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Abstract

Information on global human movement patterns is central to spatial epidemiological models used to predict the behavior
of influenza and other infectious diseases. Yet it remains difficult to test which modes of dispersal drive pathogen spread at
various geographic scales using standard epidemiological data alone. Evolutionary analyses of pathogen genome
sequences increasingly provide insights into the spatial dynamics of influenza viruses, but to date they have largely
neglected the wealth of information on human mobility, mainly because no statistical framework exists within which viral
gene sequences and empirical data on host movement can be combined. Here, we address this problem by applying a
phylogeographic approach to elucidate the global spread of human influenza subtype H3N2 and assess its ability to predict
the spatial spread of human influenza A viruses worldwide. Using a framework that estimates the migration history of
human influenza while simultaneously testing and quantifying a range of potential predictive variables of spatial spread, we
show that the global dynamics of influenza H3N2 are driven by air passenger flows, whereas at more local scales spread is
also determined by processes that correlate with geographic distance. Our analyses further confirm a central role for
mainland China and Southeast Asia in maintaining a source population for global influenza diversity. By comparing model
output with the known pandemic expansion of H1N1 during 2009, we demonstrate that predictions of influenza spatial
spread are most accurate when data on human mobility and viral evolution are integrated. In conclusion, the global
dynamics of influenza viruses are best explained by combining human mobility data with the spatial information inherent in
sampled viral genomes. The integrated approach introduced here offers great potential for epidemiological surveillance
through phylogeographic reconstructions and for improving predictive models of disease control.
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Introduction

The emergence and worldwide dispersal of novel human

pathogens is increasingly challenging global public health [1].

Notable recent examples include novel influenza strains, severe

acute respiratory syndrome (SARS) virus and Methicillin-resistant

Staphylococcus aureus, which all exploit today’s complex and volumi-

nous transport networks to rapidly disseminate in a globalized

world. In the context of human infectious diseases, the worldwide

air transportation network is by far the best studied system of global

mobility [2]. Air travel likely drives the global circulation of seasonal

influenza A (H3N2) viruses [3], and may explain seasonal dyna-

mics in the absence of locally-persistent strains between epidemic

seasons. Retrospective modeling of the ‘Hong Kong flu’ H3N2

pandemic in 1968 indicates that the virus spread through a global

network of cities interconnected by air travel [4]. Numerous

modeling and simulation studies have subsequently explored the

potential influence of air travel on influenza virus spread, e.g. [5–8],
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but few have attempted to verify such models against underlying

empirical data on human movement patterns [9].

Two studies on the timing and rate of seasonal influenza

transmission across the United States of America (USA) highlight

the difficulty of using standard epidemiological data to disentangle

the relative contributions of different human transportation

systems to influenza spread. Using weekly time series of excess

mortality due to pneumonia and influenza (P&I), Viboud et al.

[9] demonstrated that the patterns of timing and incidence of

outbreaks across the continental USA are most strongly associated

with rates of movement of people to and from their workplaces,

and to a lesser extent with the distance between locations and

various measures of domestic transportation. In contrast, Brown-

stein et al. [10] concluded that the rate of inter-regional spread

and timing of influenza in the USA, as measured using weekly P&I

mortality statistics, is predicted by domestic airline travel volume

in November. These discordant findings generated significant

debate [11], especially in the context of a potential pandemic of

pathogenic influenza [12], which would require rapid decisions to

be made on the implementation of travel restrictions.

As a historical record of epidemic spread, viral genetic sequence

data may offer a valuable source of information for the empirical

verification of epidemiological models. Several studies have

demonstrated their utility and power, for example by revealing

the genetic dynamics of influenza A H3N2 seasonality [13] and the

spatial patterns of global H3N2 circulation [3,14]. More generally,

it is recognized that the genetic diversity of rapidly evolving viruses

like influenza should be analysed in a framework that unifies

evolutionary and ecological dynamics [15]. Current attempts to

reconstruct viral spread through time and space from genetic data,

however, typically fit parameter-rich models to sparse spatial data

and result in phylogeographic patterns that are difficult to relate

directly to underlying ecological processes [16]. Together with

potential sampling bias, this complicates phylogeographic tasks,

such as the characterization of source-sink dynamics in seasonal

influenza. It is therefore unsurprising that different studies on the

global circulation of H3N2 are sometimes inconsistent [3,14,17],

despite the importance of such work for influenza surveillance and

vaccine strain selection.

Here we use a model-based approach to explicitly tests spatial

epidemiological hypotheses by integrating empirical data on

human movement patterns with viral genetic data. This frame-

work enables us to measure the relative contribution of different

predictive variables to viral spatial spread. We apply this approach

to seasonal H3N2 dynamics and use it to identify key drivers of

the global dissemination of influenza viruses. Analysis of different

sampling schemes, including one that represents the community

structure in global air transportation, provides consistent support

for air travel governing the spatial dynamics of seasonal H3N2

infections. Using epidemiological simulations, we further demon-

strate that estimates resulting from the merger of human air travel

and H3N2 influenza genetics best capture the observed global

expansion of pandemic H1N1 influenza in 2009.

Methods

Sequence data
We complemented a previously collected hemagglutinin se-

quence data set, comprising 1,441 sequences sampled globally from

2002 to 2007 [3], with publicly available sequences sampled within

the same time interval. The allocation of the sequence data into 15

and 26 geographic regions as well as into 14 air communities is

described in detail in Supporting information Text S1.

Air transportation data and modularity maximization
The worldwide air transportation network is defined by a

passenger flux matrix that quantifies the number of passengers

traveling between each pair of airports. We use a dataset provided

by OAG (Official Airline Guide) Ltd. (http://www.oag.com),

containing 4,092 airports and the number of seats on scheduled

commercial flights between pairs of airports during the years 2004–

2006. We take the number of seats on scheduled commercial flights

from airport i to j to be proportional to the number of passengers

traveling.

To identify air transportation communities, we approximate a

maximal-modularity subdivision of the 1,227-largest-airport net-

work by employing a recently described stochastic Monte-Carlo

approach [18]. Modularity provides a measure of how well the

connectivity of a network is described by partitioning its nodes

into non-overlapping groups; for a definition we refer to [19].

For any given partition, modularity will be high if connectivity

within groups is high and connectivity among groups is low.

For large networks, a variety of methods have been introduced to

approximate their optimal subdivision. The method we employ

here generates an ensemble of high modularity subdivisions and

computes the consensus in this ensemble by superposition. For

further details we refer to [18,20] and in Text S1 we describe how

we incorporate subdivision uncertainty in our phylogeographic

approach.

Phylogeographic inference and hypothesis testing
We employ a novel approach to simultaneously reconstruct

spatiotemporal history and test the contribution of potential

predictors of spatial spread. The approach extends a recently

developed Bayesian method of phylogeographic inference [21]

into a generalized linear model (GLM), by parameterizing each

rate of among-location movement in the phylogeographic model

as a log linear function of various potential predictors. For each

predictor j, the GLM parameterization includes a coefficient

bj , which quantifies the contribution or effect size of the predictor

(in log space), and a binary indicator variable dj , that allows the

predictor to be included or excluded from the model. We estimate

the d variables using a Bayesian stochastic search variable selection

(BSSVS) [22,23], resulting in an estimate of the posterior inclusion

probability or support for each predictor. This approach uses the

data to select the explanatory variables and their effect sizes from

a pre-defined set of predictors that can explain the phylogenetic

history of among-location movement while simultaneously

Author Summary

What explains the geographic dispersal of emerging
pathogens? Reconstructions of evolutionary history from
pathogen gene sequences offer qualitative descriptions of
spatial spread, but current approaches are poorly
equipped to formally test and quantify the contribution
of different potential explanatory factors, such as human
mobility and demography. Here, we use a novel phylogeo-
graphic method to evaluate multiple potential predictors
of viral spread in human influenza dynamics. We identify
air travel as the predominant driver of global influenza
migration, whilst also revealing the contribution of other
mobility processes at more local scales. We demonstrate
the power of our inter-disciplinary approach by using it to
predict the global pandemic expansion of H1N1 influenza
in 2009. Our study highlights the importance of integrat-
ing evolutionary and ecological information when study-
ing the dynamics of infectious disease.
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reconstructing the ancestral locations in the evolutionary history.

In Text S1, we (i) provide more mathematical detail of the GLM

model, (ii) describe novel transition kernels for efficient statistical

inference, (iii) propose prior specifications and (iv) explain how

Bayes factors can be calculated for each predictor based on d
estimates. The method introduced here is implemented in the

BEAST software package [24].

The GLM approach offers many statistical advantages over

other approaches [25] in efficiently testing spatial hypotheses

(see Text S1 for a detailed comparative analysis). Commonly-

used Bayesian measures of model fit (such as marginal likelihood

estimation using the harmonic mean), which can be applied to

models with among-location movement rates fixed to a particular

predictor, have been shown to perform poorly [26–28]. Although

more accurate alternatives have recently been proposed [26–28],

they are computationally prohibitive on large data sets such as

those studied here. Importantly, the previous approach provides

only a relative ranking of different models and, unlike the GLM

model, cannot identify which of the top-ranked predictors need to

be jointly considered as explanatory variables. A further advantage

of the GLM approach is that in addition to providing a measure of

support for each predictor, it can also quantify the contribution

or effect size of each predictor by estimating the associated

coefficients (b).

For the spread of seasonal influenza, we consider several

potential predictors of global migration, including different log-

transformed measures of geographical distance, absolute latitude,

air transportation data, demographic and economic data, viral

surveillance data, antigenic evolution and sequence sample sizes

(described in more detail in Text S1). Text S1 also reports the

evolutionary and demographic models used in BEAST and

describes how phylogenetic uncertainty is approximated during

phylogeographic inference.

Phylogeographic movement events among locations are mod-

eled by a continuous-time Markov chain (CTMC) process along

each branch of the viral phylogeny. Although both the transitions

among locations (Markov jumps) and the waiting times between

transitions (Markov rewards) are not directly observed, posterior

expectations of these values can be efficiently computed [29,30].

Here, we implement posterior inference of the complete Markov

jump history through time in BEAST and use these estimates

to assess the source-sink dynamics of influenza and to evaluate the

predictive performance of phylogeographic models.

Comparing migration rate models using epidemiological
simulations

To compare the performance of different migration rate models

in predicting global pandemic spread, we simulate a stochastic

meta-population susceptible-infected-recovered (SIR) model with

n = 14 populations, matching the 14 air communities analyzed

in the phylogeographic model. The model tracks the number of

susceptible (S), infected (I) and recovered (R) individuals in each

population each day of the simulation. The simulations begin with

a single initial infection in Mexico on January 5th 2009 [31].

Infection spreads through mass-action within each population

according to the following epidemiological parameters. Popula-

tion-specific host population size is equal to human population

size (Text S1). Basic epidemiological parameters are based on

empirical estimates from H1N1: the duration of infection was

chosen as 3 days [31] and the basic reproductive number (R0) or

average number of secondary infections arising from a primary

infector during their infectious period in a completely susceptible

population was chosen as 1.3 [31]. This results in a transmission

rate b~0:433. Although estimates of R0 for pandemic H1N1 vary

across studies, the exact R0 value is unlikely to affect the

comparative simulations we perform as this is expected to equally

impact the overall expansion rate and not the relative migration

dynamics across populations. Force of infection lj within popu-

lation j scales with infected frequency across populations following

lj~
Pn

i~1 rijbIiSj=Nj , where the coupling coefficient rij repre-

sents the rate of contacts from population i to population j relative

to within-population contacts and rjj~1. Other pairwise coupling

coefficients are taken to be proportional to pairwise migration

estimates, so that rij~cmij , where mij is the air travel based or

phylogenetically estimated rate of migration from population i

to population j per year and parameter c is fitted to the data.

Parameter c is the only free parameter in this model and we set

this to the value that maximizes correspondence between simula-

tions and observations (see below). This ensures that we can use

phylogeographic migration rates as per capita migration rates in the

simulation model, despite their different scales. Compartments

are updated according to a t-leaping algorithm [32] with one-day

intervals.

Migration rates between populations in the SIR model are

defined according to four scenarios, as follows: (A) equal rates, (B)

rates proportional to the amount of air travel occurring between

them (in terms of the number of passengers moving from one

population to another), (C) rates proportional to Markov jump

estimates based on a standard phylogeographic model (undertaken

with and without BSSVS to reduce the number of rate parameters)

and (D) a GLM model that only considers air travel as a predictor.

To compare the spread of influenza under these simulated

models to recorded H1N1 pandemic spread, we measure the

relative correspondence between the mean peak times (across 100

simulations) and the observed peak times for all locations except

Mexico (based on World Health Organization data; Text S1).

Correspondence was measured using the Spearman’s rank

correlation coefficient, and tested with associated p-values obtained

using a permutation test (Text S1), as well as using the mean

average error (MAE; in days). We consider the Spearman’s rank

correlation coefficients to be more appropriate for our comparison

because they are more robust to outliers, which are clearly present

in the observed peaks. Therefore, the scaling of between-population

coupling c for the various migration matrices was also adjusted so as

to maximize Spearman’s rank correlation.

Results

Air travel governs the global spatial spread of
seasonal H3N2

To identify key factors in the seasonal dispersal of human

influenza viruses, we use a Bayesian model selection procedure to

estimate the phylogeographic history of H3N2 viruses sampled

worldwide between 2002 and 2007 (Text S1), while concurrently

evaluating the contribution of several potential predictors of spatial

spread. In addition to considering two geographic discretizations

of the available data, we also identify community structure in

global air travel by determining partitions with high intra-

community connectivity and low inter-community connectivity

(Methods). Although this approach is blind to the airports’

geographic locations, the 14 resulting global air communities

are spatially compact with few exceptions (Fig. 1). We find air

communities that are largely specific to Oceania, China, Japan,

Sub-Saharan Africa, Mexico and Canada. Madagascar, Réunion

and some Caribbean destinations are examples of exceptions

that are, as non-European locations, connected to a European air

community.

Unifying Viral Genetics and Human Mobility Data
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Our analysis reveals that many potential predictors of global

influenza virus spread are not associated with viral lineage

movement, specifically, geographical proximity, demography and

economic measures, antigenic divergence, epidemiological syn-

chronity and seasonality do not yield noticeable support (Fig. 2).

Instead, we find consistent and strong evidence that air passenger

flow is the dominant driver of the global dissemination of H3N2

influenza viruses. This is reflected in both the estimated size of the

effect of this variable (*1 on a log scale) and the statistical support

for its inclusion in the model (posterior probability .0.93

and Bayes factor .760). This effect size means that viral lineage

movement rates are about 15 times higher for connections with the

highest passenger flow compared to connections with the lowest

flow, controlling for all other predictors. The result is robust when

we repeat the analysis (i) using different partitions of sampling

locations (air communities and different geographic partitions,

Fig. 2), (ii) using different sequence sub-samples for the air

communities (Fig. S1), (iii) using the full data set or a small but

more balanced number of sub-samples (Fig. S2), and (iv) using a

more liberal prior specification on predictor inclusion (Fig. S3). We

down-sampled particular air communities or geographic regions

relative to their population sizes (Text S1), which still leaves

considerable heterogeneity in sample sizes, explaining why they

are included as an explanatory variable in the GLM model. Our

aim is not to demonstrate a role for sample sizes in phylogeog-

raphy, but by explicitly including them as predictive variables, we

raise the credibility that other predictors are not included in the

model because of sampling bias. We note that the sample size

predictors may in fact absorb some of the effect of air travel

because a GLM model that only considers passenger flux as a

predictor of H3N2 movement among the air communities results

in a higher mean effect of size of about 1.5.

To also explore spatial dynamics at smaller scales, we further

partition large geographical regions that are administratively

coherent, such as the USA, China, Japan and Australia, resulting

in 26 global sampling regions (Text S1). In this analysis, air travel

again predicts viral movement (posterior probability .0.99

and Bayes factor .18000), but the movement is also inversely

associated with geographical distance between locations (posterior

probability = 0.76 and Bayes factor = 87), and, less intuitively, with

origin and destination population densities (although the size of

the latter effects are weaker, Fig. 2). The negative association

of population density with viral movement may suggest that

commuting is less likely, per capita, to occur out of, or into, dense

subpopulations.

Unravelling source-sink dynamics
Although not the main focus of the current study, our integrated

approach also provides phylogeographic reconstructions that

offer insights into the global source-sink dynamics of human

influenza. The trunk or backbone of phylogenies reconstructed

from temporally-sampled hemagglutinin genes (Fig. 3) represents

the lineage that successfully persists from one epidemic year to the

next [14,33]. We determine the spatial history of this lineage

using Markov rewards in the posterior tree distribution, thereby

estimating the contribution of each location to the persistence of

the trunk lineage from 2002 to 2006 (Fig. 3). These estimates

provide strong support for mainland China as the principal H3N2

source population, occupying close to 60% of the trunk time in the

H3N2 phylogenies (Fig. 3), followed by Southeast Asia, which

comprises about 15% of the trunk time. We further examine

temporal heterogeneity in the source-sink process by combining a

summary of the estimated trunk location through time together

with an phylogenetic summary in Fig. 3, which suggests that

the above-mentioned proportions arose from the presence of the

trunk lineage in China during 2002 to mid 2003 and late 2004 to

2006, interrupted by a period when the virus appeared to have a

Southeast Asian H3N2 source. However, we cannot rule out the

Figure 1. 14 global air communities identified through a modularity maximization analyses of air transportation data. The colored
dots represent the airports in each community for which passenger flux data was used in the analysis. The areas with corresponding colors represent
the geographical area within the communities for which H3N2 sequence samples were available. The 14 communities and associated data are listed
in Text S1.
doi:10.1371/journal.ppat.1003932.g001

Unifying Viral Genetics and Human Mobility Data
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impact of temporal sampling heterogeneity on these estimates

because the Southeast Asian trunk dominance precedes a period

of higher sampling availability for Southeast Asia relative to

mainland China (Fig. 3). The important role of mainland China in

seeding the global seasonal spread of human influenza results in a

high net migration out of this air community (Fig. S4). However,

air communities that do not contribute significantly to the trunk

can also maintain high net outflow, in particular the USA, which

may be seeded by relatively few introductions each year whilst

exporting comparatively more viruses to other locations during the

epidemic season.

Viral evolutionary history combined with human mobility
predicts the pandemic spread of H1N1

In order to assess the extent to which evolutionary analyses such

as ours benefit from integrating host mobility data, we examine

their predictive performance by using them to predict the relative

timing of the geographic spread of the pandemic H1N1 influenza

variant that emerged in 2009. We conduct simulations of the

spread of a novel pathogen out of Mexico using an SIR model

whose transmission parameters are informed by epidemiological

estimates obtained for pandemic H1N1 [31] and whose spatial

spread is determined by one of four different migration rate

models, each defined by a different matrix of movement rates

among all pairs of locations (Methods). We measure the relative

correspondence between the simulated and observed H1N1

peaks for each location except Mexico using a Spearman’s rank

correlation coefficient (r) and mean absolute error (MAE; in

days)(Fig. 4).

An equal rates model (A), which does not express any migration

rate preference, results in a weak match (r~0:11, P = 0.73,

MAE = 40.9 days) between the simulations and the observed

spatial spread of H1N1 (Fig. 4), indicating that the population sizes

included in the SIR model for each region offer limited predictive

performance. As expected, adding information on the number

of airline passengers (model B) yields a large improvement in

correspondence between simulations and observations (r~0:61,

P = 0.03, MAE = 35.8 days). In contrast, a standard parameter-

rich phylogeographic model that is only informed by sequence

data and not air traffic information (model C) yields only part of

this improvement in predictive performance (r~0:47, P = 0.10,

MAE = 39.4 days). However, if inference under model C is made

more efficient by focusing on a small set of parameters (using

BSSVS, [21]; see Methods) then phylogeographic estimates yield

a predictive performance (r~0:62, P = 0.02, MAE = 36.4 days,

Fig. S5) that is close to that of the air travel model (B). Finally,

Figure 2. Predictors of global H3N2 diffusion among the 14 air communities and the 15 & 26 geographic locations. The inclusion
probabilities are defined by the indicator expectations E½d� because they reflect the frequency at which the predictor is included in the model and
therefore represent the support for the predictor. Indicator expectations corresponding to Bayes factor support values of 10 and 100 are represented
by a thin and thick vertical line respectively in these bar plots. The contribution of each predictor, when included in the model (bDd~1), where b is the
coefficient or effect size, is represented by the mean and credible intervals of the GLM coefficients on a log scale. NA1: no conditional effect size
available because the predictor was never included in the model. We tested different population size and density measures, different incidence-based
measures and different seasonal measures (Text S1), but only list the estimates for a representative predictor for the sake of clarity. The estimates for
the full set of predictors are summarized for each sub-sampled data set in Fig. S5. NA2: no indicator expectation or conditional effect size available
because the predictor was not available for this discretization of the sequence data.
doi:10.1371/journal.ppat.1003932.g002

Unifying Viral Genetics and Human Mobility Data
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the GLM model (D) predicts the observed spread of H1N1 more

accurately than all other models (r~0:82, P,0.01, MAE = 32.3),

suggesting that global influenza transmission is best predicted

by combining passenger flux data with the information on viral

lineage movement contained in sequence data. The simulations

generally correspond better with observed H1N1 peaks during the

initial period of pandemic expansion, while the epidemic peaks for

Russia and Africa occur significantly earlier in the simulations

than in reality. This is likely due to the multi-peaked character of

the regional epidemics (Text S1); the H1N1 virus spreads to most

Figure 3. Phylogeographic reconstruction and spatial history of the trunk lineage. Maximum clade credibility (MCC) tree colored
according to the time spent in the air communities as inferred by the GLM diffusion model. The tree represents one of the three different sub-
sampled data sets discretized according to the 14 air communities. Branches are colored according the Markov reward estimates for each location.
The uncertainty of these estimates is represented by superimposing an additional gray color proportional to the Shannon entropy of the Markov
reward values. The trunk lineage in the tree is represented by the thick upper branch path from the root to the nodes that represent the ancestors of
samples that are exclusively from December 2006. The total time spent in each location (in years) along the trunk between 2002 and 2006 is plotted
on the left of the tree. The trunk reward proportion for each location through time between 2002 and 2006 is summarized at the top of the tree.
Both the total trunk time and the trunk reward proportions through time are averaged over the three sub-sampled data sets. In the trunk
proportion through time plot, the number of Southeast Asian and Chinese samples are represented by a white full and dashed line respectively
(secondary Y-axis).
doi:10.1371/journal.ppat.1003932.g003

Unifying Viral Genetics and Human Mobility Data
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of the world during the first pandemic wave, whereas regions

like Russia and Africa appeared to miss the first wave entirely.

Seasonal effects that are unaccounted for by our simulation may at

least partly explain the outliers, but they affect the models we aim

to compare in a very similar way. Because of the outliers,

we consider the non-parametric Spearman’s r to be a more

appropriate measure of correspondence than the MAE, but they

are consistent in their model ranking. We note that absolute

prediction errors can be considerably improved by only consid-

ering the 9 air communities that peaked prior to September, 2009,

which returns a MAE of 11.2 day for the GLM model. However,

because of the difficulties in establishing initial waves and their

peaks, and the uncertainty in our epidemiological model, we

caution against more detailed interpretation of these simulations

beyond the general trends we extract here.

Discussion

The prevention and control of influenza at the global scale

relies critically on our understanding of its mode of geographical

dissemination. Here, we demonstrate that such dynamics are

most powerfully investigated by combining phylogeographic

history with empirical data on the patterns of human movement

worldwide. Our analysis strongly suggests that air travel is key

to global influenza spread, an intuitive result that has long

been predicted by modeling studies (e.g. [5]), but has, until now,

remained difficult to obtain from empirical data. The dominant

predictors of influenza spread will undoubtedly be scale-depen-

dent, as indicated here by the importance of geographic distance

as a predictor within more confined geographic areas (Fig. 2),

which may represent forms of human mobility other than air

travel, such as workplace commuting [9]. This indicates that

our statistical framework could also prove valuable in testing

hypotheses at smaller scales, where the underlying spatial processes

may be less obvious, provided adequate sequence and empirical

movement data are available. One of the limitations of the current

heterogeneous sampling of H3N2 sequences worldwide is that

geographic partitions need to be adjusted to account for the

number of samples per location, which results in regions of widely

different areas and population sizes. More representative sampling

across the globe, or within a more geographically confined area

of interest, will allow for more appropriate geographic parti-

tioning and may facilitate more detailed spatial hypothesis testing

based on the associated demographic and mobility measures.

In particular, if sequences were sampled appropriately then our

inference method could incorporate the rich geographic data that

is currently available as global gridded population data sets [34].

In addition, many of the predictors used here can be improved

in accuracy and resolution, for example by accounting for

seat occupancy and actual origin-destination flows in air traffic

passenger fluxes.

Due to the difficulties associated with geographic partitioning,

we used algorithms to optimally define communities in the global

air transportation network as an alternative strategy to specify

phylogeographic states, and subsequently show that our GLM

results are robust to the different partitions used. Because air

travel is a consistent and highly supported explanatory variable for

global influenza dispersal, communities within the air transporta-

tion network are likely to provide the most appropriate spatial

structuring of our data. However, in addition to the partitioning

itself, further research is also needed to select the appropriate

number of samples from the resulting regions to improve on ad hoc

down-sampling based on population size.

Although identifying the causes of pathogen spread is of great

importance in spatial epidemiology, integrating this information in

evolutionary models also offers major advantages for phylogeo-

graphic reconstructions and their relevance to infectious disease

surveillance and pandemic preparedness. By capturing a more

realistic process of spatial spread, our novel approach results in

more credible reconstructions of spatial evolutionary history,

which may shed further light on the persistence and migration

dynamics of human influenza viruses. Because of the importance

Figure 4. Correlation among observed H1N1 peaks and simulated peaks based on different migration rate models. The simulations
were performed using (A) an equal rate matrix, (B) a matrix of airline passengers flows, (C) standard phylogeographic estimates and (D) GLM
phylogeographic estimates only considering air travel as a predictor. Spearman rank correlations (r) and mean absolute error (MAE; in days)
considering all locations except for Mexico are provided for each comparison. The data points are colored according to the air communities
represented in Fig. 1. The dotted lines represent a 1-to-1 correspondence between observed peaks and simulated H1N1 peaks.
doi:10.1371/journal.ppat.1003932.g004
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of influenza dynamics for vaccine strain selection, different

phylogeographic reconstructions have attempted to characterize

the global population structure of the virus and have arrived at

somewhat mixed findings [3,14,17]. This may be explained by the

use of both different sampling and different methodology. The

data and methods used here corroborate the explorations of

antigenic and genetic divergence by [3] and demonstrate the

prominence of mainland China and Southeast Asia as locations of

trunk lineage persistence. Our findings are however based on

roughly the same genetic data, and our approach of inferring

the spatial history of the trunk lineage through Markov reward

estimates may be viewed as the more direct, statistical equivalent

of measuring strain location distance from the trunk [3]. Although

we find a strong signal for the presence of the trunk lineage in

mainland China and Southeast Asia, our analysis is restricted to

the period 2002 to 2006, and thus we make no conclusions

about the location of the trunk lineage outside of this period. The

degree of temporal stochasticity in the source location of seasonal

influenza and its heterogeneity among different influenza variants

has yet to be determined and requires datasets of longer duration.

Moreover, we suggest that analyses of future data sets that are

more comprehensively sampled through time will also benefit from

phylogeographic models that can accommodate temporal hetero-

geneity in movement rates. Such models may also improve the

performance of some explanatory variables. For example, in the

analysis presented here, we do not consider the absence of support

for seasonality as a predictor in our GLM model as evidence

against seasonality in H3N2 spread. Rather, it simply reflects the

difficulty in incorporating seasonality into a time-homogeneous

model of lineage movement. Developments are now underway

to appropriately accommodate heterogeneity in spatial spread

through time.

By using models to predict the observed global emergence of

pandemic H1N1, we demonstrate that an approach that integrates

passenger flux data with viral genetic data provides a more

accurate prediction of global epidemic spread than those which

include only one source of information. Although the prediction

improvement of the combined data over the passenger flux data

alone is not very large, it remains remarkable because we attempt

to predict the spatial expansion of an epidemic lineage (pandemic

H1N1) from the seasonal dynamics of another lineage (H3N2)

and because the main process underlying the global dispersal of

H3N2 influenza appears to be air travel itself. Passenger flux data

among pairs of locations is symmetric, thus it is possible that the

phylogeographic data is capable of capturing asymmetry in the

seasonal process of viral spread, which may also be important in

explaining the spatial expansion of pandemic H1N1. Investiga-

tions using more advanced simulation techniques, e.g. [35], may

be able to build upon the conceptual bridge between genetic

data and epidemiological modeling implied by our findings.

Future prediction efforts may also need to focus on alternative

scenarios of spatial spread, as highlighted by the recent emergence

of a novel avian influenza H7N9 lineage in China [36]. Should

this virus evolve sustained human-to-human transmissibility,

then airline-passenger data and flight routes from the outbreak

regions in particular, would be able to pinpoint worldwide regions

of immediate risk. If the virus remains restricted to avian hosts,

however, risk maps for the transmission of avian influenza viruses

(perhaps based on predictors calibrated against H5N1 avian

influenza) may help to target H7N9 surveillance and control

efforts. In conclusion, our framework is applicable to different

infectious diseases and provides new opportunities for explicitly

testing how host behavior and ecology shapes the spatial

distribution of pathogen genetic diversity.

Supporting Information

Dataset S1 XML example for running the GLM-diffu-
sion model in BEAST and associated empirical trees file.
The XML file, airCommunitiesMM_1.xml, specifies the data for

one of the air community subsets as well as the model and MCMC

settings. The empirical trees file required to run the analysis,

subset1.trees, contains a sample of 500 trees from the posterior

distribution of the sequence analysis.

(ZIP)

Figure S1 Predictors of global H3N2 diffusion among
the 14 air communities for three different sub-samples
of the sequence data. Each combination of inclusion

probability bar plot and corresponding coefficient plot represents

the GLM results for one of the three different sub-samples of

the H3N2 sequence data. These sub-samples were obtained by

randomly down-sampling the four locations with the highest

number of samples relative to their population size for each

sampling year. The inclusion probabilities are defined by the

indicator expectations E½d� because they reflect the frequency at

which the predictor is included in the model and therefore

represent the support for the predictor. Indicator expectations

corresponding to Bayes factor support values of 10 and 100

are represented by a thin and thick vertical line respectively in

these bar plots. The contribution of each predictor, when included

in the model (bDd~1), where b is the coefficient or effect size,

is represented by the mean and credible intervals of the GLM

coefficients on a log scale. If the inclusion probability is zero for a

predictor, no corresponding GLM coefficient is shown. We tested

different population size and density measures, different incidence-

based measures and different seasonal measures (Text S1), but

only list the estimates for a representative predictor for the sake of

clarity.

(PDF)

Figure S2 Predictors of global H3N2 diffusion among
the 14 air communities for the full data set and for
two different sub-samples with a balanced number of
sequences per location. Each combination of inclusion

probability bar plot and corresponding coefficient plot represents

the GLM results for the full data set (A) and the two different sub-

samples (B and C) of the H3N2 sequence data. These sub-samples

were obtained by randomly down-sampling 25 sequences from

locations for which the number samples available exceeded that

number. The inclusion probabilities are defined by the indicator

expectations E½d� because they reflect the frequency at which the

predictor is included in the model and therefore represent the

support for the predictor. Indicator expectations corresponding to

Bayes factor support values of 10 and 100 are represented by a

thin and thick vertical line respectively in these bar plots. The

contribution of each predictor, when included in the model

(bDd~1), where b is the coefficient or effect size, is represented

by the mean and credible intervals of the GLM coefficients on a

log scale. If the inclusion probability is zero for a predictor, no

corresponding GLM coefficient is shown. We tested different

population size and density measures, different incidence-based

measures and different seasonal measures (Text S1), but only list

the estimates for a representative predictor for the sake of clarity.

(PDF)

Figure S3 Predictors of global H3N2 diffusion among
the 14 air communities and the 15 & 26 geographic
locations using equal prior probability on the inclusion
and exclusion of each predictor. The inclusion probabilities

are defined by the indicator expectations E½d� because they reflect
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the frequency at which the predictor is included in the model and

therefore represent the support for the predictor. As opposed the

analysis reported in main manuscript (Fig. 2), which specifies a

prior probability of 0.019 on each predictor’s inclusion, we here

specify a prior probability of 0.5 on the inclusion of each predictor.

Indicator expectations corresponding to Bayes factor support

values of 3 and 20 are shown as a thin and thick vertical line

respectively in these bar plots. The contribution of each predictor,

when included in the model (bDd~1), where b is the coefficient or

effect size, is represented by the mean and credible intervals of the

GLM coefficients on a log scale. NA1: no conditional effect size

available because the effect was never included in the model. We

tested different population size and density measures, different

incidence-based measures and different seasonal measures (Text

S1), but only list the estimates for a representative predictor for the

sake of clarity. NA2: no indicator expectation or conditional effect

size available because the predictor was not available for this

discretization of the sequence data. A comparison with the analysis

reported in main manuscript (Fig. 2) indicates that our results are

robust to the prior specification for the inclusion probabilities; only

the scale of the Bayes factor support shifts to lower values because

of the higher prior odds (1:1 as opposed to 0.019:0.981) in this

case.

(PDF)

Figure S4 Net Markov jump counts for the 14 air
communities. For each air community, we summarize the

average net Markov jumps (jumps to - jumps from) and their 95%

credible intervals. The estimates are ordered from the lowest

(top; jumps to ,jumps from) to highest (bottom; jumps to .jumps

from) net jumps. The data points are colored according to the air

communities represented in Fig. 1 in the main text.

(PDF)

Figure S5 Correlation among observed H1N1 peaks
and simulated peaks based on the BSSVS estimates. The

Spearman rank correlation (r) and mean absolute error (MAE; in

days) for all locations except for Mexico is shown at the top left.

The data points are colored according to the air communities

represented in Fig. 1 in the main text.

(PDF)

Text S1 Additional materials & methods information
and evaluation of the GLM-diffusion approach on
empirical data. This supporting information text describes

additional information on the following topics: (i) sequence and

location data, (ii) incorporating uncertainty in air community

assignment, (iii) Bayesian statistical analysis of sequence and

trait evolution and (iv) comparing simulated spatial expansion

to recorded H1N1 pandemic data. In addition, we report on an

evaluation of the GLM-diffusion approach on empirical data. The

supporting information text refers to figures and tables included in

this text as Fig. S1, S2, S3, S4 or Table S1–S5 in Text S1, as well to

the additional supporting information Figures S1, S2, S3, S4, S5.

(PDF)
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