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1 Materials and Methods

1.1 Sequence and location data

We compiled 1441 hemagglutinin sequences with known date and location of sampling pre-
viously obtained by [1]. These sequences were sampled globally from 2002 to 2007 and
are representative of a larger sampling (13,000 isolates) used for antigenic analysis [1]. We
explored different spatial and air travel-assisted subdivisions with sub-sampling to exam-
ine the impact of discrete sampling allocation and sample numbers per locations on our
phylogeographic estimates. We note that sample sizes may strongly impact ancestral recon-
struction using phylogenetic diffusion models. Depending on the location-specific diversity,
over - and underrepresented locations may be more likely to be inferred as source/origin and
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Figure S 1: H3N2 sequence locations partitioned into 26 global geographic regions. When the
exact origin within a country was unknown, the sequence was mapped to the capital.

sink/destination locations respectively. The bias arising from such over - and underrepre-
sentation may be more pronounced when the overall sampling is sparse because the location
specific-diversity may be poorly captured in such cases. Although it may be useful to have
more samples available from locations in which a large viral diversity has been established,
which may for example help to establish its potential role as a source location, and this
would be the case for a random sample from the entire population of infections, it remains
difficult to assess to what extent convenient sampling reflects the underlying epidemiology.
In an attempt to include all sequence data while keeping the number of samples per location
as balanced as possible, we divided all the sequences into 26 geographic regions (Table S1
in Text S1) (Figure S1 in Text S1).

Since these spatial partitions sometimes required arbitrary subdivisions (e.g. breaking up
USA, China, Japan and Australia), we also reduce this spatial partitioning to 15 geographic
regions by joining regions from a single country (Table S2 in Text S1: Mideast Japan, Mid-
west Japan, Northeast Japan and Southwest Japan into Japan; East China, Midwest China,
South China and North China into China; Northeast USA, West USA, South USA and
Midwest USA into USA; and Northeast Australia, Northwest Australia and South Australia
into Australia). Within each sampling year, we randomly down-sampled the five locations
with the highest number of samples relative to their population size (USA: from 278 to 150;
Australia: from 166 to 30; New Zealand: from 59 to 20; Japan: from 341 to 75; South Ko-
rea: from 51 to 30) and analyzed three different sub-sampled data sets. We note that trying
to keep the number of samples per location as balanced as possible results in geographic
partitions of various sizes, and more comprehensive sampling may enable more appropriate
geographic partitioning in the future.

Because of the difficulties associated with geographic partitioning, we also identified
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Table S 1: Absolute latitude, (urban) population size, (urban) population density, H3N2
sequence sample sizes and antigenic residuals for 26 global geographic regions. Antigenic residual
estimates are described in section 1.3.2.

Region Absolute Population Population Urban population Urban population H3N2 Antigenic
latitude size density (people size density (people sample size residual

(degrees) per km2) associated airport)
Africa1 14.03 1.96E+08 26.67 6.56E+07 2.12E+06 10 -1.18
Canada2 50.67 3.23E+07 2.82 2.64E+07 8.50E+05 27 0.18
Europe 50.34 4.84E+08 96.18 2.80E+08 1.14E+06 80 -0.51
Indochina3 13.83 7.96E+07 114.72 1.22E+07 9.37E+05 59 -0.30
New Zealand 42.03 4.03E+06 14.89 3.24E+06 2.94E+05 59 0.07
Russia4 53.36 1.47E+08 7.86 5.31E+07 2.31E+06 24 -0.92
East China5 28.3 3.06E+08 453.29 5.83E+07 2.24E+06 56 0.57
Mexico 19.43 1.03E+08 52.49 5.60E+07 1.81E+06 10 0.19
Mideast Japan 35.71 4.54E+07 895.36 4.20E+07 2.10E+07 86 -0.03
Midwest China 29.82 3.08E+08 159.11 3.07E+07 2.36E+06 42 1.44
Midwest Japan 35.18 3.52E+07 573.15 2.75E+07 3.93E+06 80 -0.13
North China 40.27 1.24E+08 308.49 2.90E+07 4.84E+06 33 0.91
Northeast Australia 25.35 4.60E+06 2.42 4.06E+06 5.08E+05 79 -0.91
Northeast Japan 39.43 1.77E+07 108.6 1.36E+07 8.02E+05 82 -0.19
Northeast USA6 41.15 5.45E+07 129.59 3.74E+07 1.34E+06 48 0.64
Northwest Australia 24.72 2.15E+06 0.55 2.40E+06 1.20E+06 27 0.17
West USA6 40.34 3.20E+07 12.13 5.33E+07 1.18E+06 74 0.19
South America 15.73 3.12E+08 20.71 1.49E+08 1.71E+06 57 -0.57
West & South Asia7 27.17 1.28E+09 369.15 1.26E+08 4.06E+06 20 -2.33
South Australia 36.77 1.35E+07 6.48 1.29E+07 1.62E+06 60 -0.74
South China 22.33 1.02E+08 563.84 2.89E+07 3.21E+06 50 0.89
South Korea 36.17 4.73E+07 475.35 3.89E+07 3.89E+06 52 -0.08
Southeast Asia8 5.47 1.19E+08 169.04 5.43E+07 2.01E+06 58 0.19
South USA6 33.61 1.16E+08 51.59 5.48E+07 7.12E+05 104 0.50
Southwest Japan 34.02 2.51E+07 275.43 1.73E+07 9.59E+05 93 -0.36
Midwest USA6 42.02 5.30E+07 44.78 3.25E+07 7.23E+05 62 0.28

1 includes Algeria, Egypt, Madagascar, South Africa and Saudi Arabia
2 includes Canada and Alaska
3 includes Cambodia and Thailand
4 includes Russia and Mongolia
5 includes Taiwan
6 USA is partitioned according to the US census bureau regions
7 includes India, Nepal and Bangladesh
8 includes Philippines, Singapore, Malaysia and Guam

discrete air communities in the worldwide air transportation network and applied these as
location states to our sequence sample. To increase sequence numbers for under-sampled air
communities, we complemented the hemagglutinin gene sequences with publicly available
sequences from Africa (n = 21), USA (Hawaii, n = 4), Central America (n = 13), South
America (n = 46) and Canada (n = 10). From this data set, we removed six sequences that
appeared to be outliers in a root-to-tip divergence versus sampling time regression analysis,
resulting in a total of 1529 sequences. Within each sampling year, we randomly down-
sampled the four locations with the highest number of samples relative to their population
size (USA: from 318 to 120; Oceania: from 225 to 50; Japan: from 327 to 75; Southeast Asia:
from 175 to 100; Table S3 in Text S1) and analyzed three different sub-sampled data sets
discretized according to the 14 air communities. To asses the impact of sample sizes on the
diffusion predictor identification (see below), we also perform the analysis on the complete
data set on the one hand and the two randomly subsampled data sets on the other hand
for which we restrict the number of sequences per location to 25 (Fig. S2). These scenarios
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Table S 2: Absolute latitude, population size, population density, H3N2 sequence sample and
sub-sample sizes and antigenic residuals for 15 global geographic regions.

Region Absolute Population Population Urban population Urban population Agglomeration H3N2 Antigenic
latitude size density (people size density (people per Index sample size residual

(degrees) per km2) associated airport)
Africa 14.03 1.96E+08 26.67 65611208 2116491 59.2 10 -1.18
Canada 50.67 3.23E+07 2.82 26364443 850466 71 27 0.18
Europe 50.34 4.84E+08 96.18 279955859 1142677 62.5 80 -0.51
Indochina 13.83 7.96E+07 114.72 12180317 936947 30.85 59 -0.30
New Zealand 42.03 4.03E+06 14.89 3235714 294156 66 59/201 0.07
Russia 53.36 1.47E+08 7.86 53130040 2310002 63 24 -0.92
China 29.19 8.40E+08 263.06 146832329 2719117 36.2 181 0.92
Japan 36.01 1.23E+08 336.98 100388251 2281551 92.9 341/751 -0.18
Australia 29.38 2.02E+07 2.57 19400265 1077793 75.2 166/301 -0.70
USA 38.35 2.56E+08 39.37 178056518 913110 72.3 278/1501 0.39
Mexico 19.43 1.03E+08 52.49 55986623 1806020 66.7 10 0.19
South America 15.73 3.12E+08 20.71 149034939 1713045 60.37 58 -0.57
South Asia 27.17 1.28E+09 369.15 125459433 4181981 39.7 20 -2.33
South Korea 36.17 4.73E+07 475.35 38913352 3891335 89.6 51/301 -0.08
Southeast Asia 5.47 1.19E+08 169.04 54333014 2012334 75.03 58 0.19

1 Sample sizes are provided before/after down-sampling

represent more imbalanced and more balanced sample sizes respectively with respect to the
three sub-sampled data sets used throughout the main text.

Table S 3: Absolute latitude, (urban) population size, (urban) population density, agglomer-
ation index, H3N2 sequence sample and sub-sample sizes and antigenic residuals for 14 global
air communities.

Region Absolute Population Population Urban population Urban population Agglomeration H3N2 Antigenic
latitude size density (people size density (people per Index sample size residual

(degrees) per km2) associated airport)
Africa 22.27 8.03E+07 44.53 2.53E+07 2.53E+06 38.3 23 -0.93
USA 37.33 2.95E+08 32.21 2.51E+08 9.39E+05 72.3 318/1201 0.34
Taiwan2 25.04 2.28E+07 629.54 1.32E+07 1.46E+06 84.4 17 0.25
China 32.42 1.29E+09 134.88 1.62E+08 2.61E+06 36.2 122 0.88
Russia 55.6 1.44E+08 8.44 8.68E+07 1.61E+06 63 17 -1.05
Oceania 32.69 2.46E+07 3.06 2.27E+07 7.10E+05 49.83 225/501 -0.51
West & South Asia 27.61 1.38E+09 208.34 1.88E+08 3.24E+06 58.2 26 -0.11
Japan 36.03 1.28E+08 342.62 9.57E+07 2.08E+06 92.9 327/751 -0.22
Mexico 19.65 1.03E+08 52.49 5.84E+07 1.83E+06 66.7 12 0.46
South America 18.02 3.12E+08 20.71 1.35E+08 1.73E+06 62.9 101 -0.32
Canada 48.53 3.16E+07 3.17 2.60E+07 9.30E+05 71 24 0.11
Europe 48.44 4.84E+08 96.18 2.64E+08 1.11E+06 63.4 85 -0.58
Southeast Asia 15.27 2.06E+08 69.71 8.11E+07 1.62E+06 65.13 175/1001 0.10
South Korea 36.01 4.73E+07 475.35 3.92E+07 2.53E+06 89.6 46 -0.04

1 Sample sizes are provided before/after down-sampling
2 In the 26-region and 15-region geographic partitioning, the 17 Taiwanese sequences were included with East China and China

respectively.

1.2 Incorporating uncertainty in air community assignment

Using a generalization of the method introduced in [2], we identified highly modular par-
titions in the global air transportation network. For an ensemble of 1000 modularity sub-
divisions we quantify the uncertainty by an affinity matrix that, for each pair of locations,
summarizes the fraction of partitions in which these locations are in the same community.
Based on a partition encompassing a number of air communities (n = 14) that is in size close
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to the 15-geographic region partition, we subsequently obtain the average affinity for each
airport to the communities in this partition. We assign each airport to the community for
which it shows the highest average affinity, but we take into account its uncertainty by also
considering assignments that yield affinities that are > 2/3 of the highest affinity score. This
cut-off resulted in 771 ambiguous airport assignments. Finally, we partitioned the sequence
data according to the air community assignment and accommodate 368 (24%) ambiguous
sequence locations, i.e. those sequences related to airports with ambiguous community as-
signments, using ambiguity coding in our phylogeographic approach.

1.3 Bayesian statistical analysis of sequence and trait evolution

We integrate genetic, spatial and air transportation data within a single full probabilistic
evolutionary model and simultaneously estimate the parameters of phylogeographic diffu-
sion using Markov chain Monte Carlo (MCMC) analysis implemented in BEAST [3]. We
introduce a novel phylogenetic diffusion model and associated inference procedures in the
subsections below. To model sequence evolution, we partition the hemagglutinin codon posi-
tions into first+second and third positions [4] and apply a separate HKY85 [5] CTMC model
of nucleotide substitution with discrete gamma-distributed rate variation [6] to both. We
assume a flexible Bayesian skyride prior over the unknown phylogeny [7]. Exploratory runs
using the data for the 26 locations indicated that a relaxed molecular clock represented an
over-parametrization [8]. A strict clock was therefore used in subsequent analyses. Because
the exact date of sampling was not known for some additional publicly available sequences,
we integrated out their dates over the known sampling time interval [9]. We capitalize on
BEAGLE [10] in conjunction with BEAST to improve computational performance on our
large data sets. MCMC analyses were run sufficiently long to ensure stationarity as diag-
nosed using Tracer. We used the TreeAnnotator tool in BEAST to summarize trees in the
form of maximum clade credibility (MCC) trees. As part of the supporting information
files (Dataset S1), we make available an XML document specifying the data and analysis
settings for main analysis of the air communities, and the associated empirical trees required
to run the analysis (section 1.3.3). This includes accession numbers for all the sequences as
well as their sampling dates, the locations we assigned them to (section 1.1), the different
sub-samplings, the (GLM) model settings and the predictors (section 1.3.1 and 1.3.2).

1.3.1 GLM diffusion implementation and predictor support

Bayesian phylogeographic inference models discrete diffusion as a continuous-time Markov
chain process parameterized in terms of a K × K infinitesimal rate matrix Λ of discrete
location change with K representing the number of location states. The GLM diffusion model
extends this by adopting a generalized linear model (GLM) approach that takes an arbitrary
number P of predictors X = (x1, . . . ,xP ), where a single predictor xp is a flattened vector of
quantities corresponding to entries in the i to j rate matrix xp = (x1,2,p, . . . xK−1,K,p)

′
. The

GLM considers every instantaneous movement rate Λij for i 6= j in Λ as a log linear function
of the set of predictors X, such that:

log Λij = β1δ1xi,j,1 + β2δ2xi,j,2 + . . .+ βP δPxi,j,P , (1)
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where β = (β1, . . . , βP )
′

represent the effective sizes for the predictors, quantifying their
contribution to Λ, and (δ1, . . . , δP ) are (0,1)-indicator variables that govern the inclusion
or exclusion of the P predictors in the model. In constructing our predictors, we shift the
covariates to ensure positivity if needed (e.g. using a pseudo count for the passenger flux)
and subsequently log-transform them. We note that other transformations, e.g. from the
Box-Cox family, may also be explored in our framework. The incorporation of indicator
variables allows for Bayesian stochastic search variable selection (BSSVS) [11, 12], which
involves estimating the posterior probabilities of all 2P possible linear models that may
or may not include the predictors. When an indicator δp equals 1, then predictor xp is
included in the model, demonstrating that it helps to explain the diffusion process in the
phylogenetic history with high probability. We complete this GLM specification with variable
selection by assigning independent Bernoulli prior probability distributions on δp. We use
a small prior probability on each predictor’s inclusion that reflects a 50% prior probability
on no predictors being included, but specifying equal prior probability on each predictor’s
inclusion and exclusion yields highly similar results (Fig. S3). Lemey et al. [13] discuss
BSSVS in further detail and analogous to Edo-matas et al. [14], we can use Bayes factors
(BFs) [15, 16] to express how much the data change our prior opinion about the inclusion
of each predictor. These BFs are calculated by dividing the posterior odds for the inclusion
of a predictor with the corresponding prior odds, e.g. 0.019:0.981 prior odds for the analysis
of the 14 air communities and 15 geographic regions (Fig. 2 in the main manuscript), or 1:1
odds for the same analyses using equal prior probability for each predictor’s inclusion and
exclusion (Fig. S3):

BFp =
ppp

1− ppp

/
qpp

1− qpp

, (2)

where ppp is the posterior probability that predictor p is included, in this case the posterior
expectation of indicator δp, and qpp is the prior probability that δp = 1. The posterior
odds follows immediately from the marginal posterior probability that a predictor indicator
equals 1, estimated through the posterior expectation of the predictor indicator. We specify
that a priori all βp are independent and normally distributed with mean 0 and a relatively
large variance of 4, which still ensures adequate mixing. We implement the GLM-diffusion
parametrization in the software package BEAST [3] and approximate the joint posterior
and its marginalizations using standard Markov chain Monte Carlo (MCMC) transition
kernels. Similar to recent advances in phylogeographic inference in continuous space [17],
we integrate out discrete location states at internal nodes in the trees but draw stochastic
realizations of the node states when logging the trees. An important, novel extension to the
standard MCMC machinery in BEAST lies in generating an efficient Metropolis-Hastings
proposal distribution for the GLM coefficients β. Given the potential for high correlation
between predictors X, attempting to update one coefficient βp at a time while holding the
remaining coefficients constant returns high autocorrelations times. Instead, we exploit the
fixed correlation structure X′X between predictors to generate a multivariate proposal β?.
In particular, if we assume β are the current realized values, then we draw

β? ∼ Multivariate-Normal
(
β, α (X′X)

−1
)
, (3)
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where α is an auto-tunable variance scalar. Motivation for this proposal stems from imag-
ining that the marginal posterior distribution of β under our phylogenetic GLM should
partially approximate a simple linear regression model involving β, whose posterior variance
is proportional to X′X. We note that colinearity among explanatory variables is not allowed
because this would make the X′X singular and not invertible. We capture the numerical
exception that our transition kernel for the regression coefficients would throw in this case,
which will inform the user about colinearity issues. We consider a ‘bit-flip’ operator on the
Bernoulli rate indicators; this transition kernel is further discussed in [18].

1.3.2 GLM diffusion predictors

Depending on the location state partitioning scheme, we considered several potential predic-
tors of global influenza diffusion in the GLM diffusion model:

• Average and minimum distance. To test whether geographical proximity predicts
influenza diffusion we considered two different great-circle distance measures: (i) the
average distance between two locations based on the pairwise distances between all
pairs of airports from the two locations and (ii) the minimum distance amongst those
pairwise distances.

• Absolute latitude. Absolute latitudes for each region/community were calculated
as the absolute values of the average latitudes of the sequence sampling locations (Se-
quences from unknown locations within specific countries were assigned to the capital
of that country) and are listed in Table S1, S2 and S3 in Text S1.

• Passenger flux. The total number of seats on flights between each pair of locations
per day. In addition, we also include a separate origin and destination predictor that
summarizes the total air flux within each air community or geographic regions, thus
representing the within-location air connectivity. Although the passenger flux data
does not account for variations in passenger occupancy, the seat-based predictors are
expected to be fairly robust to this because the variation in actual fluxes across the
links in the air transportation network are orders of magnitude higher than variations
between occupancy and seat numbers. Because passenger flux does not differ in a
statistically significant manner from symmetry in the global air transportation network
[19], we consider flows that were symmetrized.

• Population size and density. Population size estimates for 2005, or interpolated
for 2005 based on data close to this year, were obtained from Geographica [20] or
www.citypopulation.de (listed in Table S1, S2 and S3 in Text S1). In addition to
general population sizes/densities, we also consider urban population sizes for the air
communities/geographic regions based on airport-associated cities. For this purpose,
we downloaded population sizes for all cities with a population exceeding 15000 (down-
loaded from the GeoNames geographical database: www.geonames.org) and associated
them with the closest airport from the 1227-largest-airport network (that represents
95% of the passenger flux) within a 75 km radius. We subsequently aggregated all
these airport associated population sizes for each air community or geographic area in
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which the airports are located and also included these as potential predictors in the
model. This measure does not appear to be very sensitive to the radius threshold we
use to associate cities with airports because a radius of 200 km results in numbers that
highly correlate with the urban population sizes we used (r > 0.97). As an urban pop-
ulation density measure that accounts for the number of airports these population sizes
are distributed over, we also considered a predictor that divides the airport-associated
urban population sizes by the number of airports to which they were assigned in each
air community/geographic region. Both the urban population sizes and densities are
also listed in Table S1, S2 and S3 in Text S1. We report the GLM estimates for the
general population sizes and densities (Fig. 2 in the main manuscript and Fig. S3), but
list the estimates for the full set of predictors for each sub-sampled data set in Fig. S1.
In addition, we report estimates for the full set of predictors for the complete data set
and for two random sub-samples that include a maximum of 25 sequences per location
for the air communities (Fig. S2).

To include a measure of population clustering, we also incorporated an ‘agglomeration
Index (AI)’, which is based on population density, population of large urban centers
(>50,000 people) and travel time to that urban center [21]. This was included for the
analysis of the 14-air community and 15-location geographic partitions (Table S2 and
S3 in Text S1), but the level of detail was not available for the 26-location geographic
partitions. For air communities or geographic regions for which sequences were avail-
able for a limited number of countries, we summarized average (urban) population
sizes, densities and AIs based on only these countries. All demographic measures were
included as separate origin and destination predictors.

• Economic data – Gross domestic product (GDP). We construct predictors based
on GDP data collected for the year 2004 from the World Bank (data.worldbank.org/) If
data was not available from this resource, we resorted to GeoHive (http://www.geohive.com)
to complement it. Analogous to the demographic measures, we obtain GDP averages
from countries for which sequence samples were available in case we only had sam-
ples available for only a limited number of countries per air community or geographic
region. Analogous to the AIs, the GDP was available for the 14-air community and 15-
location geographic partitions, but not to the level of detail required for the 26-location
geographic partitions.

• Viral surveillance data. To test the predictive power of viral surveillance data, we
essentially aimed at capturing the nature and degree of synchronicity of yearly incidence
profiles in each air community/geographic region. To this purpose, we extracted the
number of influenza viruses A(H3) detected per country from week 1 in 1997 to week 45
in 2010 from FluNet/WHO (www.who.int/flunet) for relevant countries in the 14-air
community and 15-region geographic partition schemes. The level of detail retired for
the 26-region geographic partition scheme was not available. Taiwanese surveillance
data was obtained from [22]. We focused on the influenza A(H3) incidence counts
between 2002 and 2007 or as close as possible to this time period when insufficient data
was available. Average incidence counts were used when data from multiple countries
per region/community was available. We subsequently calculated average incidences
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Figure S 2: H3 incidence profiles for the 14 air communities based on both raw and smoothed,
normalized, weekly average counts for relevant countries in the air communities. For the following
regions we include data from specific countries: Africa (South Africa), Oceania (Australia), South & West
Asia (Bangladesh and India), South America (Argentina, Brazil, Chile, Ecuador, Paraguay, French Guiana,
Peru, Uruguay and Venezuela), Europe (Bulgaria, Croatia, Czech Republic, Denmark, Finland, France,
Germany, Greece, Iceland, Ireland, Italy, Latvia, Netherlands, Norway, Romania, Slovenia, Spain, Sweden,
Switzerland, Turkey, Ukraine, UK and Ireland,) and Southeast Asia (Malaysia, Philippines, Singapore and
Thailand).

per week across multiple years for each region/community, normalized these weekly
averages and smoothed them with a Gaussian standard deviation of 2 weeks. Fig. S2
in Text S1 depicts the resulting incidence profiles for the 14 air communities.

We derived several potential predictors from these incidence profiles, including inci-
dence overlap, origin incidence versus destination growth rate, peak time difference,
and incidence in the origin location at fixed times prior to peak incidence in the des-
tination location. The incidence overlap summarizes the overlapping area under the
origin-destination incidence curves for each pair of locations. The origin incidence
versus destination growth rate sums the product of origin incidence and destination
growth rate for each week of the year. Peak time difference quantifies the difference
in peak incidence for each origin-destination pair. For the latter, we summarized the
donor incidences at 4, 8, 12, 16, 20 and 24 weeks prior to peak incidence in the destina-
tion location as potential predictors. We report the GLM estimates for the incidence
overlap (Fig. 2 in the main manuscript and Fig. S3), which serves as a representative
predictor for all incidence-derived measures. The estimates for the full set of predic-
tors are summarized for each of the three sub-sampled data set in Fig. S1 and for the
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complete data set and two smaller but more balanced sub-samples in Fig. S2.

In addition to including measures of synchronicity in epidemic profiles between pairs
of locations, we also attempted to capture the seasonality of each air of the 14 air
communities and 15 geographic partitions. In particular, we consider the origin and
destination seasonal entropy, which is the degree of entropy in weekly incidence across
the year for the origin/destination region. In this case, flatter distributions (like China,
Taiwan and Southeast Asia) have larger entropies. As an alternative, we consider a
predictor that quantifies the number weeks out of the year that have standardized
incidence greater than the median incidence (‘origin and destination above-median
incidence’).

• Antigenic evolution. Because antigenic evolution can provide insights into the seed-
ing dynamics of seasonal H3N2 [1], we sought to include the average antigenic diver-
gence for each region as phylogeographic diffusion predictors. Based on the available
antigenic cartography data for the strains in our phylogeographic analyses, we per-
formed a local regression (LOESS) of the principle antigenic component, obtained from
a multidimensional scaling analysis of hemagglutination inhibition assay measurements
[1], against time. The resulting scatter plot with strains colored according to air com-
munity is presented in Fig. S3 in Text S1. Distances from the spline (residuals) were
calculated for each antigenic measurement and average residuals were obtained for each
region/community, which reflects whether a location is on average antigenically leading
or trailing [1]. These average residuals are listed in Table S1, S2 and S3 in Text S1. We
considered the exponentiated residual and exponentiated negative residual as a mea-
sure of efflux and influx respectively for each location and included these as separate
origin and destination predictors.

• Sample sizes. To test the impact of sampling effects, we considered origin and des-
tination sample sizes (number of H3N2 sequences included per discrete location state
in the phylogeographic analysis) as separate predictors. Although sampling sizes are
expected to have an impact on the number of location transitions, support for other
factors in addition to sampling size predictors may suggest that they are robust to
potential sampling biases.

In constructing predictors, we log-transform all strictly positive quantities and then stan-
dardized all predictors to have a mean of 0 and a variance of 1 before their incorporation in
the GLM approach. Standardization facilitates prior specification and BSSVS.

1.3.3 Fitting diffusion models to empirical tree distributions

Although we generally desire to simultaneously reconstruct sequence and discrete/continuous
trait evolution using our Bayesian statistical framework, integrating over tree-space becomes
a computationally daunting task for a large number of taxa. The main limiting factor
in Bayesian analysis of evolutionary history is typically the efficiency with which topology
proposals explore phylogenetic tree space [23]. To side-step these limitations, we seek to
approximate phylogenetic uncertainty in our phylogeographic estimates in cases where sam-
pling from tree space needs to be performed repeatedly (e.g. when comparing different
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Figure S 3: Scatter plot with local regression (LOESS) fit for the first principle component
(PC1) of the H3N2 antigenic measurements against time. Antigenic PC1 data points are colored
according to the air communities represented in Fig. 1 in the main manuscript.

diffusion models). To this purpose, we follow [24] and implement a transition kernel that
randomly draws from an empirical posterior distribution of trees which, in our case, were
solely inferred from sequence data. Because the likelihood of a tree topology will largely be
dominated by an informative sequence alignment compared to a single discrete (location)
site, we expect such an empirical approach will closely approximate the phylogenetic uncer-
tainty in the joint inference approach. We provide an example empirical tree set for one of
the subsampled air community data sets in Dataset S1.

1.4 Comparing simulated spatial expansion to recorded H1N1 pan-
demic data

Based on the numbers of pandemic H1N1 isolates detected per week per country during 2009,
downloaded from the World Health Organization database FluNet (www.who.int/flunet),
we combine time series between countries to estimate regional patterns. To control for
sampling intensity, detection counts are adjusted so that the total number of isolates is
equal between countries. The resulting counts are further adjusted by scaling in proportion
to the population size of each country. The estimates for each region are only marginally
affected by these adjustments (moving the initial epidemic peak by at most one week). To
control for week-to-week stochastic variation in sampling intensity, we smooth each regional
distribution using kernel density estimation with a Gaussian kernel and a 10-day bandwidth.
The resulting time series often show multiple distinct peaks, with many temperate regions
showing a smaller summer peak and a later more-severe fall peak (Fig. S4 in Text S1). We
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are primarily interested in the initial spread of the pandemic and so take the timing of the
initial peak as an indication of the rate and pattern of geographic spread.

We run simulations for different migration matrices and compare simulated epidemic
peaks to observed initial peaks in the FluNet data (Fig. 4 in the main text for simulations
using an equal rate matrix, air travel data, standard phylogeographic estimates and GLM
estimates respectively, and Fig. S5 for simulations using a migration matrix estimated by
BSSVS). We calculate the peak incidence of each regional epidemic across 100 simulations,
yielding a mean and 95% range for the timing of each peak in each region, and measure the
relative correspondence between the mean peak times and the observed peak times for all
locations except Mexico using the Spearman’s rank correlation coefficient. The significance
test takes the mean peak times across the simulations and the mean observed peak times,
and then randomly permutates their values across the regions to assess in what frequency
we get more extreme Spearman rank correlations than the original correlation value.

2 Evaluation of the GLM-difussion approach on em-

pirical data

As a validation, we test the GLM extension of the discrete diffusion model by simultaneously
inferring the phylogeographic history of dog rabies viruses in Morocco and identifying the
factors driving their dispersal based on a previously published data set [25]. The original
study evaluated several potential predictors of dog rabies dispersal by fixing the parameters
of the discrete rate matrix and independently fitting different models to the joint sequence
and spatial data. Model-fit, as assessed using a harmonic mean estimator (HME) of the
marginal likelihood, indicated that road distances were the best predictors of rabies diffusion
in Morocco [25]. Considering the large variance and poor repeatability of the HME (see e.g.
[26]) and most importantly the fact that the HME systematically overestimates the marginal
likelihood [27], it remains difficult to unambiguously reject competing hypotheses (such as
geographic distances, which were less than one ln likelihood unit different from the best
fitting model).

Table S 4: Model-fit for different predictors of dog rabies diffusion in Morocco. The best-fitting
model according to each model comparison approach is indicated in bold.

Fitting (1) Fitting (2)

Predictor HME rank AICM rank PS rank SSS rank HME rank AICM rank PS rank SSS rank
Equal rates -10220.8 (4) 20714.4 (4) -10823.3 (4) -10824.6 (4) -10220.2 (4) 20715.8 (4) -10822.5 (4) -10823.7 (4)
Great circle distances -10199.8 (1) 20664.3 (1) -10810.5 (2) -10811.9 (2) -10201.4 (2) 20684.9 (2) -10803.9 (2) -10805.2 (2)
Population sizes -10281.8 (6) 20859.9 (6) -10886.6 (6) -10888.0 (6) -10281.3 (6) 20845.1 (6) -10882.4 (6) -10883.8 (6)
Gravity model -10287.9 (7) 20865.2 (7) -10897.7 (7) -10899.0 (7) -10287.9 (7) 20865.7 (7) -10895.3 (7) -10896.6 (7)
Population surface -10235.9 (5) 20746.2 (5) -10842.7 (5) -10844.1 (5) -10238.9 (5) 20749.5 (5) -10827.6 (5) -10829.2 (5)
Road distances -10200.4 (2) 20677.2 (2) -10809.2 (1) -10810.5 (1) -10199.3 (1) 20670.3 (1) -10799.1 (1) -10800.4 (1)
Accessibility -10214.3 (3) 20701.8 (3) -10822.2 (3) -10823.5 (3) -10215.4 (3) 20703.1 (3) -10816.0 (3) -10817.3 (3)

Here we compare our GLM-diffusion model with different marginal likelihood estimators
including the HME and recent BEAST implementations of path sampling (PS), stepping
stone sampling (SS) [28, 29, 30, 27, 31], as well as the Akaike’s information criterion through
MCMC (AICM,[28, 32]). Table S4 lists the marginal likelihood estimates for rates fixed
to equal values, inverse distances, the product of origin and destination population sizes
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Figure S 4: Regional time series of pandemic H1N1 isolations during 2009. Shown are the entire
distributions of isolations as black lines and the initial peaks as colored points. Regions are ordered based
on the occurrence of these initial peaks.
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Table S 5: Predictors of dog rabies diffusion in Morocco. Bayes factors formalize the support for
the predictor whereas the conditional effect sizes (on log scale) reflect the contribution of the predictor when
they are included in the model.

Predictor Bayes Factor Conditional Effect size
Distance 0.51 -0.15 (-1.58, 2.01)
Donor population size 0.07 -0.09 (-0.37, 0.16)
Recipient population size 0.05 0.08 (-0.16, 0.25)
Population surface 0.45 -0.45 (-0.94, -0.04)
Road distances 6.64 -1.37 (-2.86, -0.69)
Accessibility 0.09 -0.16 (-0.57, 0.21)

(human population sizes as a proxy for dog population sizes), the product of origin and
destination population sizes divided by geographic distance (the so-called gravity model),
inverse population surface distances, inverse road distances and accessibility estimates [25].
Two independent analyses were performed to assess the variability of the different estimators.
The two runs for PS and SS consistently favored road distance over the other predictors while
the HME and AICM preferred either road or geographic distance. Formal evaluation of these
model comparison approaches has recently shown that both PS and SS are more reliable
and more consistent than the HME and the AICM [28, 29, 30]. Nevertheless, substituting
marginal likelihood estimates between the two runs for some predictors could yield a different
PS or SS ranking of the models indicating that unambiguous model selection remains difficult.

When applying the GLM-diffusion model, we do not consider equal rates because the
model can default to this scenario when no predictors are included. We also do not ex-
plicitly construct a product of origin and population sizes nor a gravity model because the
GLM approach can invoke these by simultaneously including the individual predictors (ori-
gin population size, destination population size and distance). The GLM-diffusion results in
Table S 5 indicate that only road distances are supported (BF= 6.64) as a predictor with
a mean conditional effect size of about −1.37 on a log scale and credible intervals that do
not include zero. In conclusion, the GLM-diffusion model is consistent with state-of-the-art
marginal likelihood estimators and direct support for predictors allows more robust model
selection when comparing similar models.
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