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Abstract

Recent developments in marginal likelihood estimation for model selection in the field of Bayesian phylogenetics and molec-
ular evolution have emphasized the poor performance of the harmonic mean estimator (HME). Although these studies have
shown the merits of new approaches applied to standard normally distributed examples and small real-world data sets, not
much is currently known concerning the performance and computational issues of these methods when fitting complex
evolutionary and population genetic models to empirical real-world data sets. Further, these approaches have not yet seen
widespread application in the field due to the lack of implementations of these computationally demanding techniques in
commonly used phylogenetic packages. We here investigate the performance of some of these new marginal likelihood es-
timators, specifically, path sampling (PS) and stepping-stone (SS) sampling for comparing models of demographic change
and relaxed molecular clocks, using synthetic data and real-world examples for which unexpected inferences were made us-
ing the HME. Given the drastically increased computational demands of PS and SS sampling, we also investigate a posterior
simulation-based analogue of Akaike’s information criterion (AIC) through Markov chain Monte Carlo (MCMC), a model
comparison approach that shares with the HME the appealing feature of having a low computational overhead over the orig-
inal MCMC analysis. We confirm that the HME systematically overestimates the marginal likelihood and fails to yield reliable
model classification and show that the AICM performs better and may be a useful initial evaluation of model choice but that
itisalso, to a lesser degree, unreliable. We show that PS and SS sampling substantially outperform these estimators and adjust
the conclusions made concerning previous analyses for the three real-world data sets that we reanalyzed. The methods used
in this article are now available in BEAST, a powerful user-friendly software package to perform Bayesian evolutionary analyses.

Key words: model comparison, marginal likelihood, Bayes factors, path sampling, stepping-stone sampling, demographic
models, molecular clock, Bayesian inference, phylogeny, BEAST.

biological realism in capturing the key features of the data
(Steel 2005).

A standard approach to perform model selection in
a Bayesian phylogenetic framework operates through the
evaluation of Bayes factors (BFs; Sinsheimer et al. 1996;
Suchard et al. 2001). The BF is a ratio of two marginal likeli-
hoods (i.e., two normalizing constants of the form p(Y|M),
with Y the observed data and M an evolutionary model un-
der evaluation) obtained for the two models, M, and M;,
under comparison (Jeffreys 1935):

_ p(vim)
p(YIMo)

Introduction

Bayesian inference has become increasingly popular in
molecular phylogenetics over the past decades, with
Markov chain Monte Carlo (MCMC) integration revo-
lutionizing the field (Yang and Rannala 1997). Although
MCMC has provided the opportunity to infer posterior
distributions under complex phylogenetic models, the
computational demands associated with increasing model
complexity and the amount of data available have con-
siderably hampered assessing the performance of such
models. Comparing alternative models according to ob-
jective criteria in a formal model selection procedure is
becoming an essential approach to phylogenetic hypoth-
esis testing (Huelsenbeck et al. 2001; Suchard et al. 2001).

Bio (M)

In order to evaluate model fit and calculate BFs, the

Here, the aim of model selection is not necessarily to find
the true model that generated the data but to select a
model that best balances simplicity with flexibility and

normalization constant or marginal likelihood p(Y|M),
which measures the average fit of a model to the data,
is of primary importance. Calculation of the marginal
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likelihood of model M requires integration of its likelihood
across parameter values, weighted by the model’s prior
distribution

p(vIM) = / ol

Among several models, one is led to choose the one of the
greatest marginal likelihood. The BF offers advantages over
likelihood-ratio tests comparing nested models in which
one garners evidence only in favor of rejecting less com-
plex models. Instead, the BF evaluates the relative merits of
both competing models. Consequentially, models need not
be nested and the marginal likelihood naturally penalizes for
model complexity. Values of the BF >1 are considered as ev-
idence in favor of M. Given that modeling assumptions may
have orders of magnitude effects on model fit, the log BF is
often calculated. Kass and Raftery (1995) introduce differ-
ent gradations to assess the log BF as evidence against M. A
value between 0 and 1 is not worth more than a bare men-
tion, whereas a value between 1 and 3 is considered to give
positive evidence against M. Values larger than 3 and 5 are
considered to respectively give strong and very strong evi-
dence against M.

Although researchers have proposed several useful meth-
ods to evaluate BFs in phylogenetics, they are often lim-
ited to specific model selection situations (Lartillot and
Philippe 2006). For example, Suchard et al. (2001) develop
the Savage-Dickey ratio (Verdinelli and Wasserman 1995)
as a BF estimator for nested evolutionary models in phy-
logenetics. Additional approaches include reversible jump
MCMC to evaluate the relative merits of tree topologies
(Suchard et al. 2005) and nesting alternative models to-
gether into a single mixture model via model averaging
in phylogenetics (Lemey et al. 2009; Li and Drummond
2012). Outside of phylogenetics, one often employs approx-
imations to the BF, such as Bayesian information criterion
(Schwartz 1978) and Laplace estimators (Kass and Raftery
1995). However, these approximations often make large
sample assumptions that are rarely valid in phylogenetics
and break down when considering the discrete nature of
tree topologies.

Among the few methods of potentially general appli-
cability, phylogenetics has readily adopted (i) importance
sampling (IS) estimators (Newton and Raftery 1994) and
(ii) path sampling (PS) estimators (Ogata 1989; Gelman and
Meng 1998) to compute marginal likelihoods of competing
models. Occasionally, phylogeneticists refer to PS as “ther-
modynamicintegration” (Lartillot and Philippe 2006) in def-
erence to the physics over statistics literature. PS methods
represent very general estimators; they can be applied to any
model for which MCMC samples can be obtained. These ap-
proaches allow for an overall ranking of competing models
to be constructed from which the top-performing model
can easily be determined.

Lartillot and Philippe (2006) discuss and evaluate sev-
eral approaches to calculate marginal likelihoods and BFs
in the context of phylogenetics. They examine three vari-
ants of IS, the prior arithmetic mean estimator, the posterior

0, M)p(0]M)do. @)
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harmonic mean estimator (HME), the stabilized HME, and
PS. Of these approaches, the HME (Newton and Raftery
1994) is by far the simplest method, only requiring sam-
ples from the posterior distribution and has been used ex-
tensively in the field of phylogenetics (see, e.g, Nylander
et al. 2004). The HME is often severely biased, overestimat-
ing the true marginal likelihood (Xie et al. 2011). Because
HME variance may be infinite, a modified stabilized ver-
sion has been proposed (Newton and Raftery 1994) with
extensions to quantify its Monte Carlo error in phyloge-
netics (Redelings and Suchard 2005). Lartillot and Philippe
(2006) compare the various approaches using a Gaussian
model with different dimensions and an evolutionary model
on a fixed tree for which exact calculation of the marginal
likelihood is available. Results indicate that PS outperforms
the IS variants across all scenarios, remaining well behaved
in cases with high dimensions where all three IS methods
fail even when using a huge numbers of costly posterior
samples.

Recently, Xie et al. (2011) introduced a new method,
called stepping-stone (SS) sampling that employs ideas from
both IS and PS to estimate the marginal likelihood in a se-
ries (the stepping stones) that bridges the posterior and
prior distribution of a model. Again using a Gaussian model
example, the authors show that SS yields a substantially
less-biased estimator than PS. Further, for realistic phylo-
genetic models, SS importantly requires significantly fewer
path steps than PS to accurately estimate the marginal like-
lihood with acceptably small discretization bias.

Because PS and SS offer increased model selection ac-
curacy, in particular relative to the HME, Bayesian infer-
ence software that incorporates an array of evolutionary
models would greatly benefit from the implementation of
these methods. BEAST (Drummond et al. 2012) is a cross-
platform program for Bayesian MCMC analysis of molecu-
lar sequences that offers a multitude of different models,
such as autocorrelated and uncorrelated relaxed clock mod-
els, substitution models including heterogeneity across sites,
coalescent models of population size, and growth and phy-
logeographic models, with support for a flexible choice of
prior specifications on model parameters. BEAST presents
a flexible framework for testing evolutionary hypotheses
without conditioning on a single tree topology. However,
the rich choice in models has not been matched by state-
of-the-art methods for calculating marginal likelihoods; only
the HME is readily available when integrating over the un-
certainty in the phylogenetic tree.

Here, we implement PS and SS approaches to test models
while accommodating phylogenetic uncertainty in BEAST.
We also implement a posterior simulation-based analogue
of Akaike’s information criterion (AIC) through MCMC
(AICM) (Raftery et al. 2007), which is computationally ef-
ficient as it only requires samples from the posterior and
compare the performance of PS, SS, and AICM to that
of the HME. Using a simulation study, we show that PS
and SS consistently outperform the AICM and HME and
that the AICM outperforms the HME in four out of five
simulation scenarios when performing demographic model
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selection. Our results for demographic and molecular clock
selection on empirical data sets indicate that PS and SS yield
the most consistent results across two runs with different
starting values and systematically yield more realistic model
classifications. Further, the AICM yields more consistent re-
sults across runs than the HME, but like the HME, fails to
consistently select the appropriate model.

Methods

PS and SS Sampling in BEAST

Most implementations of PS rely on drawing MCMC sam-
ples from a series of distributions, each of which is a power
posterior differing only in its power, along the path going
from the prior to the unnormalized posterior defined by the
model M. Both Lartillot and Philippe (2006) and Xie et al.
(2011) define this path to be

qs(0) = p(Y

where p(Y|0, M) is the likelihood function and p(6|M) the
prior). Hence, the power posterior is equivalent to the pos-
terior distribution when G = 1.0 and is equivalent to the
prior distribution when 3 = 0.0.

Lartillot and Philippe (2006) propose to evenly spread the
different values of that power (3 between 0.0 to 1.0 and use
Simpson'’s triangulation method to derive an expression for
the marginal likelihood. The authors propose to collect one
sample from each power posterior before (3 is updated. As-
suming K 4 1 path steps, this yields a collection of samples
(B Ok )k=o...» with By = 0and (B = 1, which are used to
calculate the estimate for the marginal likelihood:

K—1

1
Inp(Y[M) =~ > (1np(Y16h M) + I p (V|6 M)

- (4)

In our implementation of PS in BEAST (Drummond et al.
2012), we have however chosen to use multiple samples per
0, requiring a small adaptation of equation (4) in that each
log likelihood is replaced by the mean log likelihood of the
samples taken at each 3.

Lepage et al. (2007) advocate for the use of a sigmoidal
function that places most power values near the extremes
of the unit interval in their model-switch PS analysis and
Friel and Petitt (2008) use equally spaced points in the in-
terval [0,1] elevated to the fourth or fifth power. Hence,
the approaches of Lepage et al. (2007) and Friel and Petitt
(2008) both place most of the power values at points where
the power posterior is changing rapidly. Xie et al. (2011)
find that the efficiency of PS could dramatically improve
by choosing 3 values according to evenly spaced quantiles
of a Beta(a, 1.0) distribution rather than spacing 3 values
evenly from 0.0 to 1.0; this is a generalization of the approach
by Friel and Petitt (2008).

Xie et al. (2011) propose to calculate the marginal likeli-
hood using n samples from a series of K4- 1 power posteriors
as follows:

K 1 n
p(YIM) = [ =D p(¥(6:m)* 2. 5)
k=1 i=1

0,M)p(6]M), (3)

The authors show that numerical stability can be im-
proved by factoring out the largest sampled likelihood
for each power posterior. Although the estimator for the
marginal likelihood shown in equation (5) is unbiased, a bias
is introduced by transforming to the log scale, which can be
alleviated by increasing K.

Xie et al. (2011) show that a value of & = 0.3 is close to
optimal for their Gaussian model example, suggesting that
values close to 0.3 are perhaps generally optimal. The choice
a = 03 results in half of the 3 values evaluated being
<0.1. The authors state that the positive skewness of this
distribution is useful because (with sufficient and informa-
tive data) the likelihood only begins losing control over the
power posterior for 3 values near 0, and at that point, the
target distribution changes rapidly from something resem-
bling the posterior to something resembling the prior. Con-
ditioning on the total number of 3 values evaluated, placing
most of the computational effort on 3 values near zero re-
sults in increased accuracy. In BEAST, we provide these dif-
ferent possibilities for spreading the power values. However,
in the results of this paper, we follow the Xie et al. (2011)
recommendation.

Estimation of HME and AICM

The harmonic mean estimate of the marginal likelihood
only requires samples from the posterior, that is, for 3 = 1
in equation (3) and can hence be calculated from an MCMC
sample that is obtained by a standard Bayesian phylogenetic
analyses under a particular model. If one collects n samples
from the posterior, the HME is estimated as follows:

n
p(Y|M) = —

i=1 p(Y]6,M)

Raftery et al. (2007) introduce the AICM as a poste-
rior simulation—based analog of the AIC model selection
criterion. AICM has the advantage that like the HME of
marginal likelihood, one may estimate the AICM directly
from posterior samples generated by MCMC with little ad-
ditional work. Raftery et al. (2007) show that asymptotically
with large amounts of data, the posterior distribution of a
model’s log likelihood ¢ follows:

linax — £ ~ Gamma(, 1), (7)

(6)

where ¢, represents the maximum possible log likelihood,
~ = k/2 and k represents the effective number of param-
eters in the model. The density function of a Gamma(~y, 1)
distribution is

X'yf1 e X

flo) = I(y) '

and thus the density function of the log likelihood
becomes

ef—fmax (Emax - 6)7_1

flt) = ®)

I'()
Alternatively, the posterior distribution of log likelihoods
may be described in terms of a deviance D = —2/, such

that the posterior deviance is distributed according to a
shifted chi-squared distribution

D— Dmin ~ XZ (27)'
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with density function
Z*We(Dmin*’D)/z D — Dmin y—1
(7)

Equation (7) suggests a method-of-moments estimate of
vasd = s;and £ e = {+s2, where £ and s are the sample
mean and variance of the posterior log likelihoods (Raftery
et al. 2007). Thus, an estimate of the effective number of pa-
rameters k equals 2s?.

AIC (Akaike 1973) is commonly used for model compar-
ison in a maximum-likelihood context and is defined as

AIC = 2k — 2/,

)

Models with lower values of AIC are preferred over mod-
els with higher values. An increase in the number of pa-
rameters k penalizes more complex models. Here, we follow
Raftery et al. (2007) in estimating AICM as

AICM = 2k — 20,0
=2(257) —2(0 +5})
=252 — 2/, (10)

a function of just the posterior sample mean and variance
of the log likelihood. The AICM is similar in spirit to the de-
viance information criterion (Gelman et al. 2004).

In addition to the simple method-of-moments estimator
of AICM (eq. (10)), we consider estimating AICM by fitting
the sampled log-likelihood values to the their asymptotic
density function (eq. (8)) via maximum likelihood to esti-
mate to £n. and 4. However, this procedure does not re-
sult in a marked improvement over the moment estimator
while suffering from a much higher computational burden.
Consequently, throughout the manuscript, we use equation
(10) as our estimate of AICM.

Performance Analysis Through Simulation
To assess the performance of the HME, AICM, PS, and SS
in population genetics model comparison in which it be-
comes necessary to integrate over all possible trees, we
perform a simulation study inspired by the coalescent anal-
ysis of Worobey et al. (2008), see below for details. We
consider the sampling dates of 60 sequences that repre-
sent the diversity in the original HIV-1 group M data set
and simulate dated-tip genealogies under two simple demo-
graphic models: a constant population size and an exponen-
tially growing population size through time. The simulations
under the exponential growth model include increasing
growth rates: 0.01,0.025, 0.05, and 0.10 per year, respectively.
We simulate 100 genealogies under each scenario. Because
variance in coalescent simulations yields much wider TM-
RCA distributions than the empirically observed TMRCA
posterior distribution for HIV-1 group M (Worobey et al.
2008), we rescale the resulting trees by drawing the TMRCA
from a normal distribution with mean 1910 and standard
deviation 10.

Along each genealogy, we simulate sequences encom-
passing 1,000 sites using general time reversible (GTR)

2160

parameter values and a substitution rate that reflects the
estimates for the real data. For each simulated data set, un-
der each demographic model, we estimate marginal likeli-
hoods using the HME, AICM, PS, and SS of both the constant
population and the exponential population model. For all
marginal likelihood estimators, 108 MCMC iterations were
run in BEAST, with each estimator taking no more than 3
days to complete.

Results

HIV Epidemic History

We revisit a Bayesian evolutionary reconstruction of the
HIV-1 group M epidemic history originally performed by
Worobey et al. (2008). This study examines sequence data
from a 1960 specimen from the Belgian Congo (now Kin-
shasa, Democratic Republic of the Congo) that show con-
siderable divergence from the 1959 (ZR59) sequence (Zhu
et al. 1998), the oldest and only known sequence sampled
before 1976 at that time. Because sequences predating the
recognition of AIDS are critical to defining the time of ori-
gin and the timescale of virus evolution, the authors include
these in a relaxed molecular clock analysis and estimated an
origin of group M near the beginning of the 20th century
(Worobey et al. 2008).

Worobey et al. (2008) consider several different coales-
cent models that serve to provide a prior distribution for
time-measured trees and offer a glimpse into the popula-
tion dynamics of the epidemic. These models include the
constant population size, exponential growth (assuming a
constant growth rate through time), expansion growth (as-
suming an increasing growth rate through time), logistic
growth (assuming a decreasing growth rate through time),
and the Bayesian skyline plot (BSP) demographic model (a
general, nonparametric prior that enforces no particular de-
mographic history; Drummond, Ho, et al. 2006). The authors
show that the inclusion of the 1959 and 1960 sequences
seemed to improve estimation of the TMRCA of the M
group, limiting the influence of the coalescent tree prior on
the posterior TMRCA distributions compared with the data
set that excluded these earliest cases of HIV-1. However,
scientific interest also lies in characterizing through model
comparison changes in the population dynamics captured
by the different coalescent models rather than the direct
ancestors of the sampled sequences. From the Worobey
et al. (2008) paper, the HME suggests that a constant pop-
ulation size model provided the best fit to the data. This
appears to be at odds with a model for population ex-
pansion and the BSP reconstruction that suggest a more
complex (and biologically plausible) demographic history
of increasing HIV population size through time. The au-
thors state that the inability to reject the constant pop-
ulation size model is counterintuitive because it is clear
that the HIV-1 population size has increased notably and
speculate that this finding might be due to the simplest
model providing a good fit to a relatively short, information-
poor alignment, in comparison to more parameter-rich
models.
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FiG. 1. Differences in log-marginal likelihood estimates and AICM for two independent fittings (first fitting shown in white and second in gray) of
the HIV data set using the HME, posterior-simulation Akaike information content (AICM), PS, and SS sampling. For each estimator, the constant
population size model (Con) was used as the reference model, and the top-performing model for each fitting is indicated with a star (*). For all
estimators, we employ equal amounts of computational work (MCMC iterations) as well as an equal numbers of samples from which to estimate
the marginal likelihood. The HME shows drastic differences in the overall ranking of the demographic models and, depending on the fitting, may
very well select a constant population size as the preferred coalescent prior. The AICM is consistent across both fittings but selects a constant
population size above all other coalescent priors. PS and SS consistently select the BSP coalescent prior as the optimal choice and put the constant
population size far behind the other coalescent priors. PS and SS indicate that the expansion growth model (Expan) yields the second highest fit,
whereas the exponential (Expo) and logistic (Log) growth models yield similar performance.

We reanalyze this HIV-1 data set by performing two inde-
pendent fittings to each possible prior model and apply the
HME, AICM, PS, and SS to perform model selection. Figure 1
shows the log marginal likelihoods for each model using
each estimator (see supplementary table S1, Supplementary
Material online for the actual values). Depending on which
independent fitting we examine, the constant population
modelis either the best or the worst model according to the
HME, highlighting the poor reliability of this approach. In-
deed, the poor repeatability of the HME relative to PS and SS
has been demonstrated before (Fan et al. 2011). Moreover,
the marginal likelihoods of all five demographic models lie
within a6 and 9 log unit range for the first and second fitting,
respectively. This indicates that the overall difference be-
tween the five models according to the HME is quite small,
making it difficult to reliably select an appropriate demo-
graphic model. This range increases to respectively 51 and
25 log units for the AICM, indicating that this approach too
suffers from poor repeatability for this data set even though
the overall ranking of the models stays the same. The AICM
prefers a constant population size in both runs, which has
been stated to be counterintuitive (Worobey et al. 2008).
Using PS and SS, however, a drastically different situation
emerges. For both fittings, the Bayesian skyline model out-
performs all other models considered, whereas the constant
population model performs considerably worse compared
with the other demographic models. We refer to the original
publication (Worobey et al. 2008) for a graphical represen-
tation of the Bayesian skyline model for the HIV-1 group M.
This suggests that the constant population model was not
originally preferred because of an information-poor align-
ment (Worobey et al. 2008), but because the HME fails
to provide an adequate classification of the demographic
models.

Marginal Likelihood Estimator Performance

Although PS and SS arrive at a biologically more plausible
outcome for HIV population size change through time, it
remains difficult to ascertain that these estimators select a
model closer to the truth for real-life data sets compared
with the HME and the AICM. To address performance more
formally, we next present a series of simulations to test
the ability of marginal likelihood estimators and the AICM
to correctly identify the underlying demographic model in
cases where the true model is known. The simulations in-
clude constant population size and exponential growth dy-
namics with increasing growth rates and were modeled after
the real data set (see Methods).

When we simulate data under a constant population size
coalescent process (table 1), the HME is unable to distin-
guish between a constant population model and an expo-
nential growth rate model, performing no better than a fair
coin toss. This is also reflected in the average log BF across all
100 replicates (roughly centered around 0), indicating that
on average the HME considers these two models to per-
form equally well. Here, the AICM outperforms the HME,
correctly classifying 60 simulation replicates and yielding a
positive overall difference in AICM of 0.57 in favor of the
constant population model. PS and SS outperform both the
HME and the AICM correctly classifying 72 out of 100 sim-
ulation replicates, yielding an average log BF of 1.76 in fa-
vor of the constant population model. This average log BF
can be interpreted as the average penalty that the exponen-
tial growth rate model receives for including one additional
parameter.

A simulation scenario close to the constant population
size model is that of an exponentially increasing population
size with a very low growth rate, 0.01 in our simulation study.
In this scenario, the HME fails again to outperform a fair coin
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Table 1. Marginal Likelihood Estimator Performance for 100 Simulated Data Sets under Various Coalescent Priors Using the HME, AICM, PS,

and SS.

Coalescent Prior Growth Rate HME AICM PS SS Log BF HME AAICM Log BF PS Log BF SS
Constant —_ 48 59 72 72 0.61 0.57 1.76 1.76

Exponential 0.010 50 45 57 57 0.28 0.20 —0.81 —0.80

Exponential 0.025 59 73 92 92 —1.33 —1.36 —6.81 —6.81

Exponential 0.050 80 99 100 100 —4.43 —4.34 —12.54 —12.54

Exponential 0.100 78 100 100 100 —7.75 —7.66 —18.24 —18.24

We employed equal amounts of computational work (MCMC iterations) for all estimators as well as an equal number of posterior samples being used to estimate
the marginal likelihood. The HME, PS, and SS columns report the number of correct classifications obtained out of 100 simulations. The log BF HME, log BF PS, and
log BF SS report the mean log BF over all replicates between the constant population size and exponential growth coalescent priors (a positive number indicates a
preference for the constant population size), whereas AAICM reports the mean difference of the AICM values across all replicates.

toss, again yielding an average log BF close to 0. The AICM
performs slightly worse in this case and only correctly se-
lects the exponential growth model in 45 cases, as reflected
in an average AICM difference that is slightly positive. The
difficulty to distinguish between an exponential population
growth model with a very small growth rate and the con-
stant population model is also shared by PS and SS, although
they classify 57 out of 100 simulation replicates correctly
and yield a relatively low average log BF of 0.81 in favor of
the exponential growth rate model. Increasing the growth
rate to 0.025 reveals that whereas the performance of the
HME only increases slightly (a correct classification for 59
out of 100 simulation replicate), the performance of PS and
SS increases drastically to a proportion of 0.92 correct de-
cisions. The performance of the AICM lies in between that
of the HME and PS/SS, with the average difference in AICM
returning a negative value for this growth rate.

Further increasing the growth rate in the simulations
yields perfect performance for both PS and SS, whereas the
AICM performs almost equally well. Although the HME per-
formance also improves for growth rates of 0.05 and higher,
itonly attains a proportion of 0.80 correct classifications and
the average log BF increases only slightly. With an increasing
growth rate, the AICM furnishes significantly better perfor-
mance than the HME and achieves perfect performance at
a growth rate of 0.10. We can therefore conclude that both
PS and SS significantly outperform the HME. Although the
AICM'’s performance lies in between that of the HME and
PS/SS in cases where it remains difficult to distinguish be-
tween the models, AICM performs well in the face of mod-
est to strong evidence.

In the simulation results above, we use log BF of 0 as cut-
off for binary classification of models. To assess the discrim-
inatory power of the HME, AICM, and PS/SS across a range
of cutoffs, we plot the true positive rate as a function of
the false positive rate in figure 2. These receiver operating
characteristic curves evaluate BF distributions that compare
the fit of both coalescent models on data simulated un-
der constant population size and a particular growth rate.
In every comparison, PS (and SS) exhibits a stronger dis-
criminatory behavior than the AICM and the HME. Hence,
no matter the cutoff used when performing model com-
parison, PS (and SS) consistently outperforms AICM and
HME. The AICM outperforms the HME in most cases and
presents therefore a better alternative for the HME to get
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a first glimpse of the outcome of a model selection ap-
proach while maintaining computational efficiency. How-
ever, the best-performing methods are clearly PS and SS,
justifying the increased computational demands of these
methods.

DNA Virus Evolutionary Rates

Firth et al. (2010) explore the use of temporally structured
sequence data within a Bayesian framework to estimate
the evolutionary rates for seven human double-stranded
DNA (dsDNA) viruses. The authors set out to examine
the ability of current inference tools to estimate relatively
low evolutionary rates such as those thought to commonly
characterize dsDNA viruses (Duffy et al. 2008). Of the data
sets the authors analyze, we here focus on the herpes sim-
plex virus-1 data set. Herpes viruses are large dsDNA viruses,
with genomes that range from 125 to 240 kbp, that infect
both vertebrates and invertebrates. Firth et al. (2010) re-
port that the BSP model outperforms the constant popu-
lation size model for this data set, irrespective of whether a
strict clock (SC) or an uncorrelated relaxed clock is assumed,
a plausible result that we will not further discuss here. The
analyses of Firth et al. (2010) also show that the performance
of the SCis virtually identical to that of the uncorrelated re-
laxed clock lognormal distribution (UCLD), with both being
outperformed by the uncorrelated relaxed clock exponen-
tial distribution (UCED). It remains however unclear why a
more restrictive exponential function would provide a bet-
ter underlying distribution to model rate variation among
lineages compared with a log-normal distribution.

Aside from using a SC, which is often deemed unrealistic
due to rate variation among lineages, we have used uncor-
related relaxed clocks for which we assume two underly-
ing distributions: the exponential rate distribution (UCED)
and log-normal rate distribution (UCLD) (Drummond,
Rambaut, et al. 2006). Offering an alternative to the autocor-
related relaxed-clock models, these clock models assume a
priori no correlation of the rates on adjacent branches of the
tree. Instead, the rate on each branch of the tree is drawn in-
dependently and identically from an underlying rate distri-
bution. We reanalyze the HSV-1 data set to compare these
models using different marginal likelihood estimators as well
as using AICM. We also compare the strict and relaxed clock
models in the presence and absence of the sampling dates
to test for “temporal signal.” This provides the Bayesian
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FIG. 2. Evaluation of log BF estimates using PS (SS yields an undistinguishable plot), AICM, and the HME to compare model fit, with four pairwise
comparisons being shown: a constant population size versus an exponential population size with growth rates of 0.01, 0.025, 0.05, and 0.10. An
increasingly strong discriminatory behavior (low false positive rates and high true positive rates) can be seen for PS (and SS) up to a growth rate of
0.10, whereas the HME retains questionable performance. AICM performance lies in between that of the HME and PS/SS. Color-coded area under

the curve values are given at the bottom right of each plot.

alternative to the likelihood ratio test that conditions on a
single tree topology to test whether including the sampling
dates in a dated-tip model significantly improves the fit of
the clock models (Rambaut 2000; Suchard et al. 2003). For
consistency, we perform the same number of MCMC itera-
tions as in the original study.

Figure 3 demonstrates that the HME, once again, re-
turns inconsistent model rankings across independent
fittings (see supplementary table S2, Supplementary
Material online for the actual values). In the first fitting,
a UCLD clock with sampling dates is the top-performer
via the HME, whereas this model combination is the
worst-performer in the second fitting. The AICM estimates
are very consistent across both runs for all the models
compared and seem to show that the UCED is clearly the
worst-performing model both with and without sampling
dates used. PS and SS also yield consistent results across
both fittings, significantly preferring the SC and UCLD over
the UCED when sampling dates are used. The difference
between SC and UCLD in this case is too small to conclude
significance, which may not be surprising as the temporal
signal might be insufficient to inform a relaxed clock
model in this case. However, when the sampling dates
are not used, PS and SS indicate that the SC is by far the

worst-performing model which is picked up by neither
the HME nor the AICM. The temporal signal appears to
be significant, however, because—except for the UCLD
HME fit in one run—incorporating the sampling dates
consistently provides a better clock fit to the HSV data.

Spread of Methicillin-Resistant Staphylococcus aureus
Staphylococcus aureus is a common cause of infections that
has undergone rapid global spread over recent decades.
Gray et al. (2011) are the first to apply formal phylogeo-
graphic methods to study the molecular epidemiology of
bacterial pathogens, which has long been hampered by
the limited genetic diversity of data sets based on individ-
ual genes. The authors investigate a whole-genome single
nucleotide polymorphism (SNP) data set of health care—
associated methicillin-resistant S. aureus sequence type 239
(HA-MRSA ST239) strains using Markov models that con-
sider discrete diffusion among the geographical locations
of sampling. Gray et al. (2011) employ the HME to per-
form model selection, which generally prefers complex
evolutionary and population dynamic models: an uncor-
related relaxed clock and the BSP model provide a better
fit than a SC and a constant population size assumption,
respectively.
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data set (Firth et al. 2010) using HME, AICM, PS, and SS using a SC, an uncorrelated relaxed clock with an exponential distribution (UCED), and an
uncorrelated relaxed clock with a log-normal distribution (UCLD). The data were analyzed excluding the sampling dates (No) and including the
sampling dates (Yes). We used the SC model excluding the sampling dates as the reference model and the top-performing model for each fitting
is indicated with a star (*). Equal amounts of computational work (MCMC iterations) were run for all estimators as well as an equal number of
posterior samples being used to estimate the marginal likelihood. While the HME shows drastic differences in the overall ranking of the (clock)
models, the AICM as well as PS and SS exhibit consistent behavior, although disagreeing on the performance of a SC when the sampling dates are

omitted.

Here, we revisit the subset of analyses that use an ascer-
tainment bias correction model to take into account that
only variable sites are being used. Indeed, in many align-
ments of closely related sequences, a large number of sites
are invariant and are often excluded because they are phy-
logenetically uninformative. However, when these sites are
excluded, a correction is needed to renormalize the site
probabilities to account for the difference between unob-
served and excluded site patterns. Following the original
analysis we consider data sets with full, intergenic, and syn-
onymous SNP inclusion (Gray et al. 2011).

Gray et al. (2011) note that for the analyses assuming a
relaxed clock, three independent fittings were combined to
obtain sufficient independent samples from the posterior.
Since exploratory analyses using PS and SS also indicated
inconsistent results in some cases, we reran the original anal-
yses to diagnose potential issues. For the full and synony-
mous data sets, we encountered inadequate mixing for the
parameters of the GTR nucleotide substitution model, equi-
librium nucleotide frequencies, and the parameters of the
UCLD clock model. To ameliorate these issues, we simplified
the GTR model to an HKY (Hasegawa, Kishino, and Yano)
model, fixed the base frequencies to the empirical base fre-
quencies and most importantly replaced the improper uni-
form prior on the mean rate in the UCLD model with a
diffuse gamma prior. For matters of consistency, we apply
the same models and priors to the intergenic data set. This
resolved the apparent mixing issues, yielding proper poste-
rior and prior distributions and consistent model ordering
according to PS and SS (table 2). It therefore remains a cru-
cial part of any MCMC analysis to check the MCMC chain
for adequate mixing and provide proper priors for all the
model parameters if one wishes to estimate marginal likeli-
hoods. Given these changes, we have also recalculated the
HME estimates reported in the original paper using the new
settings.
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Only after providing proper priors and using PS and SS,
we arrive at consistent conclusions across all three data
partitions. For each data partition, an uncorrelated relaxed
clock outperforms a SC and a BSP model outperforms a con-
stant population size assumption (table 2).

Discussion

Recent developments in marginal likelihood estimation
demonstrate the potential for more accurate Bayesian
model selection based on simple Gaussian model examples
and small real-world phylogenetic data sets. Here, we im-
plement such estimators, including PS and SS as well as
the AICM, in a Bayesian inference framework for evolution-
ary hypotheses testing when uncertainty remains about the
underlying time-measured genealogy. Such genealogies re-
quire molecular clock assumptions and dedicated tree pri-
ors, such as coalescent models (Drummond et al. 2002),
that frequently need to be scrutinized. Our simulations and
analyses of empirical data sets indicate that PS and SS re-
main feasible without conditioning on a known phylogeny
and, although computationally more demanding, consis-
tently outperform the AICM and the HME. These latter ap-
proaches are less computationally demanding because they
only require samples from the posterior distribution to per-
form model selection and can be calculated from a standard
MCMC run. PS and SS, on the other hand, require MCMC
sampling from a series of power posteriors in order to be
able to calculate the marginal likelihood. Given that the ac-
curacy of the estimator depends on the number of power
posteriors that are traversed, a large number of iterations
may be required to yield reliable results for large data sets
and complex evolutionary models.

All the methods mentioned are now available in BEAST
(Drummond et al. 2012) through XML specification, with
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Table 2. Marginal Likelihood Estimates for Two Independent Fittings for the HA-MRSA ST239 Data Set Using the HME, AICM, PS, and SS (with
the overall ranking of the models shown in parentheses for each estimator) After Specifying Proper Priors.

Fitting 1 Fitting 2

Data Clock Coalescent HME AICM PS SS HME AICM PS SS

Full SC Constant —28,420.5(4) 56,865.6 (4) —28,738.2 (4) —28,735.9(4) —28,418.2(3) 56,865.2 (4) —28,735.5(4) —28,734.2(4)
Full SC BSP —28,419.4 (3) 56,860.7 (3) —28,724.9 (3) —28,723.2(3) —28,420.8(4) 56,860.2 (3) —28,723.8 (3) —28,722.3(3)
Full UCLD Constant —28,304.2 (2) 56,681.8 (2) —28,641.1(2) —28,638.3(2) —28,308.2(2) 56,682.4 (2) —28,647.5(2) —28,644.2(2)
Full UCLD BSP  —28,304.1(1) 56,679.6 (1) —28,635.6 (1) —28,631.9 (1) —28,304.4(1) 56,680.1(1) —28,631.8 (1) —28,628.2(1)
Intergenic ~ SC Constant —6,493.7(4) 13,016.8(2) —6,749.5(4) —6,749.3(4) —6,495.9(4) 13,016.7 (2) —6,750.0 (4) —6,749.6 (4)
Intergenic  SC BSP ~6,489.4(3) 13,001.4(1) —6,740.0(3) -6,739.7(3) —6,488.9(3) 13,001.4(1) —6,7423(3) —6,742.0(3)
Intergenic UCLD Constant —6,479.9 (1) 13037.7(3) -6,730.1(2) —6,729.4(2) —6,481.9(1) 13,038.3(3) —6,7252(2) —6,724.8(2)
Intergenic UCLD  BSP ~6,480.6 (2) 13,0482 (4) -6,716.7(1) —6,716.1(1) —6,482.0(2) 13,043.7(4) —6,717.1(1) —6,716.5(1)
Synonymous SC Constant —6,563.9 (4) 13,149.7 (4) —6,816.3(4) —6,8158(4) —6,561.9(4) 13,149.2(4) —6,816.8(4) —6,816.3(4)
Synonymous SC BSP ~6,556.1(3) 13,133.1(2) -6,806.4(3) —6,806.0(3) —6,558.5(3) 13,133.8(2) —6,806.6(3) —6,806.1(3)
Synonymous UCLD Constant —6,541.7 (2) 13,138.7 (3) —6,787.4(2) —6,786.7(2) —6,538.6(2) 13,138.5(3) —6,786.8(2) —6,786.1(2)
Synonymous UCLD  BSP -6,533.6 (1) 13,122.8(1) —6,780.8(1) —6,780.3(1) —6,536.1(1) 13,123.9(1) —-6,780.9(1) —6,780.0 (1)

As in the original publication of Gray et al. (2011), we compare the constant population size and BSP demographic models under both a SC and an uncorrelated
relaxed clock with a log-normal distribution (UCLD) for three data sets: a full, intergenic, and synonymous data set (we refer to Gray et al. 2011 for more details
on these data sets). Equal amounts of computational work (MCMC iterations) were run for all estimators as well as equal numbers of posterior samples being
used to estimate the marginal likelihood. Only PS and SS are able to yield a consistent model classification across both fittings, thereby generating the same overall
ranking as in the original publication (Gray et al. 2011). The HME and AICM are only able to generate a consistent and correct classification in one out of three

data sets.

the HME and the AICM accessible directly in the graphi-
cal interface driven Tracer program. We provide two BEAST
XML files as Supplementary Material to this paper, one il-
lustrating the usage of the HME and AICM estimators and
illustrating the usage of the PS and SS estimators. In these
two examples, the intergenic data set of Gray et al. (2011)
is analyzed using a BSP model and an uncorrelated relaxed
clock with a lognormal distribution (UCLD). The imple-
mentations allow for an easy comparison between differ-
ent models while incorporating phylogenetic uncertainty. In
the current study, we focus on comparing demographic and
clock models, but the general implementation allows to cal-
culate marginal likelihoods for any model that can be fitted
in BEAST, such as sequence evolution, trait evolution, and
phylogeographic models (see, e.g,, Lemey et al. 2009, 2010).
We refer to Drummond et al. (2012) for an overview of avail-
able models. Further, our implementations allow marginal
likelihoods of a series of models to be calculated indepen-
dently after which these can be compared through their BFs
to decide which model yields the best fit to the data and
should therefore be used for parameter estimation.

As mentioned earlier, Worobey et al. (2008) show that
the inclusion of the 1959 and 1960 sequences seemed to im-
prove estimation of the TMRCA of the M group. We have
shown, using PS and SS sampling, that the BSP model is
the optimal choice among the demographic models that
we tested for this data set. With respect to the conclu-
sions put forward in the work of Worobey et al. (2008), this
means that the time of the most recent common ances-
tor obtained under the BSP (TMRCA 1908, 95% HPD 1884-
1924) can be selected over that of the constant population
model (TMRCA 1921, 95% HPD 1908-1933) when the 1959
and 1960 sequences are included. Hence, in this scenario,
the estimate of the TMRCA of the M group is relatively in-
sensitive to the coalescent tree prior. However, should our
conclusions still hold when the 1959 and 1960 sequences

are excluded, the difference between the TMRCA estimates
would drastically increase, with a TMRCA under the BSP of
1882 (95% HPD 1831-1916) and a TMRCA under the con-
stant population model of 1933 (95% HPD 1919-1945).

Lartillot and Philippe (2006) note that the difference
between the logarithm of the marginal likelihoods of two
phylogenetic models can be small compared with the two
log-marginal likelihoods themselves; this can lead to a poor
estimate of the BF unless the precision on each marginal
likelihood estimate is very high. To counter this effect, re-
searchers suggest constructing a single path connecting the
two competing models in the space of unnormalized den-
sities and then calculating the BF directly along this single
path (Gelman and Meng 1998). By construction, this ap-
proach often results in lower estimate error for the BF in
phylogenetics (Rodrigue et al. 2006). However, estimator ef-
ficiency depends on the path construction and hence other
paths between two arbitrary models may be devised. For
highly structured models, such as those we find in phylo-
genetics, finding an efficient path between two arbitrary
models is not a generic exercise and requires expert knowl-
edge, for example, when the models have mismatching or
extra parameters. In upcoming work, we aim to provide
the ability to construct such BF estimators in BEAST. The
main challenge in accomplishing this is to develop a user-
friendly interface for users to link common parameters be-
tween the competing models to construct effective paths.
Indeed, although marginal likelihood estimation for a par-
ticular models already requires various adaptations in soft-
ware, BF estimation between two arbitrary models requires
much more drastic changes.

One way to circumvent the path construction difficulty
is to shorten the path from posterior to prior whilst still cal-
culating the marginal likelihood for each model separately.
Recently, Fan et al. (2011) propose a more general version of
SS that introduces an arbitrary “working” prior distribution
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that, in practice, one selects as a product of independent
probability densities parameterized using MCMC samples
from the posterior distribution. The authors show that if
this reference distribution exactly equals the posterior dis-
tribution, the marginal likelihood can be estimated exactly.
The generalized SS is considerably more efficient and does
not require sampling from distributions close to the true
prior that is problematic for vague choices. However, at
the moment, this method is restricted to evaluations on
a fixed phylogenetic tree topology. Integrating over plausi-
ble tree topologies complicates generalized SS because of
the need to define a reference distribution for topologies
that provides a good approximation to the posterior. Fu-
ture work will focus on tackling these technical hurdles and
further improving marginal likelihood estimation for model
selection.

Bayesian phylogenetics requires a sensible balance be-
tween parameter richness and biological realism. A good
model captures the essential features of the hypothesis be-
ing tested without introducing unnecessary error, bias, and
overfitting. Accurate model comparisons are therefore a
crucial part of any phylogenetic study even though in this
field of research the model will always be misspecified in the
sense that all evolutionary models are severe simplifications
of reality. Based on the results, we presented in this paper,
we advocate against the use of the HME and provide an al-
ternative measure, the AICM, as an initial posterior-based
investigation to be used with caution. Although PS/SS both
come with increased computational demands, they clearly
provide the most accurate and consistent results and we
recommend them for performing model selection.

Supplementary Material

Supplementary tables S1 and S2 are available at
Molecular Biology and Evolution Online (http://www.mbe.
oxfordjournals.org/).
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