
tively (Thaka and Gentleman 1996; Wickham 2009).
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Figure 1. Molecular clock rate computed by BEAST for pH1 hemagglutinin and pN1 neuraminidase from the pH1N1 outbreak. In panel A, we show the molecular clock
rate over time for pH1, and in panel B, we show the molecular clock rate over time for pN1. The error bars represent the HPD 95 per cent of the mean, as reported by
BEAST. The plot shows a fourfold decline in the substitution rate estimates from single month of data to 25 months of aggregated data. Further, the molecular clock
HPD 95 per cent for the first 2 months of data, for both pH1 and pN1, does not overlap the final clock rate, indicating that these early estimates are in no way represen-

tative of the long-term estimates

2.6 Availability

All code and data used are freely available from the github reposi-
tory, https://github.com/wilkelab/influenza_pH1N1_timecourse.

3 Results
3.1 Brief history of pHIN1

The 2009 pandemic influenza (pH1N1) emerged in Mexico dur-
ing March and April of 2009 and spread across the globe within
weeks (Neumann, Noda, and Kawaoka 2009). Although the
most common seasonal influenza strain in 2009 was H3N2, a
descendant of the 1968 Hong Kong strain (Neumann, Noda,
and Kawaoka 2009), pHIN1 accounted for as much as 99 per
cent of the sub-typed, type A influenza infections after only a
single season. The pH1IN1 virus itself is thought to be a descen-
dant of the 1998 triple re-assortment H3N2 strain after mixing
with existing swine influenza strains (Neumann, Noda, and
Kawaoka 2009; Smith et al. 2009; Vijaykrishna et al. 2011).
Moreover, the two genes studied here, hemagglutinin and
neuraminidase, descended from two separate influenza line-
ages (Smith et al. 2009). The pH1 hemagglutinin gene origi-
nated in the classical swine strain that diverged early last
century from the human-infecting HIN1 virus, and the pN1
neuraminidase gene originated in the avian HIN1 lineage.
Thus, pH1IN1 represents a valuable study system for examin-
ing the evolution of two viral genes that had not adapted to
humans for nearly 100 years, and this influenza strain is there-
fore an effective and representative model for a rapidly
spreading infectious disease.

3.2 Over-estimation of molecular clock rate

We calculated the molecular clock rate for pH1 and pN1 for each
month in the outbreak from April 2009 to 2011, aggregating all
available data up to each respective month (Fig. 1). We found

that analyzing only the first month of data produced dramati-
cally inflated molecular clock rates; the rate was overestimated
roughly threefold for pH1 and fourfold for pN1. Upon adding the
second month of data, the clock rate for pH1 declined substan-
tially, and the pH1 clock rate converged to its long-term rate
only after 5-6 months of data were incorporated. Similarly, for
pN1, adding just 2-3 additional months of data to the first
month produced molecular clock rate estimates that were es-
sentially identical to the long term estimates. Thus, for influ-
enza, molecular clock estimates could be computed with
reasonable accuracy after approximately 4-6 months of se-
quence sample divergence. Note that for the remainder of this
study, we will use the term ‘accuracy’ to refer to the extent to
which any of the monthly estimates equal the long-term esti-
mate. Similarly, we will use the terms ‘reliability’ or ‘precision’
to refer to the extent to which any of the estimates have low er-
ror of estimation.

Importantly, the 95 per cent highest probability density
(HPD) intervals estimated 1-2 months after the start of the pan-
demic, although wide, did not include the long-term average
(Fig. 1). Thus, the inflated clock rates measured early in the out-
break seem to represent a systematic bias in the estimates, and
not simply high variance (i.e., low precision) resulting from a
small dataset.

3.3 Variability in the evolutionary rate ratio dN/dS

Although the molecular clock rate tells us the extent to which a
virus is accumulating changes in its DNA, it does not imply any-
thing about the rate of adaptation. Instead, adaptive evolution
is frequently inferred from the dN/dS rate ratio. Traditionally, a
value of dN/dS > 1 indicates positive selection, under the as-
sumption that an excess of non-synonymous changes is driven
by adaptation. (However, on the whole-gene level, one is un-
likely to observe dN/dS > 1 even under positive selection, be-
cause purifying selection across the entire gene tends to
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Figure 2. Whole-gene dN/dS estimates for pH1 hemagglutinin and pN1 neur-
aminidase. Each point represents the average dN/dS at the specified time point
for the pH1 (red points) and pN1 (blue points) genes. All of the dN/dS values were
calculated by maximum likelihood using HyPhy (Kosakovsky Pond, Frost, and
Muse 2005). For each gene, the first month yielded unpredictable, inaccurate dN/
dS estimates, but estimates from the data were systematically elevated between
months 2-8 for pH1 and 2-11 for pN1. After approximately 11 months for pH1
and 8 months for pN1, the mean dN/dS value largely converged to the long term
estimate obtained after 25 months

dominate the overall estimate to produce dN/dS < 1.) At short
timescales, there are relatively few observed sequence differ-
ences, and selection has not yet had sufficient time to purge
slightly deleterious mutations from the population. As a result,
sequence data from early in emerging outbreaks can either bias
the dN/dS rate ratio (Rocha et al. 2006; Kryazhimskiy and Plotkin
2008; Mugal, Wolf, and Kaj 2014) or make the dN/dS estimate
unreliable.

We inferred whole-gene dN/dS values for each monthly ag-
gregate of data (Fig. 2). For both pH1 and pN1, our estimates that
included only the first month of data were highly inaccurate,
where pH1 was substantially overestimated and pN1 was sub-
stantially underestimated. After this first month, variability in
monthly estimates leveled out, but, as had been the case for the
molecular clock, estimated dN/dS values continued to decrease
over time, until stabilizing after approximately 12 months. This
trend suggests that early estimates are inaccurate and biased
upwards with respect to long-term averages. In general,
even though short divergence times do tend to produce elevated
dN/dS values, exceedingly short time frames of 1 month may
yield largely imprecise estimates, due to lack of accumulated
variation (see also next subsection).

3.4 Distribution of site-wise dN/dS

We next analyzed how sample divergence time influenced site-
specific dN/dS estimates for pH1 and pN1. In Fig. 3, we show
how the sample divergence time influenced the overall distribu-
tion of site-wise dN/dS estimates for pH1 (Fig. 3A) and pN1
(Fig. 3B). Both genes displayed the same general trend. With
only a single month of data, the dN/dS distribution was unimo-
dal, centered around dN/dS = 1. As we considered increasingly
longer time windows, the mode around dN/dS =1 decayed,
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while a second mode near dN/dS = 0 arose and took up an in-
creasingly larger percentage of the data. At 25 months, the
mode around dN/dS =1 had almost completely disappeared
and the distribution consisted almost entirely of the mode near
dN/dS = 0. By comparison, the distribution of site-wise dN/dS for
all human H3 hemagglutinin sequences from 1991 to 2004
showed a completely unimodal distribution centered near
dN/dS =0 (Supplementary Fig. S1). Thus, the site-wise dN/dS
distribution had after 25 months largely, but not completely,
reached its final shape.

We investigated the origin of the mode at dN/dS =1 and
found that it could generally be traced to completely con-
served codon sites in the alignment. If a site has experienced
neither a synonymous nor a non-synonymous mutation, both
dN and dS are undefined. In this case, the maximum-likelihood
inference algorithm outputs the arbitrary starting value for
dN/dS of 1. More generally, for site-wise dN/dS estimates to be
reliable, the sequence alignment needs to be sufficiently di-
verged at each codon site. We estimated overall divergence by
counting the fraction of codon sites in each alignment that
had 1, 2, 3, etc. distinct codons, and plotted these fractions
over time (Fig. 4 and Supplementary Fig. S2). The fraction of
sites with one distinct codon corresponds to the sites that
have not experienced any mutations, while the fractions of
sites with two, three, etc. distinct codons correspond to the
sites that have undergone at least one, two, etc. mutations. We
found that the mode at dN/dS declined in proportion to the
number of completely conserved sites. At 5-6 months, approx-
imately 50 per cent of all sites were still completely conserved
in both proteins (Fig. 4 and Supplementary Fig. S2), and even
after 25 months, 16 out of 503 sites in hemagglutinin and 14
out of 387 sites in neuraminidase still did not show any evi-
dence of evolutionary divergence.

3.5 Effect of limited divergence on inferring important
regions of hemagglutinin and neuraminidase

We have previously shown that proximity to the sialic acid-
binding site in H3 hemagglutinin is one of the two best
predictors (the other being relative solvent accessibility [RSA])
of site-wise dN/dS (Meyer and Wilke 2015). More specifically, if
we calculate correlations between site-wise dN/dS and the
inverse distance to a reference site, then reference sites near
the sialic-acid binding region yield significant positive
correlations while reference sites away from the sialic-acid
binding region yield either no correlation or negative
correlations. Thus, sites closer to the sialic-acid binding region
tend to have higher dN/dS. By mapping these correlations onto
the protein structure, we can visualize this result as a heat map
that shows the sialic acid-binding region as the hottest region,
and sites progressively farther away from this reference are
proportionately colder (Meyer and Wilke 2015).

Assuming sufficient divergence for accurate site-wise esti-
mates of dN/dS, we expected to find a similar trend in both pH1
hemagglutinin and pN1 neuraminidase. In contrast to the re-
ceptor binding protein hemagglutinin, however, neuraminidase
is an enzyme with a functionally constrained chemical active
site. Therefore, we expected neuraminidase to display the oppo-
site trend from that of hemagglutinin: sites closer to the active
site of neuraminidase should appear colder, that is, more evolu-
tionarily conserved.

We found for both proteins that these expected trends
emerged with sufficient evolutionary divergence. For pH1, just
as for H3, sites closer to the sialic acid-binding site appeared
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roughly half of the sites were informative, although half still showed dN/dS = 1. Finally, after 25 months of divergence, the majority of sites had informative dN/dS val-

ues. Distributions for all months are shown in Supplementary Figures S3 and S4
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Figure 4. Fraction of alignment columns with distinct numbers of codons, plot-
ted over time for hemagglutinin. Alignment columns with 1 distinct codon are
completely conserved, while columns with two, three, etc. distinct codons have
experienced at least one, two, etc. mutations. At 6 months, approximately half
of all sites had not yet experienced a mutation, and even after 25 months, 16 out
of 503 sites in pH1 remained completely conserved

hotter on our maps (Fig. 5). Similarly, for pN1, sites nearer the
catalytic core were colder than the exposed surface (Fig. 6).
Moreover, we found that these trends stabilized after approxi-
mately 8-10 months for both proteins. The temporal develop-
ment of these geometric evolutionary constraints is also shown
in Supplementary Videos S1 and S2.

4 Discussion

Molecular evolutionary metrics, namely the molecular clock rate
(nucleotide substitution rate) and the dN/dS evolutionary rate ra-
tio, are widely used to infer the evolutionary dynamics of viruses.
With the uptake of rapid sequencing technologies, such evolu-
tionary estimates have found widespread use in tracking emerg-
ing epidemics. However, the underlying models used to infer
these metrics make a key assumption that genetic variation
arises solely from fixed differences among sequences, and the
influence of segregating mutations is ignored. Theoretical work
has demonstrated that this assumption produces biased or inac-
curate clock rate and dN/dS estimates at small divergence times
(Ho et al. 2005; Rocha et al. 2006; Ho et al. 2007; Kryazhimskiy and
Plotkin 2008; Peterson and Masel 2009; Ho et al. 2011; Mugal,
Wolf, and Kaj 2014). Importantly, during the initial stages of an
emerging infectious disease, viral sequences are separated al-
most exclusively by transient polymorphisms rather than fixed
differences, making evolutionary estimates unreliable. It is not
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Figure 5. Temporal development of geometric evolutionary constraints in hemagglutinin. The violin plots show the distribution of dN/dS-proximity correlations using
each possible site in the hemagglutinin protein as the reference point. The violin plot should be viewed as a horizontal histogram; thus, the wider the violin plot, the
higher the number of reference sites with that correlation. Underneath the violin plots, we map these correlations onto the protein structure at 4-month time intervals.
The hemagglutinin protein (PDB ID 1RD8) is shown in its native trimer structure, but the correlations are plotted onto just one of the monomers. The correlation pat-

tern stabilizes after approximately 8 months of divergence
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Figure 6. Temporal development of geometric evolutionary constraints in neuraminidase. The violin plots show the distribution of dN/dS-proximity correlations using
each possible site in the neuraminidase protein as the reference point. The violin plot should be viewed as a horizontal histogram; thus, the wider the violin plot, the
higher the number of reference sites with that correlation. Underneath the violin plots, we map these correlations onto the protein structure at 4-month time intervals.
The neuraminidase protein (PDB ID 3TI3) is shown in its native tetramer structure, but the correlations are plotted onto just one of the monomers. The correlation pat-

tern stabilizes after approximately 8 months of divergence

known, however, how much divergence time is required to ob-
tain accurate and reliable clock rate and dN/dS estimates.

We found that reasonably accurate measurements for each
metric could be obtained with 4-6 months of data for clock rate

and 8 months of data for dN/dS. Moreover, we found that site-
specific dN/dS values were largely uninformative during the first
6 months of the outbreak but started to become reliable for lon-
ger time windows. Our results provide empirical evidence of the
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theoretical predictions that short-time scales produce biased
and inaccurate estimates for both the molecular clock and dN/
dS. Since we obtained these results for influenza virus, which is
one of the most rapidly evolving viruses, it is possible that more
slowly evolving viruses will require substantially more time be-
fore estimates converge to their long-term values.

The pH1N1 influenza that swept the globe in 2009 is among
the most studied pandemics in history. Indeed, one of the most
widely cited early epidemic studies was performed on pHIN1
(Smith et al. 2009); in addition, there are several studies that are
narrower in scope (Rambaut and Holmes 2009; Furuse et al.
2010) but have comparable results to our own. For example, one
earlier study which included pHIN1 data from March 2009 to
May 2009 also used the molecular clock rate and whole-gene
dN/dS (Smith et al. 2009). In pH1, they found a similarly elevated
whole-gene dN/dS = 0.32 in the early epidemic and dN/dS = 0.21
in non-outbreak swine clades. By comparison, we found nearly
identical values for whole-gene dN/dS with the 1st month and
25th-fifth month of data, respectively. For neuraminidase,
previous work found dN/dS =0.26 during the initial outbreak
and dN/dS = 0.18 for the non-outbreak swine data. In contrast,
we found dN/dS = 0.135 for the first month and dN/dS = 0.175
for the 25th month. Thus, with the exception of the first month
of data for neuraminidase, our results are in excellent agree-
ment with prior work. It is unclear what caused the discrepancy
in the first month; however, estimates are highly unreliable
for these very short time scales, and minor differences in the
set of selected sequences may result in very different dN/dS
estimates.

In addition to the good agreement between the non-
outbreak and long-divergence-time pH1N1 dN/dS estimates, we
also found that our estimates of the molecular clock rate were
similar to earlier work (Rambaut and Holmes 2009; Smith et al.
2009; Hedge, Lycett, and Rambaut 2013). In particular, we used
essentially the same approach and data as did Hedge, Lycett,
and Rambaut (2013). In that study, the authors used whole-ge-
nome data to calculate, among other things, the molecular clock
rate of pHIN1. As with our analysis, the rate calculated in the
first month was very different from that of the rest of the out-
break. After the second month of sampling, they found a mean
clock rate of 3.93 x 1072 subst./site/year for the entire pHIN1 ge-
nome. Likewise, Hedge, Lycett, and Rambaut (2013) found a
slight decrease in clock rate and a narrowing of the HPD interval
as more data was added to the estimates. For comparison, with
2 years of data, we found a molecular clock rate of 5.2 x 1073
subst./site/year for hemagglutinin and 4.6 x 10> subst./site/
year for neuraminidase. Thus, both hemagglutinin and neur-
aminidase have higher mean molecular clock rates than the av-
erage of the pHIN1 genome; this is not surprising considering
the pressure these immune-exposed proteins should experi-
ence. In addition, our estimates were similar to those found ear-
lier for the immediately pre-outbreak reference from swine of
3.67 x 1072 subst/site/year for hemagglutinin and 3.65 x 1073
subst./site/year for neuraminidase. With 25 months of data, our
estimates for both hemagglutinin and neuraminidase were vir-
tually identical to the whole-genome estimate of 5.02 x 107>
subst./site/year with early pHIN1 data (Rambaut and Holmes
2009). Therefore, 25 months of data were sufficient to capture
the long-term evolutionary trends.

There are at least two distinct mechanisms that contribute
to inaccurate estimates of clock rates and dN/dS early in an out-
break. First, segregating polymorphisms lead to inflated esti-
mates for both quantities. This effect has been discussed
extensively in the literature (Ho et al. 2005; Rocha et al. 2006;

Ho et al. 2007; Kryazhimskiy and Plotkin 2008; Peterson and
Masel 2009; Ho et al. 2011; Mugal, Wolf, and Kaj 2014). Second,
limited sampling divergence results in estimates with low preci-
sion. When the total number of accumulated mutations is low,
it is simply not possible to obtain precise estimates of clock
rates or dN/dS, regardless of whether the observed mutations
are fixed substitutions or transient polymorphisms. This effect
will be more pronounced for per-site estimates than for whole-
gene estimates, but it can be present in either case. For the data
we analyzed here, limited sampling divergence was likely a ma-
jor contributing factor for the observed whole-gene estimates
for the first month of data. For the per-site estimates, on the
other hand, we needed 8-10 months of data to obtain reason-
ably precise estimates for a majority of sites.

What do our results imply for the practice of analyzing dis-
ease outbreaks as they occur? Although there is little doubt that
the molecular clock rate and whole-gene dN/dS are important
for understanding and quantifying emerging outbreaks, both
metrics by themselves provide relatively limited information
about a particular outbreak. In a given outbreak scenario, after
estimating these quantities, one has to assess what these esti-
mates mean, and in particular, whether any deviations from es-
timates obtained for past outbreaks reflect an actual biological
difference in the current outbreak or simply a biased or impre-
cise estimate due to limited sampling divergence and transient
polymorphisms. One possible approach towards answering this
question is to proceed as we have done here, by subdividing the
data into successively longer temporal intervals and assessing
whether estimates seem to converge to the long-term values.
However, this approach requires a large amount of sequence
data collected over a substantial time window.

Alternatively, one could attempt to internally verify that a
sufficient level of accumulated variation exists by investigating
whether or not the data fit an expected pattern. For example,
there are a number of structure-based constraints that guide
protein evolution. Various studies have shown that RSA,
weighted contact number, energy of mutation, and local pack-
ing density of sites can account for some portion of variation in
site-wise dN/dS for diverse proteins (Meyer and Wilke 2013;
Meyer, Dawson, and Wilke 2013; Huang et al. 2014; Shahmoradi
et al. 2014; Sikosek and Chan 2014; Yeh et al. 2014). Moreover, in
influenza specifically, it is known that proximity to the sialic
acid-binding site is a strong constraint on hemagglutinin evolu-
tion (Bush et al. 1999b; Hensley et al. 2009; Koel et al. 2013;
Meyer and Wilke 2015); in fact, a combined model with RSA and
proximity to the sialic acid-binding site performs similarly to a
cross-species comparison of site-wise dN/dS estimates (Meyer,
Dawson, and Wilke 2013; Meyer and Wilke 2015).

We showed here that, after 25 months of divergence, the
number of uninformative sites dropped to a sufficiently low
number, and the resultant site-wise estimates were sufficiently
accurate, to display the same proximity-based pattern as seen
in H3 hemagglutinin (Supplementary Fig. S1). For pH1, that pat-
tern started to emerge clearly in November of 2009 with 8
months of accumulated mutations. Moreover, this date could be
inferred from the distribution of site-wise dN/dS estimates; it is
the first month when substantially more sites are informative
than are uninformative (Supplementary Fig. S3). Likewise, for
pN1, we showed that a similar proximity metric can be used for
the enzyme active site. However, in the case of neuraminidase,
the active site was more constrained rather than less con-
strained, as was the case in hemagglutinin. This finding makes
sense intuitively, since enzymes must retain a functional active
site at all costs. Further, we found that the expected pattern
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began to emerge after the same 8-month interval, and again,
this interval could have been inferred based on the site-wise
dN/dS distribution (Supplementary Fig. S4). Therefore, we have
found that by inspecting the change in the distribution of site-
wise dN/dS estimates over time, we could identify the time point
at which site-wise estimates became reliable.

Supplementary data

Supplementary data is available at VEVOLU Journal online.
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