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It is generally assumed that stabilizing selection promoting a
phenotypic optimum acts to shape variation in quantitative traits
across individuals and species. Although gene expression repre-
sents an intensively studied molecular phenotype, the extent to
which stabilizing selection limits divergence in gene expression
remains contentious. In this study, we present a theoretical frame-
work for the study of stabilizing and directional selection using
data from between-species divergence of continuous traits. This
framework, based upon Brownian motion, is analytically tractable
and can be used in maximum-likelihood or Bayesian parameter
estimation. We apply this model to gene-expression levels in 7
species of Drosophila, and find that gene-expression divergence is
substantially curtailed by stabilizing selection. However, we esti-
mate the selective effect, s, of gene-expression change to be very
small, approximately equal to Ns for a change of one standard
deviation, where N is the effective population size. These findings
highlight the power of natural selection to shape phenotype, even
when the fitness effects of mutations are in the nearly neutral
range.
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Abundant evidence indicates that natural selection is remark-
ably powerful in shaping nucleotide sequences (1, 2). Many

tests of natural selection rely on a comparison between nonsyn-
onymous sites, in which mutations affect protein sequence, and
synonymous sites, in which mutations do not. Synonymous sites
serve as a proxy for neutral sites, enabling the effects of selection
to be distinguished from background mutational and demo-
graphic patterns. Although changes in gene expression are
hypothesized to play a major role in adaptation (3, 4), changes
in expression cannot be so easily partitioned into neutral and
selected categories. Thus, methods derived to analyze selection
in coding sequences cannot be readily applied to gene-expression
data. In part because of this ambiguity, general forces acting on
gene-expression divergence have remained unclear. At this
point, there exists considerable debate over the relative impor-
tance of selection and random drift in shaping gene-expression
levels (5–8).

The benefits of optimal gene regulation seem in many ways
obvious. In the simple case of metabolic enzymes, under-
expression may slow metabolic f lux, while over-expression may
expose the cell to additional toxic misfolded proteins (9). At the
morphological level, gene regulation can be tightly coupled to
phenotype (10, 11). Genetic mutations whose effects cascade
into morphological differences are expected to have especially
large fitness impacts, and as such will be heavily influenced by
natural selection. A straightforward example of selection on
gene-expression level can be seen in ribosomal proteins, which
contrary to the neutral prediction are found to be highly
expressed across a variety of organisms (12).

In this article, we present a model of gene-expression diver-
gence that explicitly distinguishes between the forces of random
genetic drift and natural selection. This work is based upon prior
models of phenotypic trait evolution (13, 14). Our population
genetic model is fundamentally similar to the Brownian motion
model used to describe the random movements of physical
particles (15). In both cases, the system is impacted by numerous
tiny perturbations, in Brownian motion caused by collision but

in the evolutionary context caused by mutations that are fixed in
an evolving population. Owing to the central limit theorem, the
resulting state of the system can be accurately described as a
normally distributed random variable. In the simplest case, the
probability of fixation of a random mutation is assumed to be
independent of the current state of the system, and thus move-
ment is not favored in one direction over the other. This scenario
corresponds to selective neutrality. However, a slightly more
complex model, described by the Ornstein-Uhlenbeck (OU)
process, assumes that perturbations are more likely to shift the
system toward some optimal value than away from it (16). This
model does well to capture the essence of natural selection;
mutations that produce a phenotype closer to some optimum are
favored over those that produce a phenotype farther away.

Here, we analyze gene-expression levels across 7 species of
Drosophila using the framework provided by the OU model. In
the analysis, we compare expression divergence between species
with estimates of time since their divergence based on sequence
data. The pattern at which divergence in gene-expression levels
accumulates over time does much to reveal the underlying forces
of selection and drift. Using only species-level data, we find that
stabilizing selection plays a major role in limiting divergence of
gene-expression level. We also quantify the degree of selection
and drift for specific genes, which illuminates the relationship
between changes in gene sequence and changes in gene expres-
sion. Finally, we reconstruct the fitness landscape of gene-
expression level, and find that although natural selection is
pervasive in shaping gene expression, the individual fitness
effects of changes in gene expression are rather weak.

Modeling Expression Divergence
Analogy to Brownian Motion. Here we apply models of Brownian
motion to describe the variance in gene-expression level between
orthologous genes as a function of the time separating these
orthologs (13, 14). Brownian motion, also known the Wiener
process, represents one of simplest continuous-time, continuous-
state stochastic processes. In a Brownian motion, the degree of
stochastic change away from the current state is independent of
both state and time. The increment that a Brownian motion
makes over a time interval of length 1 is normally distributed
with mean 0 and variance !2. The ‘‘volatility’’ parameter !
completely describes the Brownian motion and determines the
rate at which a trait’s value diffuses away from its current state.
In an evolutionary context, ! describes that rate of ‘‘phenotypic
drift’’ experienced by a gene. Our use of the term drift differs
from the classic usage, wherein drift refers to a systematic trend
in the evolution of a Brownian motion. Genes in which expres-
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sion has a larger mutational target size (17) are expected to show
larger values of !. The probability density function of a Brownian
motion is:

f!x!x0, !, t" # !!x0, t !2"

where x0 is equal to the state of the process at time 0. Thus,
Brownian motion predicts that the extent of variance in gene-
expression increases in proportion to time. This scenario corre-
sponds to selective neutrality, as the model assumes that change
in expression is independent of current expression level.

Selection favoring an optimal level of gene expression can be
incorporated using a simple extension to the Brownian motion
model (13, 14, 18). This addition results in an OU or mean-
reverting process (16). If Brownian motion is thought of as a
particle that is subject to random perturbations from its sur-
roundings, then an OU process can be thought of as adding an
elastic spring to this particle, attaching it at some fixed point. As
random perturbations push the particle farther away from this
fixed point, the strength of elastic return increases proportion-
ally. Thus, in addition to the stochastic force of drift, an OU
process includes the deterministic force of selection pulling the
trait toward some optimal value. The instantaneous motion of an
OU process is described by:

dx " !# $ x" % dt & !!0, !dt"

where # represents the optimal trait value, % is proportional to
the strength of selection, and ! is proportional to the strength of
drift. Solving this yields the density function of an OU process:

f!x!x0,#,%,!,t" # !$x0 e#%t & # !1 $ e#%t",
!2

2%
!1 $ e#2%t"%

Here we see that variance does not increase in proportion to
time, and instead saturates at a stable equilibrium:

lim
t3$

f!x !x0, # , % , ! , t" # !$ # ,
!2

2%%
The temporal character of the OU model for various values of
% and ! is shown in Fig. 1.

Inferring Fitness Landscapes. We convert the OU parameters %and
! into population-genetic estimates of the strength of selection
through comparison of the ratio of the instantaneous rates of
positive change and negative change in the OU model to the ratio
of fixation rates of selectively advantageous and disadvantageous

mutations. We find that the ratio of instantaneous rates of
change for the OU model is:

rx3y

ry3x
" e

%

!2!x#y"!x%y#2#"

Following Kimura (19), we find the ratio of fixation rates
between mutants of %Ns and #Ns effect to be:

r%

r#
" $ 2Ns

1 $ e#2Ns%&$ $ 2Ns
1 $ e2Ns% "

e2Ns $ 1
1 $ e#2Ns " e2Ns

Here, the equation is simplified by multiplying numerator and
denominator by e2Ns. Thus, the rate difference between positive
and negative change in the OU model can be used to derive an
Ns value by setting these two equations equal to each other and
solving for Ns:

Nsx3y " log'rx3y

ry3x
"

%

2!2 !x $ y"!x & y $ 2#"

If we measure relative to the optimum (i.e., fitness at optimum &
1), then this expression reduces to Ns(z) & 1 # z2%/2!2 & 1 #
z2/4v, where z represents the distance to the optimum in terms
of standard deviations, and v represents expected equilibrium
variance. Thus, the curvature of the fitness landscape is inversely
proportional to the level of equilibrium variance observed. As
such, we will refer to equilibrium variance as measuring the
degree of selective constraint that the expression level of a gene
experiences. It is this measure of selective constraint rather than
the % parameter that should be used in comparing selection
across genes or across species, as the observed value of % depends
upon both selective constraint and mutational input.

Results
One key finding is that the accumulation of variance in gene-
expression level between 7 species of Drosophila is not propor-
tional to the amount of time separating each species (Fig. 2). This
result immediately suggests that continuous neutral evolution of
gene expression is unlikely. Instead, we find that expression
divergence between orthologous genes saturates rapidly in evo-
lutionary time. This general pattern was previously hypothesized
to exist by Whitehead and Crawford (20). Species pairs of
Drosophila do not show a significant increase in expression
divergence beyond that present between D. melanogaster and D.
ananasse. Saturation of gene-expression divergence is expected
if expression levels are under stabilizing selection.

Fig. 1. Realizations of the OU process. Three individual realizations are
shown for each of four different parameter values. The drift parameter !
determines the degree of mutational pressure randomly impacting the trait
value, while % determines the pull of selection toward some optimal trait value
(in this case 0). In each realization, the starting value was sampled from the
equilibrium distribution.

Fig. 2. Average pairwise variance in expression level for Drosophila species.
Each point represents the average variance between a species pair. This
variance initially increases with time, but eventually saturates. In the absence
of stabilizing selection, pairwise variance is expected to saturate at 1. Non-
linear regression fit of pairwise variance vs. time for the OU model is repre-
sented as a dashed line (% & 26.14; ! & 4.14).
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We describe this effect using the OU model of quantitative
trait divergence. We find that the two-parameter OU model
describes the observed saturation of gene-expression divergence
remarkably well, accounting for 75.7% of the mean squared
error in pairwise expression variance (see Fig. 2). Nonlinear
regression estimates the selection parameter % at 26.14 (95%
confidence interval [CI]: 17.78–34.49) and the drift parameter !
at 4.14 (95% CI: 3.52–4.76). This value of ! suggests that, in the
absence of selection, drift will perturb gene expression one
standard deviation in the time it takes to accumulate 0.058 aa
substitutions per site, or in Drosophila, roughly 41.7 million years
(see Methods). Conversely, this value of % suggests that selection
will bring gene-expression level halfway toward its optimum
value in the time it takes to accumulate 0.027 aa substitutions per
site, or 19.0 million years. This result provides the timescale at
which the phylogenetic signal of gene-expression variance decays
with evolutionary distance.

Divergence in gene expression is limited physically by bio-
chemical constraints on maximum transcription, and there must
eventually be saturation effects because of these constraints.
However, because the distribution of gene-expression values
within each species is normalized, the predominate limitation
will be statistical. Complete saturation of gene-expression di-
vergence would cause orthologs to show independent values of
gene expression: that is, expression in species A would be
random relative to expression in species B. In this case, the
variance in gene expression between pairs of independent genes
is expected to equal 1. Hence, without selection, pairwise
expression variance is expected to saturate at 1. However, we
infer saturation of gene-expression divergence at !2/2% & 0.328
(95% CI: 0.309–0.337), consistent with stabilizing selection
acting to limit expression divergence.

Additional insight into the underlying evolutionary process
can be gained by using the OU model to estimate the fitness
landscape for gene expression (Fig. 3). We estimate that an
evolutionary change that causes gene expression to move from
a point one standard deviation distant from optimal expression
to a point matching the optimum exactly will have a selective
effect of %/2!2 & %0.763 Ns (see Fig. 3). To confirm these
findings, we simulated evolution on this landscape under a
strong-selection/weak-mutation model (19). We find that the
equilibrium distribution of simulated trait values is normally
distributed with a variance matching that predicted by the OU
model [supporting information (SI) Fig. S1].

In agreement with previous research (21), we find that a gene’s
rate of protein-sequence evolution correlates with its level of
gene-expression variance across the Drosophila phylogeny (' &
0.112, P ' 10#15, Spearman rank correlation). However, using

the OU model, expression variance can be decomposed into drift
and selection. We find that the rate of protein-sequence evolu-
tion impacts a gene’s level of selective constraint, but not its rate
of phenotypic drift (Fig. 4). These results make intuitive sense,
and support the OU process as a model for the evolution of gene
expression.

Using gene-specific maximum-likelihood estimates, we find
substantial differences in ! and % across genes (complete data set
available as Table S1). Selective constraint, measured as the
equilibrium variance !2/2%, also varies significantly across genes
(Fig. S2). However, even on a single-gene basis, very few genes
show evidence for neutral evolution of gene expression (see Fig.
S2). Only 68 genes out of 6,085 (1.1%) have an equilibrium
variance greater than 1. However, because of small sample size
(n & 7), the power of gene-specific inference is weak. On an
individual basis, 2,459 genes out of 6,085 (40.4%) can reject
equilibrium variance equal to 1 at the 5% level. For each gene,
the gain in likelihood going from the neutral model (! estimated;
% set to !2/2) to the selective model (! and % estimated) was
assessed, where 2 log (Lsel/Lneu) is assumed to be (2 distributed
with one degree of freedom.

Discussion
Stabilizing Selection on Gene-Expression Level. Differences in levels
of gene expression between extant species have accumulated
over time through the processes of random genetic drift and
natural selection. We use a model of genetic drift and natural
selection based upon the OU process to assess differences in
gene-expression level between 7 species of Drosophila. Drift and
selection act together to shape expression pattern in Drosophila
(see Fig. 2). Each gene has an expression optimum, which
selection seeks to preserve. Changes that move the population
toward this optimum level are selected for, while changes that
move the population away from this optimum are selected
against. Interestingly, the magnitude of the selection we infer is
quite small, on the order of Ns for a difference in expression
deviating from the optimum by one standard deviation (see Fig.
3). This is within the range that many evolutionary biologists
would regard as ‘‘nearly neutral’’ (22). Nevertheless, these small
effects significantly limit the divergence of gene-expression

Fig. 3. Fitness landscape of gene-expression level estimated from OU pa-
rameters. Expression level is measured in terms of standard deviations relative
to other genes in the genome. Fitness is equal to #(%/2!2)(##z)2, where z
represents the current trait value. The quadratic shape of the fitness landscape
is assumed by the OU model; the data provides the magnitude of curvature.

Fig. 4. Effect of protein-sequence evolution on patterns of gene-expression
divergence. Nonlinear regression was used to estimate the drift parameter !
and equilibrium variance !2/2% in sliding windows across gene rank ordered
according to their rate of protein-sequence evolution. Each window consists
of 1,125 genes, or 25% of the total set of genes in which reliable alignments
could be made. Mean estimates are shown as solid lines and 95% CIs shown as
gray boundaries. Fast-evolving genes show similar rates of drift, but signifi-
cantly greater levels of equilibrium variance, compared to slow-evolving
genes.
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levels. These findings highlight the ‘‘overwhelming odds against
the less fit’’ (23) and the power of natural selection to shape
phenotypic variation.

The extent of stabilizing selection on gene-expression diver-
gence has been a contentious topic. Khaitovich et al. (5), using
a similar approach to the present study, find that pairwise
divergence in expression level increases in proportion to time
across primates. The discrepancy between these results and our
own may come from multiple sources. Khaitovich et al. examine
chimpanzee, orangutan, and macaque expression levels using
probes designed for human genes. In this case, sequence differ-
ences among species will mimic expression divergence (7), and
so apparent expression divergence will continue to increase with
time, even when the underlying expression divergence has
saturated. Additionally, Khaitovich et al. define expression di-
vergence as squared mean difference between species-specific
expression levels. This statistic (unlike our measure of average
variance, mean of one half of squared differences) is biased by
an amount proportional to sampling variance. Phylogenetically
distant comparisons had a smaller sample size than close com-
parisons and so were biased toward large estimates of expression
divergence (7). Another study of primate-expression divergence
using species-specific probes found that, in the majority of cases,
a constant level gene expression across the phylogeny could not
be rejected (24). Although this result is consistent with stabiliz-
ing selection, a low rate of neutral divergence will have the same
effect. Other studies using various methodologies have suggested
that stabilizing selection acts upon expression divergence (25–
28). However, identifying stabilizing selection in these studies
has relied on information in addition to species-specific expres-
sion levels. The OU model provides a simple framework for
investigating stabilizing selection that requires only expression
data from orthologous genes. The OU model allows the degree
of stabilizing selection to be compared not only between genes
but also between organisms.

Mutational Input and Genetic Drift. Random genetic drift eventu-
ally results in the conversion of standing genetic variation into
fixed differences. We find that empirical estimates of the rate of
phenotypic drift in expression level are remarkably consistent
with expected rates of random genetic drift, given levels of
standing variation and effective population size. Phenotypic drift
results in !2 & 17.14 units of variance in the time it takes to
accumulate 1.0 aa substitutions per site. This is equivalent to
8.68 ( 10#10 units of expression variance per generation (see
Methods). Lande (13) gives the expected variance per generation
because of random genetic drift as h2)2/N, where h2 is the
heritability of the trait, )2 is the level of variance across
individuals within a population, and N is the effective population
size. Assuming h2 & 0.5, )2 & 0.0726 (based upon empirical
comparisons between two strains of D. simulans), and N &
9.05 ( 106 [determined from synonymous genetic diversity in D.
simulans (29) and inferred Drosophila mutation rate (30)], we
arrive at an expectation of 4.02 ( 10#9 units of variance per
generation. The reasonably close correspondence between the
empirical estimate and the theoretical prediction suggests that
the OU model does well to describe the underlying evolutionary
process.

However, mutation-accumulation experiments have suggested
much larger values of mutational variance in gene-expression
level, or )2.4 ( 10#5 units of variance per generation (31). In
this study, a relatively small number of individual mutations
resulted in widespread changes in gene-expression level. This
discrepancy can be reconciled by assuming that mutations of
large effect would be purged by natural selection before reaching
appreciable frequency and, hence, do not end up contributing to
standing genetic variation. This phenomenon is another aspect
of selective constraint. Our calculated rate of phenotypic drift of

)10#9 represents the population-level turnover of standing
variation into fixed differences, and not the input of variation
because of new mutations.

Model Assumptions. Our analysis has made several simplifying
assumptions, including constant gene-expression optima, sym-
metrical mutation rates, and strong-selection/weak-mutation
dynamics. If the optimum itself is subject to stochastic variation,
then our analysis will underestimate the true strength of stabi-
lizing selection. This is because movement of the optimum and
subsequent tracking by natural selection will appear similar to
weak selection poorly tracking a constant optimum. However,
strong selection tracking a shifting optimum will result in
decreased levels of standing variation compared to levels ex-
pected under a constant optimum. We find levels of within-
population variation that are highly compatible with the ob-
served rate of drift, suggesting that shifting optima have not had
a major influence on our results.

We find that asymmetrical mutation should not significantly
impact our results. We simulated evolution on the fitness land-
scape shown in Fig. 3 under a strong-selection/weak-mutation
model, where the rate of mutation to lower expression was twice
the rate of mutation to higher expression. We found that
asymmetrical mutation had no discernable effect on equilibrium
variance (Fig. S3), suggesting our estimates are robust to the
presence of mutational asymmetry. Additionally, the results of
Lande (13) suggest that our model is robust to the assumption
of strong-selection/weak-mutation dynamics.

Throughout our analysis, we have assumed that species-
specific normalization (see Methods) had little effect on our
estimates of OU parameters. To assess the impact of this
assumption, we performed simulations wherein expression levels
of 10,000 genes were evolved according to the OU model and
subsequently normalized in a species-specific fashion (Fig. S4).
We find that normalization results in overestimation of the
degree of selective constraint, suggesting that our conclusion of
nearly neutral evolution is conservative.

Conclusions
It is well known that purifying selection constrains the rate of
sequence change. Often, the reduction in evolutionary rate
estimated using dN/dS is taken as a measurement of the degree
of selective constraint. We find that selection, rather than simply
decreasing the overall rate of expression divergence, instead
curtails expression divergence in a nonlinear fashion. Thus,
measurement of selective constraint on the evolution of contin-
uous traits requires comparison of multiple orthologous trait
values to be successful, but fortunately does not require a neutral
proxy in the way of sequence evolution.

The OU framework presented here may be substantially
extended to model further intricacies of gene-expression evolu-
tion. For example, large-scale fluctuations in % and ! could be
investigated by allowing branch-specific parameter values. We
would expect fluctuations of effective population size to signif-
icantly impact inferred levels of selection. Additionally, it is
possible to identify lineage-specific adaptation for a particular
gene by allowing for multiple trait optima across a phylogeny
(i.e., # of D. melanogaster may differ from # of other Drosophila).
Standard methods, such as likelihood-ratio tests, could then be
used to assess significance. It would be highly interesting to see
whether lineages undergoing adaptive-sequence evolution also
show evidence of adaptive gene-expression evolution. We be-
lieve that the OU model presented here will prove useful to the
future study of gene-expression evolution, and to the study of
phenotypic evolution in general.
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Methods
One-to-One Orthologous Genes in 7 Drosophila Species. Orthologous relation-
ships from 7 Drosophila species (D. ananasse, D. melanogaster, D. mojavensis,
D. pseudoobscura, D. simulans, D. virilis, and D. yakuba) were obtained from
the AAAWiki (http://rana.lbl.gov/drosophila/wiki/index.php/; accessed March
2008) (32). Ortholog predictions were based upon fuzzy reciprocal BLAST
clustering, and regions of poor alignment were screened via sliding window
filter (32). To avoid complications caused by gene duplication and gene loss,
only those genes that maintain a 1:1 orthologous relationship among all 7
species were analyzed. This methodology identified 7,415 orthologous genes.

Protein Sequence Change. Alignments of orthologous coding sequences were
also obtained from the AAAWiki (32). To control for alignment errors, we
eliminated all alignments in which gaps accounted for *25% of total align-
ment length. The remaining 5,380 alignments were translated into amino
acids and concatenated across proteins. These concatenated sequences were
used to estimate evolutionary distance via the methods implemented in the
amino acid-based likelihood (AAML) package of Phylogenetic Analysis by
Maximum Likelihood (PAML) v3.13d (33). These methods give per-branch
estimates of evolutionary distance that account for saturation effects because
of multiple-hit sites. We take these estimates of evolutionary distance as
proxies for evolutionary time. Evolutionary distances are shown in Fig. S5. Ref.
30 dates Drosophila species divergence by calibration based upon Hawaiian
Drosophila. This yields a rough conversion of 707.7 million years for the
accumulation of 1.0 aa substitutions per site, or alternatively 1.978 ( 1010

generations, assuming 20 generations per year. Additionally, we used PAML
to make gene-specific estimates of the rate of amino acid substitution. Gene-
specific substitution rate is taken as the total rate of substitution across the
phylogeny.

Gene-Expression Data. Present-day gene-expression levels for all 7 Drosophila
species were based upon data from Zhang et al. (34). Raw hybridization data
were obtained from the Gene Expression Omnibus under accession GSE6640
(http://www.ncbi.nlm.nih.gov/geo/; accessed March 2008). For each array, we
took the log2 intensities of its probes and normalized these intensities to have
mean 0 and variance 1. After normalization, we took the mean of all probes
corresponding to a specific protein-coding mRNA as the expression level of
that gene. We then took the mean of these gene-specific expression levels
across 4 male and 4 female replicates. This resulted in a single expression level
for each gene in each species. We limited the data set to include only those
genes with unambiguous 1:1 orthologous relationships. Of the orthologous
groups, 6,085 of 7,415 had expression data. We then renormalized the data so
that each species shows mean 0 and variance 1. This methodology only
stretches and shifts expression values, it does not alter the shape of the
distribution. Regardless, we find that expression levels are approximately
normally distributed (Fig. S6). Additionally, we compared the expression level
of each of the 8 replicates of each species, finding very little differences. The
square of the standard error across replicates was 0.012, suggesting that error
variance did not significantly affect our results. Comparing 4 replicates of D.
simulans strain 14021-0251.011 to 4 replicates of D. simulans strain 14021-
0251.198 showed an average variance of 0.085, about half that of the average
variance between D. melanogaster and D. simulans. As discussed in ref. 35, it

is possible that species-specific probe effects may have added a small, but
significant, proportion of the expression variance observed between ortholo-
gous genes.

Maximum-Likelihood Estimation of OU Parameters. Gene-specific estimates of
the OU parameters #, %, and ! were made through numerical optimization of
the likelihood function. We take D. melanogaster expression as the starting
point for the OU process, but obtain similar results using other species’ values.
The starting expression level xmel is assumed to be drawn from the equilibrium
distribution of the OU process:

f!xmel!#, %, !" # !$#,
!2

2%%
Orthologous expression values in the other 6 species are distributed according
to the multivariate normal distribution:

g!xsim, . . . , xvir!#, %, !" # !6!M, V"

with vector of means:

M " +xmel e#% tsim & #!1 $ e#% tsim", . . . , xmel e#% tvir

& #!1 $ e#% tvir",

and covariance matrix:

V " (
!2

2%
!1 $ e#2% tsim"

. . .
!2

2%
!e#%!tsim%tvir""!e2%ssim/vir $ 1"

. . . . . . . . .
!2

2%
!e#%!tsim%tvir""!e2% ssim/vir $ 1" . . .

!2

2%
!1 $ e#2%tvir" )

where tsim represents the total divergence time separating D. melanogaster
and D. simulans, tvir represents the total divergence time separating D. mela-
nogaster and D. virilis, and ssim/vir represents the divergence time shared by D.
simulans and D. virilis in their evolution away from D. melanogaster. Formulas
for other species pairs follow the same pattern. Parameters #, %, and ! are
estimated as those that maximize the likelihood function:

L!#, %, !" " f!xmel!#, %, !" * g!xsim, . . . , xvir!#, %, !"

A step-by-step tutorial of this maximum-likelihood estimation technique can
be found in the SI Appendix.
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