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Abstract Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic virus from

camels causing significant mortality and morbidity in humans in the Arabian Peninsula. The

epidemiology of the virus remains poorly understood, and while case-based and

seroepidemiological studies have been employed extensively throughout the epidemic, viral

sequence data have not been utilised to their full potential. Here, we use existing MERS-CoV

sequence data to explore its phylodynamics in two of its known major hosts, humans and camels.

We employ structured coalescent models to show that long-term MERS-CoV evolution occurs

exclusively in camels, whereas humans act as a transient, and ultimately terminal host. By analysing

the distribution of human outbreak cluster sizes and zoonotic introduction times, we show that

human outbreaks in the Arabian peninsula are driven by seasonally varying zoonotic transfer of

viruses from camels. Without heretofore unseen evolution of host tropism, MERS-CoV is unlikely to

become endemic in humans.

DOI: https://doi.org/10.7554/eLife.31257.001

Introduction
Middle East respiratory syndrome coronavirus (MERS-CoV), endemic in camels in the Arabian Penin-

sula, is the causative agent of zoonotic infections and limited outbreaks in humans. The virus, first

discovered in 2012 (Zaki et al., 2012; van Boheemen et al., 2012), has caused more than 2000

infections and over 700 deaths, according to the World Health Organization (WHO) (World Health

Organization, 2017). Its epidemiology remains obscure, largely because infections are observed

among the most severely affected individuals, such as older males with comorbidities (Assiri et al.,

2013a; WHO MERS-Cov Research Group, 2013). While contact with camels is often reported,

other patients do not recall contact with any livestock, suggesting an unobserved community contri-

bution to the outbreak (WHO MERS-Cov Research Group, 2013). Previous studies on MERS-CoV

epidemiology have used serology to identify factors associated with MERS-CoV exposure in poten-

tial risk groups (Reusken et al., 2015; Reusken et al., 2013). Such data have shown high seropreva-

lence in camels (Müller et al., 2014; Corman et al., 2014; Chu et al., 2014; Reusken et al., 2013;

Reusken et al., 2014) and evidence of contact with MERS-CoV in workers with occupational expo-

sure to camels (Reusken et al., 2015; Müller et al., 2015). Separately, epidemiological modelling

approaches have been used to look at incidence reports through time, space and across hosts

(Cauchemez et al., 2016).

Although such epidemiological approaches yield important clues about exposure patterns and

potential for larger outbreaks, much inevitably remains opaque to such approaches due to difficul-

ties in linking cases into transmission clusters in the absence of detailed information. Where

sequence data are relatively cheap to produce, genomic epidemiological approaches can fill this crit-

ical gap in outbreak scenarios (Liu et al., 2013; Gire et al., 2014; Grubaugh et al., 2017). These
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data often yield a highly detailed picture of an epidemic when complete genome sequencing is per-

formed consistently and appropriate metadata collected (Dudas et al., 2017). Sequence data can

help discriminate between multiple and single source scenarios (Gire et al., 2014; Quick et al.,

2015), which are fundamental to quantifying risk (Grubaugh et al., 2017). Sequencing MERS-CoV

has been performed as part of initial attempts to link human infections with the camel reservoir

(Memish et al., 2014), nosocomial outbreak investigations (Assiri et al., 2013b) and routine surveil-

lance (Wernery et al., 2015). A large portion of MERS-CoV sequences come from outbreaks within

hospitals, where sequence data have been used to determine whether infections were isolated intro-

ductions or were part of a larger hospital-associated outbreak (Fagbo et al., 2015). Similar studies

on MERS-CoV have taken place at broader geographic scales, such as cities (Cotten et al., 2013).

It is widely accepted that recorded human MERS-CoV infections are a result of at least several

introductions of the virus into humans (Cotten et al., 2013) and that contact with camels is a major

risk factor for developing MERS, per WHO guidelines (World Health Organization, 2016). Previous

studies attempting to quantify the actual number of spillover infections have either relied on case-

based epidemiological approaches (Cauchemez et al., 2016) or employed methods agnostic to sig-

nals of population structure within sequence data (Zhang et al., 2016). Here, we use a dataset of

eLife digest Coronaviruses are one of many groups of viruses that cause the common cold,

though some members of the group can cause more serious illnesses. The SARS coronavirus, for

example, caused a widespread epidemic of pneumonia in 2003 that killed 774 people. In 2012, a

new coronavirus was detected in patients from the Arabian Peninsula with severe respiratory

symptoms known as Middle East respiratory syndrome (or MERS for short). To date the MERS

coronavirus has also killed over 700 people (albeit over a number of years rather than months). Yet

unlike the SARS coronavirus that spreads efficiently between humans, cases of MERS were rarely

linked to each other or to contact with animals, with the exception of hospital outbreaks.

Though camels were later identified as the original source of MERS coronavirus infections in

humans, the role of these animals in the epidemic was not well understood. Throughout the

epidemic nearly 300 genomes of the MERS coronavirus had been sequenced, from both camels and

humans. Previous attempts to understand the MERS epidemic had either relied on these data or

reports of case numbers but led to conflicting results, at odds with other sources of evidence.

Dudas et al. wanted to work out how many times the MERS coronavirus had been introduced into

humans from camels. If it happened once, this would indicate that the virus is good at spreading

between humans and that treating human cases should be a priority. However, if every human case

occurred as a new introduction of the MERS coronavirus from camels, this would mean that the

human epidemic would not stop until the virus is controlled at the source, that is, in camels. Many

scientists had argued that the second of these scenarios was most likely, but this had not been

strongly demonstrated with data.

By looking at the already sequenced genomes, Dudas et al. worked out how the MERS

coronaviruses were related to each other, and reconstructed their family tree. Information about the

host from which each sequence was collected was then mapped on the tree. Unlike previous

attempts to complete this kind of analysis, Dudas et al. took an approach that could deal with the

viruses in camels being more diverse than those in humans.

Consistent with the scenario where human cases occurred as new introductions from camels, the

analysis showed that the MERS coronavirus populations is maintained exclusively in camels and the

viruses seen in humans are evolutionary dead-ends. This suggests that MERS coronavirus spreads

poorly between humans, and has instead jumped from camels to humans hundreds of times since

2012.

As well as providing data to confirm a previously suspected hypothesis, these findings provide

more support to the current plans to mitigate infections with MERS coronavirus in the Arabian

Peninsula by focusing control efforts on camels.

DOI: https://doi.org/10.7554/eLife.31257.002
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274 MERS-CoV genomes to investigate transmission patterns of the virus between humans and

camels.

Here, we use an explicit model of metapopulation structure and migration between discrete sub-

populations, referred to here as demes (Vaughan et al., 2014), derived from the structured coales-

cent (Notohara, 1990). Unlike approaches that model host species as a discrete phylogenetic trait

of the virus using continuous-time Markov processes (or simpler, parsimony based, approaches)

(Faria et al., 2013; Lycett et al., 2016), population structure models explicitly incorporate contrasts

in deme effective population sizes and migration between demes. By estimating independent coa-

lescence rates for MERS-CoV in humans and camels, as well as migration patterns between the two

demes, we show that long-term viral evolution of MERS-CoV occurs exclusively in camels. Our results

suggest that spillover events into humans are seasonal and might be associated with the calving sea-

son in camels. However, we find that MERS-CoV, once introduced into humans, follows transient

transmission chains that soon abate. Using Monte Carlo simulations we show that R0 for MERS-CoV

circulating in humans is much lower than the epidemic threshold of 1.0 and that correspondingly the

virus has been introduced into humans hundreds of times.

Results

MERS-CoV is predominantly a camel virus
The structured coalescent approach we employ (see Materials and methods) identifies camels as a

reservoir host where most of MERS-CoV evolution takes place (Figure 1), while human MERS out-

breaks are transient and terminal with respect to long-term evolution of the virus (Figure 1—figure

supplement 1). Across 174 MERS-CoV genomes collected from humans, we estimate a median of

56 separate camel-to-human cross-species transmissions (95% highest posterior density (HPD): 48–

63). While we estimate a median of 3 (95% HPD: 0–12) human-to-camel migrations, the 95% HPD

interval includes zero and we find that no such migrations are found in the maximum clade credibility

tree (Figure 1). Correspondingly, we observe substantially higher camel-to-human migration rate

estimates than human-to-camel migration rate estimates (Figure 1—figure supplement 2). This

inference derives from the tree structure wherein human viruses appear as clusters of highly related

sequences nested within the diversity seen in camel viruses, which themselves show significantly

higher diversity and less clustering. This manifests as different rates of coalescence with camel

viruses showing a scaled effective population size Net of 3.49 years (95% HPD: 2.71–4.38) and human

viruses showing a scaled effective population of 0.24 years (95% HPD: 0.14–0.34).

We believe that the small number of inferred human-to-camel migrations are induced by the

migration rate prior, while some are derived from phylogenetic proximity of human sequences to

the apparent ‘backbone’ of the phylogenetic tree. This is most apparent in lineages in early-mid

2013 that lead up to sequences comprising the MERS-CoV clade dominant in 2015, where owing to

poor sampling of MERS-CoV genetic diversity from camels the model cannot completely dismiss

humans as a potential alternative host. The first sequences of MERS-CoV from camels do not appear

in our data until November 2013. Our finding of negligible human-to-camel transmission is robust to

choice of prior (Figure 1—figure supplement 2).

The repeated and asymmetric introductions of short-lived clusters of MERS-CoV sequences from

camels into humans leads us to conclude that MERS-CoV epidemiology in humans is dominated by

zoonotic transmission (Figure 1 and Figure 1—figure supplement 1). We observe dense terminal

clusters of MERS-CoV circulating in humans that are of no subsequent relevance to the evolution of

the virus. These clusters of presumed human-to-human transmission are then embedded within

extensive diversity of MERS-CoV lineages inferred to be circulating in camels, a classic pattern of

source-sink dynamics. Our findings suggest that instances of human infection with MERS-CoV are

more common than currently thought, with exceedingly short transmission chains mostly limited to

primary cases that might be mild and ultimately not detected by surveillance or sequencing. Struc-

tured coalescent analyses recover the camel-centered picture of MERS-CoV evolution despite

sequence data heavily skewed towards non-uniformly sampled human cases and are robust to choice

of prior. Comparing these results with a currently standard discrete trait analysis (Lemey et al.,

2009) approach for ancestral state reconstruction shows dramatic differences in host reconstruction

at internal nodes (Figure 1—figure supplement 3). Discrete trait analysis reconstruction identifies
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Figure 1. Typed maximum clade credibility tree of MERS-CoV genomes from 174 human viruses and 100 camel viruses. Maximum clade credibility

(MCC) tree showing inferred ancestral hosts for MERS-CoV recovered with the structured coalescent. The vast majority of MERS-CoV evolution is

inferred to occur in camels (orange) with human outbreaks (blue) representing evolutionary dead-ends for the virus. Confidence in host assignment is

depicted as a colour gradient, with increased uncertainty in host assignment (posterior probabilities close to 0.5) shown as grey. While large clusters of

human cases are apparent in the tree, significant contributions to human outbreaks are made by singleton sequences, likely representing recent cross-

species transmissions that were caught early.

DOI: https://doi.org/10.7554/eLife.31257.003

The following source data and figure supplements are available for figure 1:

Source data 1. XML to run structured coalescent analysis and output files.

Figure 1 continued on next page
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both camels and humans as important hosts for MERS-CoV persistence, but with humans as the ulti-

mate source of camel infections. A similar approach has been attempted previously (Zhang et al.,

2016), but this interpretation of MERS-CoV evolution disagrees with lack of continuing human trans-

mission chains outside of Arabian peninsula, low seroprevalence in humans and very high seropreva-

lence in camels across Saudi Arabia. We suspect that this particular discrete trait analysis

reconstruction is false due to biased data, that is, having nearly twice as many MERS-CoV sequences

from humans (n ¼ 174) than from camels (n ¼ 100) and the inability of the model to account for and

quantify vastly different rates of coalescence in the phylogenetic vicinity of both types of sequences.

We can replicate these results by either applying the same model to current data (Figure 1—figure

supplement 3) or by enforcing equal coalescence rates within each deme in the structured coales-

cent model (Figure 1—figure supplement 4).

MERS-CoV shows seasonal introductions
We use the posterior distribution of MERS-CoV introduction events from camels to humans (Fig-

ure 1) to model seasonal variation in zoonotic transfer of viruses. We identify four months (April,

May, June, July) when the odds of MERS-CoV introductions are increased (Figure 2) and four when

the odds are decreased (August, September, November, December). Camel calving is reported to

occur from October to February (Almutairi et al., 2010), with rapidly declining maternal antibody

levels in calves within the first weeks after birth (Wernery, 2001). It is possible that MERS-CoV

sweeps through each new camel generation once critical mass of susceptibles is reached (Martinez-

Bakker et al., 2014), leading to a sharp rise in prevalence of the virus in camels and resulting in

increased force of infection into the human population. Strong influx of susceptibles and subsequent

sweeping outbreaks in camels may explain evidence of widespread exposure to MERS-CoV in cam-

els from seroepidemiology (Müller et al., 2014; Corman et al., 2014; Chu et al., 2014;

Reusken et al., 2013; Reusken et al., 2014).

Although we find evidence of seasonality in zoonotic spillover timing, no such relationship exists

for sizes of human sequence clusters (Figure 2B). This is entirely expected, since little seasonality in

human behaviour that could facilitate MERS-CoV transmission is expected following an introduction.

Similarly, we do not observe any trend in human sequence cluster sizes over time (Figure 2B, Spear-

man � ¼ 0:06, p ¼ 0:68), suggesting that MERS-CoV outbreaks in humans are neither growing nor

shrinking in size. This is not surprising either, since MERS-CoV is a camel virus that has to date, expe-

rienced little-to-no selective pressure to improve transmissibility between humans.

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.31257.009

Source data 2. XML to run structured coalescent analysis with a relaxed prior and output file.

DOI: https://doi.org/10.7554/eLife.31257.010

Source data 3. XML to run discrete trait analysis (DTA) and output files.

DOI: https://doi.org/10.7554/eLife.31257.011

Source data 4. XML to run structured coalescent analysis with equal deme sizes between humans and camels and output files.

DOI: https://doi.org/10.7554/eLife.31257.012

Source data 5. Maximum likelihood phylogeny.

DOI: https://doi.org/10.7554/eLife.31257.013

Figure supplement 1. Evolutionary history of MERS-CoV partitioned between camels and humans.

DOI: https://doi.org/10.7554/eLife.31257.004

Figure supplement 2. Posterior backwards migration rate estimates for two choices of prior.

DOI: https://doi.org/10.7554/eLife.31257.005

Figure supplement 3. Maximum clade credibility (MCC) tree with ancestral state reconstruction according to a discrete trait model.

DOI: https://doi.org/10.7554/eLife.31257.006

Figure supplement 4. Maximum clade credibility (MCC) tree of structured coalescent model with enforced equal coalescence rates.

DOI: https://doi.org/10.7554/eLife.31257.007

Figure supplement 5. Maximum likelihood (ML) tree of MERS-CoV genomes coloured by origin of sequence.

DOI: https://doi.org/10.7554/eLife.31257.008
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MERS-CoV is poorly suited for human transmission
Structured coalescent approaches clearly show humans to be a terminal host for MERS-CoV, imply-

ing poor transmissibility. However, we wanted to translate this observation into an estimate of the

basic reproductive number R0 to provide an intuitive epidemic behaviour metric that does not

require expertise in reading phylogenies. The parameter R0 determines expected number of second-

ary cases in a single infections as well as the distribution of total cases that result from a single intro-

duction event into the human population (Equation 1, Materials and methods). We estimate R0

along with other relevant parameters via Monte Carlo simulation in two steps. First, we simulate

Figure 2. Seasonality of MERS-CoV introduction events. (A) Posterior density estimates partitioned by month showing the 95% highest posterior

density interval for relative odds ratios of MERS-CoV introductions into humans. Posterior means are indicated with circles. Evidence for increased or

decreased risk (95% HPD excludes 1.0) for introductions are indicated by black or white circles, respectively. Hatched area spanning October to

February indicates the camel calving season. (B) Sequence cluster sizes and inferred dates of introduction events. Each introduction event is shown as a

vertical line positioned based on the median introduction time, as recovered by structured coalescent analyses and coloured by time of year with

height indicating number of descendant sequences recovered from human cases. 95% highest posterior density intervals for introductions of MERS-

CoV into humans are indicated with coloured lines, coloured by median estimated introduction time. The black dotted line indicates the joint

probability density for introductions. We find little correlation between date and size of introduction (Spearman � ¼ 0:06, p ¼ 0:68).

DOI: https://doi.org/10.7554/eLife.31257.014

The following source data is available for figure 2:

Source data 1. MCMC samples from seasonality inference analysis.

DOI: https://doi.org/10.7554/eLife.31257.015
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case counts across multiple outbreaks totaling 2000 cases using Equation 1 and then we subsample

from each case cluster to simulate sequencing of a fraction of cases. Sequencing simulations are per-

formed via a multivariate hypergeometric distribution, where the probability of sequencing from a

particular cluster depends on available sequencing capacity (number of trials), numbers of cases in

the cluster (number of successes) and number of cases outside the cluster (number of failures). In

addition, each hypergeometric distribution used to simulate sequencing is concentrated via a bias

parameter, that enriches for large sequence clusters at the expense of smaller ones (for its effects

see Figure 3—figure supplement 1). This is a particularly pressing issue, since a priori we expect

large hospital outbreaks of MERS to be overrepresented in sequence data, whereas sequences from

primary cases will be sampled exceedingly rarely. We record the number, mean, standard deviation

and skewness (third standardised moment) of sequence cluster sizes in each simulation (left-hand

panel in Figure 3) and extract the subset of Monte Carlo simulations in which these summary statis-

tics fall within the 95% highest posterior density observed in the empirical MERS-CoV data from

structured coalescent analyses. We record R0 values, as well as the number of case clusters (equiva-

lent to number of zoonotic introductions), for these empirically matched simulations. A schematic of

this Monte Carlo procedure is shown in Figure 3—figure supplement 2. Since the total number of

Figure 3. Monte Carlo simulations of human transmission clusters. Leftmost scatter plot shows the distribution of individual Monte Carlo simulation

sequence cluster size statistics (mean and skewness) coloured by the R0 value used for the simulation. The dotted rectangle identifies the 95% highest

posterior density bounds for sequence cluster size mean and skewness observed for empirical MERS-CoV data. The distribution of R0 values that fall

within 95% HPDs for sequence cluster size mean, standard deviation, skewness and number of introductions, is shown in the middle, on the same y-

axis. Bins falling inside the 95% percentiles are coloured by R0, as in the leftmost scatter plot. The distribution of total number of introductions

associated with simulations matching MERS-CoV sequence clusters is shown on the right. Darker shade of grey indicates bins falling within the 95%

percentiles. Monte Carlo simulations indicate R0 for MERS-CoV in humans is likely to be below 1.0, with numbers of zoonotic transmissions numbering

in the hundreds.

DOI: https://doi.org/10.7554/eLife.31257.016

The following figure supplements are available for figure 3:

Figure supplement 1. Monte Carlo simulations of human transmission clusters.

DOI: https://doi.org/10.7554/eLife.31257.017

Figure supplement 2. Monte Carlo simulation schematic.

DOI: https://doi.org/10.7554/eLife.31257.018

Figure supplement 3. Results of Monte Carlo simulations with vast underestimation of cases.

DOI: https://doi.org/10.7554/eLife.31257.019

Figure supplement 4. Boxplots of matching simulated case and sequence cluster distributions.

DOI: https://doi.org/10.7554/eLife.31257.020

Figure supplement 5. Quantile-quantile (Q-Q) plot of empirical and simulated sequence cluster sizes.

DOI: https://doi.org/10.7554/eLife.31257.021

Figure supplement 6. Numbers of epidemiological simulations conforming to empirical observations.

DOI: https://doi.org/10.7554/eLife.31257.022
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cases is fixed at 2000, higher R0 results in fewer larger transmission clusters, while lower R0 results in

many smaller transmission clusters.

We find that observed phylogenetic patterns of sequence clustering strongly support R0 below

1.0 (middle panel in Figure 3). Mean R0 value observed in matching simulations is 0.72 (95% percen-

tiles 0.57–0.90), suggesting the inability of the virus to sustain transmission in humans. Lower values

for R0 in turn suggest relatively large numbers of zoonotic transfers of viruses into humans (right-

hand panel in Figure 3). Median number of cross-species introductions observed in matching simula-

tions is 592 (95% percentiles 311–811). Our results suggest a large number of unobserved MERS pri-

mary cases. Given this, we also performed simulations where the total number of cases is doubled to

4000 to explore the impact of dramatic underestimation of MERS cases. In these analyses, R0 values

tend to decrease even further as numbers of introductions go up, although very few simulations

match currently observed MERS-CoV sequence data (Figure 3—figure supplement 3).

Overall, our analyses indicate that MERS-CoV is poorly suited for human-to-human transmission,

with an estimated R0<0:90 and sequence sampling likely to be biased towards large hospital out-

breaks (Figure 3—figure supplement 1). All matching simulations exhibit highly skewed distribu-

tions of case cluster sizes with long tails (Figure 3—figure supplement 4), which is qualitatively

similar to the results of (Cauchemez et al., 2016). We find that simulated sequence cluster sizes

resemble observed sequence cluster sizes in the posterior distribution, with a slight reduction in

mid-sized clusters in simulated data (Figure 3—figure supplement 5). Given these findings, and the

fact that large outbreaks of MERS occurred in hospitals, the combination of frequent spillover of

MERS-CoV into humans and occasional outbreak amplification via poor hygiene practices

(Assiri et al., 2013b; Chen et al., 2017) appear sufficient to explain observed epidemiological pat-

terns of MERS-CoV.

Recombination shapes MERS-CoV diversity
Recombination has been shown to occur in all genera of coronaviruses, including MERS-CoV

(Lai et al., 1985; Makino et al., 1986; Keck et al., 1988; Kottier et al., 1995; Herrewegh et al.,

1998). In order to quantify the degree to recombination has shaped MERS-CoV genetic diversity,

we used two recombination detection approaches across partitions of taxa corresponding to

inferred MERS-CoV clades. Both methods rely on sampling parental and recombinant alleles within

the alignment, although each quantifies different signals of recombination. One hallmark of recombi-

nation is the ability to carry alleles derived via mutation from one lineage to another, which appear

as repeated mutations taking place in the recipient lineage, somewhere else in the tree. The PHI

(pairwise homoplasy index) test quantifies the appearance of these excessive repeat mutations

(homoplasies) within an alignment (Bruen et al., 2006). Another hallmark of recombination is cluster-

ing of alleles along the genome, due to how template switching, the primary mechanism of recombi-

nation in RNA viruses, occurs. 3Seq relies on the clustering of nucleotide similarities along the

genome between sequence triplets – two potential parent-donors and one candidate offspring-

recipient sequences (Boni et al., 2007).

Both tests can give spurious results in cases of extreme rate heterogeneity and sampling over

time (Dudas and Rambaut, 2016), but both tests have not been reported to fail simultaneously. PHI

and 3Seq methods consistently identify most of the apparent ‘backbone’ of the MERS-CoV phylog-

eny as encompassing sequences with evidence of recombination (Figure 4—figure supplement 1).

Neither method can identify where in the tree recombination occurred, but each full asterisk in Fig-

ure 4—figure supplement 1 should be interpreted as the minimum partition of data that still cap-

tures both donor and recipient alleles involved in a recombination event. This suggests a non-

negligible contribution of recombination in shaping existing MERS-CoV diversity. As done previously

(Dudas and Rambaut, 2016), we show large numbers of homoplasies in MERS-CoV data (Figure 4—

figure supplement 2) with some evidence of genomic clustering of such alleles. These results are

consistent with high incidence of MERS-CoV in camels (Müller et al., 2014; Corman et al., 2014;

Chu et al., 2014; Reusken et al., 2014; Ali et al., 2017), allowing for co-infection with distinct geno-

types and thus recombination to occur.

Owing to these findings, we performed a sensitivity analysis in which we partitioned the MERS-

CoV genome into two fragments and identified human outbreak clusters within each fragment. We

find strong similarity in the grouping of human cases into outbreak clusters between fragments

(Figure 4A). Between the two trees in Figure 4B four (out of 54) ‘human’ clades are expanded
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where either singleton introductions or two-taxon clades in fragment 2 join other clades in fragment

1. For the reverse comparison, there are five ‘human’ clades (out of 53) in fragment 2 that are

expanded. All such clades have low divergence (Figure 4B) and thus incongruences in human clades

are more likely to be caused by differences in deme assignment rather than actual recombination.

And while we observe evidence of distinct phylogenetic trees from different parts of the MERS-CoV

genome (Figure 4B), human clades are minimally affected and large portions of the posterior proba-

bility density in both parts of the genome are concentrated in shared clades (Figure 4—figure sup-

plement 3). Additionally, we observe the same source-sink dynamics between camel and human

populations in trees constructed from separate genomic fragments as were observed in the original

full genome tree (Figures 1 and 4B).

Observed departures from strictly clonal evolution suggest that while recombination is an issue

for inferring MERS-CoV phylogenies, its effect on the human side of MERS outbreaks is minimal, as

expected if humans represent a transient host with little opportunity for co-infection. MERS-CoV

evolution on the reservoir side is complicated by recombination, although is nonetheless still largely

Figure 4. Recombinant features of MERS-CoV phylogenies. (A) Marginal posterior probabilities of taxa collected from humans belonging to the same

clade in phylogenies derived from different parts of the genome. Taxa are ordered according to phylogeny of fragment 2 (genome positions 21001 to

29364) reduced to just the human tips and is displayed on the left. Human clusters are largely well-supported as monophyletic and consistent across

trees of both genomic fragments. (B) Tanglegram connecting the same taxa between a phylogeny derived from fragment 1 (left, genome positions 1 to

21000) and fragment 2 (right, genome positions 21001 to 29364), reduced to just the human tips and branches with posterior probability <0:1 collapsed.

Human clusters exhibit limited diversity and corresponding low levels of incongruence within an introduction cluster.

DOI: https://doi.org/10.7554/eLife.31257.023

The following source data and figure supplements are available for figure 4:

Source data 1. XML to run structured coalescent analysis on bisected alignment with output files.

DOI: https://doi.org/10.7554/eLife.31257.027

Source data 2. Output from PHI and 3Seq recombination analyses.

DOI: https://doi.org/10.7554/eLife.31257.028

Source data 3. Output from ClonalFrameML analysis.

DOI: https://doi.org/10.7554/eLife.31257.029

Figure supplement 1. Tests of recombination across MERS-CoV clades.

DOI: https://doi.org/10.7554/eLife.31257.024

Figure supplement 2. MERS-CoV genomes exhibit high numbers of non-clonal loci.

DOI: https://doi.org/10.7554/eLife.31257.025

Figure supplement 3. Human clade sharing between genomic fragments 1 and 2.

DOI: https://doi.org/10.7554/eLife.31257.026
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amenable to phylogenetic methods. Amongst other parameters of interest, recombination is

expected to interfere with molecular clocks, where transferred genomic regions can give the impres-

sion of branches undergoing rapid evolution, or branches where recombination results in reversions

appearing to evolve slow. In addition to its potential to influence tree topology, recombination in

molecular sequence data is an erratic force with unpredictable effects. We suspect that the effects

of recombination in MERS-CoV data are reigned in by a relatively small effective population size of

the virus in Saudi Arabia (see next section) where haplotypes are fixed or nearly fixed, thus prevent-

ing an accumulation of genetic diversity that would then be reshuffled via recombination. Neverthe-

less the evolutionary rate of the virus appears to fall firmly within the expected range for RNA

viruses: regression of nucleotide differences to Jordan-N3/2012 genome against sequence collection

dates yields a rate of 4:59� 10
�4 subs/site/year, Bayesian structured coalescent estimate from pri-

mary analysis 9:57� 10
�4 (95% HPDs: 8:28� 10:9� 10

�4) subs/site/year.

MERS-CoV shows population turnover in camels
Here, we attempt to investigate MERS-CoV demographic patterns in the camel reservoir. We sup-

plement camel sequence data with a single earliest sequence from each human cluster, treating viral

diversity present in humans as a sentinel sample of MERS-CoV diversity circulating in camels. This

removes conflicting demographic signals sampled during human outbreaks, where densely sampled

closely related sequences from humans could be misconstrued as evidence of demographic crash in

the viral population.

Despite lack of convergence, neither of the two demographic reconstructions show evidence of

fluctuations in the scaled effective population size (Net) of MERS-CoV over time (Figure 5). We

recover a similar demographic trajectory when estimating Net over time with a skygrid tree prior

across the genome split into ten fragments with independent phylogenetic trees to account for con-

founding effects of recombination (Figure 5—figure supplement 1). However, we do note that coa-

lescence rate estimates are high relative to the sampling time period, with a mean estimate of Net at

3.49 years (95% HPD: 2.71–4.38), and consequently MERS-CoV phylogeny resembles a ladder, as

often seen in human influenza A virus phylogenies (Bedford et al., 2011).

This empirically estimated effectived population can be compared to the expected effective pop-

ulation size in a simple epidemiological model. At endemic equilibrium, we expect scaled effective

population size Net to follow I = 2b, where b is the equilibrium rate of transmission and I is the equi-

librium number of infecteds (Frost and Volz, 2010). We assume that b is constant and is equal to

the rate of recovery. Given a 20 day duration of infection in camels (Adney et al., 2014), we arrive

at b ¼ 365=20 ¼ 18:25 infections per year. Given extremely high seroprevalence estimates within

camels in Saudi Arabia (Müller et al., 2014; Corman et al., 2014; Chu et al., 2014; Reusken et al.,

2013; Reusken et al., 2014), we expect camels to usually be infected within their first year of life.

Therefore, we can estimate the rough number of camel infections per year as the number of calves

produced each year. We find there are 830,000 camels in Saudi Arabia (Abdallah and Faye, 2013)

and that female camels in Saudi Arabia have an average fecundity of 45% (Abdallah and Faye,

2013). Thus, we expect 830 000� 0:50� 0:45 ¼ 186 750 new calves produced yearly and correspond-

ingly 186,750 new infections every year, which spread over 20 day intervals gives an average preva-

lence of I ¼ 10 233 infections. This results in an expected scaled effective population size Net ¼ 280:4

years.

Comparing expected Net to empirical Net we arrive at a ratio of 80.3 (64.0–103.5). This is less

than the equivalent ratio for human measles virus (Bedford et al., 2011) and is in line with the

expectation from neutral evolutionary dynamics plus some degree of transmission heterogeneity

(Volz et al., 2013) and seasonal troughs in prevalence. Thus, we believe that the ladder-like appear-

ance of the MERS-CoV tree can likely be explained by entirely demographic factors.

Discussion

MERS-CoV epidemiology
In this study we aimed to understand the drivers of MERS coronavirus transmission in humans and

what role the camel reservoir plays in perpetuating the epidemic in the Arabian peninsula by using

sequence data collected from both hosts (174 from humans and 100 from camels). We showed that
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currently existing models of population structure (Vaughan et al., 2014) can identify distinct demo-

graphic modes in MERS-CoV genomic data, where viruses continuously circulating in camels repeat-

edly jump into humans and cause small outbreaks doomed to extinction (Figure 1—figure

supplement 1). This inference succeeds under different choices of priors for unknown demographic

parameters (Figure 1—figure supplement 2) and in the presence of strong biases in sequence sam-

pling schemes (Figure 3). When rapid coalescence in the human deme is not allowed (Figure 1—fig-

ure supplement 4) structured coalescent inference loses power and ancestral state reconstruction is

nearly identical to that of discrete trait analysis (Figure 1—figure supplement 3). When allowed dif-

ferent deme-specific population sizes, the structured coalescent model succeeds because a large

proportion of human sequences fall into tightly connected clusters, which informs a low estimate for

the population size of the human deme. This in turn informs the inferred state of long ancestral

branches in the phylogeny, that is, because these long branches are not immediately coalescing,

they are most likely in camels.

Figure 5. Demographic history of MERS-CoV in Arabian peninsula camels. Demographic history of MERS-CoV in camels, as inferred via a skygrid

coalescent tree prior (Gill et al., 2013). Three skygrid reconstructions are shown, red and orange for each of the stationary distributions reached by

MCMC with the whole genome and a black one where the genome was split into ten partitions. Shaded interval indicates the 95% highest posterior

density interval for the product of generation time and effective population size, Net. Midline tracks the inferred median of Net.

DOI: https://doi.org/10.7554/eLife.31257.030

The following source data and figure supplement are available for figure 5:

Source data 1. XML to run skygrid analysis on camel-like sequence data and output files.

DOI: https://doi.org/10.7554/eLife.31257.032

Figure supplement 1. Skygrid comparison between whole and fragmented genomes.

DOI: https://doi.org/10.7554/eLife.31257.031
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From sequence data, we identify at least 50 zoonotic introductions of MERS-CoV into humans

from the reservoir (Figure 1), from which we extrapolate that hundreds more such introductions

must have taken place (Figure 3). Although we recover migration rates from our model (Figure 1—

figure supplement 2), these only pertain to sequences and in no way reflect the epidemiologically

relevant per capita rates of zoonotic spillover events. We also looked at potential seasonality in

MERS-CoV spillover into humans. Our analyses indicated a period of three months where the odds

of a sequenced spillover event are increased, with timing consistent with an enzootic amongst camel

calves (Figure 2). As a result of our identification of large and asymmetric flow of viral lineages into

humans we also find that the basic reproduction number for MERS-CoV in humans is well below the

epidemic threshold (Figure 3). Having said that, there are highly customisable coalescent methods

available that extend the methods used here to accommodate time varying migration rates and pop-

ulation sizes, integrate alternative sources of information and fit to stochastic nonlinear models

(Rasmussen et al., 2014), which would be more appropriate for MERS-CoV. Some distinct aspects

of MERS-CoV epidemiology could not be captured in our methodology, such as hospital outbreaks

where R0 is expected to be consistently closer to 1.0 compared to community transmission of MERS-

CoV. Outside of coalescent-based models, there are population structure models that explicitly

relate epidemiological parameters to the branching process observed in sequence data

(Kühnert et al., 2016), but often rely on specifying numerous informative priors and can suffer from

MCMC convergence issues.

Strong population structure in viruses often arises through limited gene flow, either due to geog-

raphy (Dudas et al., 2017), ecology (Smith et al., 2009) or evolutionary forces (Turner et al., 2005;

Dudas et al., 2015). On a smaller scale, population structure can unveil important details about

transmission patterns, such as identifying reservoirs and understanding spillover trends and risk,

much as we have done here. When properly understood naturally arising barriers to gene flow can

be exploited for more efficient disease control and prevention, as well as risk management.

Transmissibility differences between zoonoses and pandemics
Severe acute respiratory syndrome (SARS) coronavirus, a Betacoronavirus like MERS-CoV, caused a

serious epidemic in humans in 2003, with over 8000 cases and nearly 800 deaths. Since MERS-CoV

was also able to cause significant pathogenicity in the human host it was inevitable that parallels

would be drawn between MERS-CoV and SARS-CoV at the time of MERS discovery in 2012.

Although we describe the epidemiology of MERS-CoV from sequence data, indications that MERS-

CoV has poor capacity to spread human-to-human existed prior to any sequence data. SARS-CoV

swept through the world in a short period of time, but MERS cases trickled slowly and were

restricted to the Arabian Peninsula or resulted in self-limiting outbreaks outside of the region, a pat-

tern strongly indicative of repeat zoonotic spillover. Infectious disease surveillance and control meas-

ures remain limited, so much like the SARS epidemic in 2003 or the H1N1 pandemic in 2009,

zoonotic pathogens with R0>1:0 are probably going to be discovered after spreading beyond the

original location of spillover. Even though our results show that MERS-CoV does not appear to pres-

ent an imminent global threat, we would like to highlight that its epidemiology is nonetheless

concerning.

Pathogens Bacillus anthracis, Andes hantavirus (Martinez et al., 2005), monkeypox (Reed et al.,

2004) and influenza A are able to jump species barriers but only influenza A viruses have historically

resulted in pandemics (Lipsitch et al., 2016). MERS-CoV may join the list of pathogens able to jump

species barriers but not spread efficiently in the new host. Since its emergence in 2012, MERS-CoV

has caused self-limiting outbreaks in humans with no evidence of worsening outbreaks over time.

However, sustained evolution of the virus in the reservoir and continued flow of viral lineages into

humans provides the substrate for a more transmissible variant of MERS-CoV to possibly emerge.

Previous modelling studies (Antia et al., 2003; Park et al., 2013) suggest a positive relationship

between initial R0 in the human host and probability of evolutionary emergence of a novel strain

which passes the supercritical threshold of R0>1:0. This leaves MERS-CoV in a precarious position;

on one hand its current R0 of ~0.7 is certainly less than 1, but its proximity to the supercritical

threshold raises alarm. With very little known about the fitness landscape or adaptive potential of

MERS-CoV, it is incredibly challenging to predict the likelihood of the emergence more transmissible

variants. In light of these difficulties, we encourage continued genomic surveillance of MERS-CoV in
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the camel reservoir and from sporadic human cases to rapidly identify a supercritical variant, if one

does emerge.

Materials and methods

Sequence data
All MERS-CoV sequences were downloaded from GenBank and accession numbers are given in

Supplementary file 1. Sequences without accessions were kindly shared by Ali M. Somily, Mazin

Barry, Sarah S. Al Subaie, Abdulaziz A. BinSaeed, Fahad A. Alzamil, Waleed Zaher, Theeb Al Qah-

tani, Khaldoon Al Jerian, Scott J.N. McNabb, Imad A. Al-Jahdali, Ahmed M. Alotaibi, Nahid A.

Batarfi, Matthew Cotten, Simon J. Watson, Spela Binter, and Paul Kellam prior to publication. Frag-

ments of some strains submitted to GenBank as separate accessions were assembled into a single

sequence. Only sequences covering at least 50% of MERS-CoV genome were kept, to facilitate later

analyses where the alignment is split into two parts in order to account for effects of recombination

(Dudas and Rambaut, 2016). Sequences were annotated with available collection dates and hosts,

designated as camel or human, aligned with MAFFT (Katoh and Standley, 2013), and edited manu-

ally. Protein coding sequences were extracted and concatenated, reducing alignment length from

30,130 down to 29,364, which allowed for codon-partitioned substitution models to be used. The

final dataset consisted of 174 genomes from human infections and 100 genomes from camel infec-

tions (Supplementary file 1).

Phylogenetic analyses
Primary analysis, structured coalescent
For our primary analysis, the MultiTypeTree module (Vaughan et al., 2014) of BEAST v2.4.3

(Bouckaert et al., 2014) was used to specify a structured coalescent model with two demes –

humans and camels. At time of writing structured population models are available in BEAST v2

(Bouckaert et al., 2014) but not in BEAST v1 (Drummond et al., 2012). We use the more computa-

tionally intensive MultiTypeTree module (Vaughan et al., 2014) over approximate methods also

available in BEAST v2, such as BASTA (De Maio et al., 2015), MASCOT (Mueller et al., 2017), and

PhyDyn (Volz, 2012). Structured coalescent model implemented in the MultiTypeTree module

(Vaughan et al., 2014) estimates four parameters: rate of coalescence in human viruses, rate of coa-

lescence in camel viruses, rate of migration from the human deme to the camel deme and rate of

migration from the camel deme to the human deme. Analyses were run on codon position parti-

tioned data with two separate HKY+G4(Hasegawa et al., 1985; Yang, 1994) nucleotide substitution

models specified for codon positions 1 + 2 and 3. A relaxed molecular clock with branch rates drawn

from a lognormal distribution (Drummond et al., 2006) was used to infer the evolutionary rate from

date calibrated tips. Default priors were used for all parameters except for migration rates between

demes for which an exponential prior with mean 1.0 was used. All analyses were run for 200 million

steps across ten independent Markov chains (MCMC runs) and states were sampled every 20,000

steps. Due to the complexity of multitype tree parameter space 50% of states from every analysis

were discarded as burn-in, convergence assessed in Tracer v1.6 and states combined using Log-

Combiner distributed with BEAST v2.4.3 (Bouckaert et al., 2014). Three chains out of ten did not

converge and were discarded altogether. This left 70,000 states on which to base posterior infer-

ence. Posterior sets of typed (where migrating branches from structured coalescent are collapsed,

and migration information is left as a switch in state between parent and descendant nodes) trees

were summarised using TreeAnnotator v2.4.3 with the common ancestor heights option (Heled and

Bouckaert, 2013). A maximum likelihood phylogeny showing just the genetic relationships between

MERS-CoV genomes from camels and humans was recovered using PhyML (Guindon et al., 2003)

under a HKY+G4(Hasegawa et al., 1985; Yang, 1994) nucleotide substitution model and is shown in

Figure 1—figure supplement 5.

Control, structured coalescent with different prior
As a secondary analysis to test robustness to choice of prior, we set up an analysis where we

increased the mean of the exponential distribution prior for migration rate to 10.0. All other parame-

ters were identical to the primary analysis and as before 10 independent MCMC chains were run. In
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this case, two chains did not converge. This left 80,000 states on which to base posterior inference.

Posterior sets of typed trees were summarised using TreeAnnotator v2.4.3 with the common ances-

tor heights option (Heled and Bouckaert, 2013).

Control, structured coalescent with equal deme sizes
To better understand where statistical power of the structured coalescent model lies we set up a ter-

tiary analysis where a model was set up identically to the first structured coalescent analysis, but

deme population sizes were enforced to have the same size. This analysis allowed us to differentiate

whether statistical power in our analysis is coming from effective population size contrasts between

demes or the backwards-in-time migration rate estimation. Five replicate chains were set up, two of

which failed to converge after 200 million states. Combining the three converging runs left us

with 15,000 trees sampled from the posterior distribution, which were summarised in TreeAnnotator

v2.4.3 with the common ancestor heights option (Heled and Bouckaert, 2013).

Control, structured coalescent with more than one tree per genome
Due to concerns that recombination might affect our conclusions (Dudas and Rambaut, 2016), as

an additional secondary analysis, we also considered a scenario where alignments were split into two

fragments (fragment 1 comprised of positions 1–21000, fragment 2 of positions 21000–29364), with

independent clocks, trees and migration rates, but shared substitution models and deme population

sizes. Fragment positions were chosen based on consistent identification of the region around nucle-

otide 21000 as a probable breakpoint by GARD (Kosakovsky Pond et al., 2006) by previous studies

into SARS and MERS coronaviruses (Hon et al., 2008; Dudas and Rambaut, 2016). All analyses

were set to run for 200 million states, subsampling every 20,000 states. Chains not converging after

200 million states were discarded. 20% of the states were discarded as burn-in, convergence

assessed with Tracer 1.6 and combined with LogCombiner. Three chains out of ten did not con-

verge. This left 70,000 states on which to base posterior inference. Posterior sets of typed trees

were summarised using TreeAnnotator v2.4.3 with the common ancestor heights option (Heled and

Bouckaert, 2013).

Control, discrete trait analysis
A currently widely used approach to infer ancestral states in phylogenies relies on treating traits of

interest (such as geography, host, etc.) as features evolving along a phylogeny as continuous time

Markov chains with an arbitrary number of states (Lemey et al., 2009). Unlike structured coalescent

methods, such discrete trait approaches are independent from the tree (i.e. demographic) prior and

thus unable to influence coalescence rates under different trait states. Such models have been used

in the past to infer the number of MERS-CoV host jumps (Zhang et al., 2016) with results contradict-

ing other sources of information. In order to test how a discrete trait approach compares to the

structured coalescent we used our 274 MERS-CoV genome data set in BEAST v2.4.3

(Bouckaert et al., 2014) and specified identical codon-partitioned nucleotide substitution and

molecular clock models to our structured coalescent analysis. To give the most comparable results,

we used a constant population size coalescent model, as this is the demographic function for each

deme in the structured coalescent model. Five replicate MCMC analyses were run for 200 million

states, three of which converged onto the same posterior distribution. The converging chains were

combined after removing 20 million states as burn-in to give a total of 27,000 trees drawn from the

posterior distribution. These trees were then summarised using TreeAnnotator v2.4.5 with the com-

mon ancestor heights option (Heled and Bouckaert, 2013).

Introduction seasonality
We extracted the times of camel-to-human introductions from the posterior distribution of multitype

trees. This distribution of introduction times was then discretised as follows: for sample k ¼

1; 2; . . . ; L from the posterior, Zijk was 1 if there as an introduction in month i and year j and 0 other-

wise. We model the sum of introductions at month i and year j across the posterior sample Yij ¼
PL

k¼1
Zijk with the hierarchical model:
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Yij ~BinomialðL; �ijÞ

�ij ¼ inverse logitðaj þbiÞ

aj ~Normalð�y;syÞ

�y ~Normalð0;1Þ

sy ~Cauchyð0;2:5Þ

bi ~Normalð0;smÞ

sm ~Cauchyð0;2:5Þ;

where aj represents the contribution of year to expected introduction count and bi represents the

contribution of month to expected introduction count. Here, inverse logitðajþbiÞ ¼
expðajþbiÞ

expðajþbiÞþ1
. We

sampled posterior values from this model via the Markov chain Monte Carlo methods implemented

in Stan (Carpenter et al., 2016). Odds ratios of introductions were computed for each month i as

ORi ¼ expðbiÞ.

Epidemiological analyses
Here, we employ a Monte Carlo simulation approach to identify parameters consistent with

observed patterns of sequence clustering (Figure 3—figure supplement 2). Our structured coales-

cent analyses indicate that every MERS outbreak is a contained cross-species spillover of the virus

from camels into humans. The distribution of the number of these cross-species transmissions and

their sizes thus contain information about the underlying transmission process. At heart, we expect

fewer larger clusters if fundamental reproductive number R0 is large and more smaller clusters if R0

is small. A similar approach was used in Grubaugh et al. (2017) to estimate R0 for Zika introductions

into Florida.

Branching process theory provides an analytical distribution for the number of eventual cases j in

a transmission chain resulting from a single introduction event with R0 and dispersion parameter

! (Blumberg and Lloyd-Smith, 2013). This distribution follows

PrðjjR0;!Þ ¼
Gð!jþ j� 1Þ

Gð!jÞGðjþ 1Þ

ðR0

! Þ
j�1

ð1þ R0

! Þ
!jþj�1

: (1)

Here, R0 represents the expected number of secondary cases following a single infection and !

represents the dispersion parameter assuming secondary cases follow a negative binomial distribu-

tion (Lloyd-Smith et al., 2005), so that smaller values represent larger degrees of heterogeneity in

the transmission process.

As of 10 May 2017, the World Health Organization has been notified of 1952 cases of MERS-CoV

(World Health Organization, 2017). We thus simulated final transmission chain sizes using Equa-

tion 1 until we reached an epidemic comprised of N ¼ 2000 cases. 10,000 simulations were run for

121 uniformly spaced values of R0 across the range [0.5–1.1] with dispersion parameter ! fixed to

0.1 following expectations from previous studies of coronavirus behavior (Lloyd-Smith et al., 2005).

Each simulation results in a vector of outbreak sizes c, where ci is the size of the ith transmission clus-

ter and
PK

i¼1
ci ¼ 2000 and K is the number of clusters generated.

Following the underlying transmission process generating case clusters c, we simulate a second-

ary process of sampling some fraction of cases and sequencing them to generate data analogous to

what we empirically observe. We sample from the case cluster size vector c without replacement

according to a multivariate hypergeometric distribution (see Algorithm 1: Multivariate hypergeomet-

ric sampling scheme). The resulting sequence cluster size vector s contains K entries, some of which

are zero (i.e. case clusters not sequenced), but
PK

i¼1
si ¼ 174 which reflects the number of human

MERS-CoV sequences used in this study. Note that this ‘sequencing capacity’ parameter does not

vary over time, even though MERS-CoV sequencing efforts have varied in intensity, starting out slow

due to lack of awareness, methods and materials and increasing in response to hospital outbreaks

later. As the default sampling scheme operates under equiprobable sequencing, we also simulated

biased sequencing by using concentrated hypergeometric distributions where the probability mass

function is squared (bias = 2) or cubed (bias = 3) and then normalized. Here, bias enriches the
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hypergeometric distribution so that sequences are sampled with weights proportional to

ðcbias
1

; cbias
2

; . . . ; cbiask Þ. Thus, bias makes larger clusters more likely to be ‘sequenced’.

After simulations were completed, we identified simulations in which the recovered distribution

of sequence cluster sizes s fell within the 95% highest posterior density intervals for four summary

statistics of empirical MERS-CoV sequence cluster sizes recovered via structured coalescent analysis:

number of sequence clusters, mean, standard deviation and skewness (third central moment). These

values were 48–61 for number of sequence clusters, 2.87–3.65 for mean sequence cluster size, 4.84–

6.02 for standard deviation of sequence cluster sizes, and 415.40–621.06 for skewness of sequence

cluster sizes.

We performed a smaller set of simulations with 2500 replicates and twice the number of cases,

that is,
PK

i¼1
Ci ¼ 4000, to explore a dramatically underreported epidemic. Additionally, we per-

formed additional smaller set of simulations on a rougher grid of R0 values (23 values, 0.50–1.05),

with 5 values of dispersion parameter ! (0.002, 0.04, 0.1, 0.5, 1.0) and 3 levels of bias (1,2,3) to jus-

tify our choice of dispersion parameter ! that was fixed to 0.1 in the main analyses (Figure 3—figure

supplement 6).

Algorithm 1: Multivariate hypergeometric sampling scheme
Pseudocode describes the multivariate hypergeometric sampling scheme that simulates sequencing.

Probability of sequencing a given number of cases from a case cluster depends on cluster size and

sequences left (i.e. ‘sequencing capacity’). The bias parameter determines how probability mass

function of the hypergeometric distribution is concentrated.

Data: Array of case cluster sizes in outbreak c ¼ ðc1; c2; . . . ; cKÞ, sequences available M, total out-

break size N, where N ¼
PK

i¼1
ci.

Result: Array of sequence cluster sizes sampled: s ¼ ðs1; s2; . . . ; sKÞ.

Draw si from a hypergeometric distribution with ci successes, N � ci failures after M trials;

while i<K do

i ¼ iþ 1;

M ¼ M � si�1;

Compute the probability mass function (pmf) for all possible values of si,

p ¼ ðpð0Þbias; pð1Þbias; . . . ; pðciÞ
biasÞ � ð

P
i p

bias
i Þ�1, where pð�Þ is the pmf for a hypergeometric distri-

bution with ci successes, N � ci failures after M trials;

Draw a sequence cluster size si from array of potential sequence cluster sizes ð0; 1; . . . ; ciÞ accord-

ing to p;

end

Add remaining sequences to last sequence cluster cK ¼ M � sK�1;

Demographic inference of MERS-CoV in the reservoir
In order to infer the demographic history of MERS-CoV in camels we used the results of structured

coalescent analyses to identify introductions of the virus into humans. The oldest sequence from

each cluster introduced into humans was kept for further analysis. This procedure removes lineages

coalescing rapidly in humans, which would otherwise introduce a strong signal of low effective popu-

lation size. These subsampled MERS-CoV sequences from humans were combined with existing

sequence data from camels to give us a dataset with minimal demographic signal coming from epi-

demiological processes in humans. Sequences belonging to the outgroup clade where most of

MERS-CoV sequences from Egypt fall were removed out of concern that MERS epidemics in Saudi

Arabia and Egypt are distinct epidemics with relatively poor sampling in the latter. Were more

sequences of MERS-CoV available from other parts of Africa we speculate they would fall outside of

the diversity that has been sampled in Saudi Arabia and cluster with early MERS-CoV sequences

from Jordan and sequences from Egyptian camels. However, currently there are no indications of

what MERS-CoV diversity looks like in camels east of Saudi Arabia. A flexible skygrid tree prior

(Gill et al., 2013) was used to recover estimates of scaled effective population size (Net) at 50 evenly

spaced grid points across six years, ending at the most recent tip in the tree (2015 August) in BEAST

v1.8.4 (Drummond et al., 2012), under a relaxed molecular clock with rates drawn from a lognormal

distribution (Drummond et al., 2006) and codon position partitioned (positions 1þ 2 and 3) HKY

þG4 (Hasegawa et al., 1985; Yang, 1994) nucleotide substitution models. At time of writing
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advanced flexible coalescent tree priors from the skyline family, such as skygrid (Gill et al., 2013)

are available in BEAST v1 (Drummond et al., 2012) but not in BEAST v2 (Bouckaert et al., 2014).

We set up five independent MCMC chains to run for 500 million states, sampling every 50 000 states.

This analysis suffered from poor convergence, where two chains converged onto one stationary dis-

tribution, two to another and the last chain onto a third stationary distribution, with high effective

sample sizes. Demographic trajectories recovered by the two main stationary distributions are very

similar and differences between the two appear to be caused by convergence onto subtly different

tree topologies. This non-convergence effect may have been masked previously by the use of all

available MERS-CoV sequences from humans which may have lead MCMC towards one of the multi-

ple stationary distributions.

To ensure that recombination was not interfering with the skygrid reconstruction, we also split

our MERS-CoV alignment into ten parts 2937 nucleotides long. These were then used as separate

partitions with independent trees and clock rates in BEAST v1.8.4 (Drummond et al., 2012). Nucleo-

tide substitution and relaxed clock models were set up identically to the whole genome skygrid anal-

ysis described above (Drummond et al., 2006; Hasegawa et al., 1985; Yang, 1994). Skygrid

coalescent tree prior (Gill et al., 2013) was used jointly across all ten partitions for demographic

inference. Five MCMC chains were set up, each running for 200 million states, sampling every 20,000

states.

Data availability
Sequence data and all analytical code is publicly available at https://github.com/blab/mers-structure

(Dudas, 2017). A copy is archived at https://github.com/elifesciences-publications/mers-structure.
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